1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/* ************************************************************************
* Copyright (C) 2020 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#pragma once
#ifndef TESTING_SPMV_COO_AOS_HPP
#define TESTING_SPMV_COO_AOS_HPP
#include "hipsparse_test_unique_ptr.hpp"
#include "unit.hpp"
#include "utility.hpp"
#include <hipsparse.h>
#include <string>
#include <typeinfo>
using namespace hipsparse_test;
void testing_spmv_coo_aos_bad_arg(void)
{
#if(!defined(CUDART_VERSION) || (CUDART_VERSION > 10010 && CUDART_VERSION < 12000) \
|| (CUDART_VERSION == 10010 && CUDART_10_1_UPDATE_VERSION == 1 && CUDART_VERSION < 12000))
int64_t m = 100;
int64_t n = 100;
int64_t nnz = 100;
int64_t safe_size = 100;
float alpha = 0.6;
float beta = 0.2;
hipsparseOperation_t transA = HIPSPARSE_OPERATION_NON_TRANSPOSE;
hipsparseIndexBase_t idxBase = HIPSPARSE_INDEX_BASE_ZERO;
hipsparseIndexType_t idxType = HIPSPARSE_INDEX_32I;
hipDataType dataType = HIP_R_32F;
#if(!defined(CUDART_VERSION))
hipsparseSpMVAlg_t alg = HIPSPARSE_MV_ALG_DEFAULT;
#else
#if(CUDART_VERSION >= 12000)
hipsparseSpMVAlg_t alg = HIPSPARSE_SPMV_ALG_DEFAULT;
#elif(CUDART_VERSION >= 10010 && CUDART_VERSION < 12000)
hipsparseSpMVAlg_t alg = HIPSPARSE_MV_ALG_DEFAULT;
#endif
#endif
std::unique_ptr<handle_struct> unique_ptr_handle(new handle_struct);
hipsparseHandle_t handle = unique_ptr_handle->handle;
auto dind_managed = hipsparse_unique_ptr{device_malloc(sizeof(int) * safe_size), device_free};
auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
auto dx_managed = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
auto dy_managed = hipsparse_unique_ptr{device_malloc(sizeof(float) * safe_size), device_free};
auto dbuf_managed = hipsparse_unique_ptr{device_malloc(sizeof(char) * safe_size), device_free};
int* dind = (int*)dind_managed.get();
float* dval = (float*)dval_managed.get();
float* dx = (float*)dx_managed.get();
float* dy = (float*)dy_managed.get();
void* dbuf = (void*)dbuf_managed.get();
if(!dval || !dind || !dx || !dy || !dbuf)
{
PRINT_IF_HIP_ERROR(hipErrorOutOfMemory);
return;
}
// SpMV structures
hipsparseSpMatDescr_t A;
hipsparseDnVecDescr_t x, y;
size_t bsize;
// Create SpMV structures
verify_hipsparse_status_success(
hipsparseCreateCooAoS(&A, m, n, nnz, dind, dval, idxType, idxBase, dataType), "success");
verify_hipsparse_status_success(hipsparseCreateDnVec(&x, n, dx, dataType), "success");
verify_hipsparse_status_success(hipsparseCreateDnVec(&y, m, dy, dataType), "success");
// SpMV buffer
verify_hipsparse_status_invalid_handle(
hipsparseSpMV_bufferSize(nullptr, transA, &alpha, A, x, &beta, y, dataType, alg, &bsize));
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV_bufferSize(handle, transA, nullptr, A, x, &beta, y, dataType, alg, &bsize),
"Error: alpha is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV_bufferSize(
handle, transA, &alpha, nullptr, x, &beta, y, dataType, alg, &bsize),
"Error: A is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV_bufferSize(
handle, transA, &alpha, A, nullptr, &beta, y, dataType, alg, &bsize),
"Error: x is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV_bufferSize(handle, transA, &alpha, A, x, nullptr, y, dataType, alg, &bsize),
"Error: beta is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV_bufferSize(
handle, transA, &alpha, A, x, &beta, nullptr, dataType, alg, &bsize),
"Error: y is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV_bufferSize(handle, transA, &alpha, A, x, &beta, y, dataType, alg, nullptr),
"Error: bsize is nullptr");
// SpMV
verify_hipsparse_status_invalid_handle(
hipsparseSpMV(nullptr, transA, &alpha, A, x, &beta, y, dataType, alg, dbuf));
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV(handle, transA, nullptr, A, x, &beta, y, dataType, alg, dbuf),
"Error: alpha is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV(handle, transA, &alpha, nullptr, x, &beta, y, dataType, alg, dbuf),
"Error: A is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV(handle, transA, &alpha, A, nullptr, &beta, y, dataType, alg, dbuf),
"Error: x is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV(handle, transA, &alpha, A, x, nullptr, y, dataType, alg, dbuf),
"Error: beta is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV(handle, transA, &alpha, A, x, &beta, nullptr, dataType, alg, dbuf),
"Error: y is nullptr");
verify_hipsparse_status_invalid_pointer(
hipsparseSpMV(handle, transA, &alpha, A, x, &beta, nullptr, dataType, alg, nullptr),
"Error: dbuf is nullptr");
// Destruct
verify_hipsparse_status_success(hipsparseDestroySpMat(A), "success");
verify_hipsparse_status_success(hipsparseDestroyDnVec(x), "success");
verify_hipsparse_status_success(hipsparseDestroyDnVec(y), "success");
#endif
}
template <typename I, typename T>
hipsparseStatus_t testing_spmv_coo_aos(void)
{
#if(!defined(CUDART_VERSION) || (CUDART_VERSION > 10010 && CUDART_VERSION < 12000) \
|| (CUDART_VERSION == 10010 && CUDART_10_1_UPDATE_VERSION == 1 && CUDART_VERSION < 12000))
T h_alpha = make_DataType<T>(2.0);
T h_beta = make_DataType<T>(1.0);
hipsparseOperation_t transA = HIPSPARSE_OPERATION_NON_TRANSPOSE;
hipsparseIndexBase_t idx_base = HIPSPARSE_INDEX_BASE_ZERO;
hipsparseSpMVAlg_t alg = HIPSPARSE_COOMV_ALG;
// Matrices are stored at the same path in matrices directory
std::string filename = get_filename("nos3.bin");
// Index and data type
hipsparseIndexType_t typeI
= (typeid(I) == typeid(int32_t)) ? HIPSPARSE_INDEX_32I : HIPSPARSE_INDEX_64I;
hipDataType typeT = (typeid(T) == typeid(float))
? HIP_R_32F
: ((typeid(T) == typeid(double))
? HIP_R_64F
: ((typeid(T) == typeid(hipComplex) ? HIP_C_32F : HIP_C_64F)));
// hipSPARSE handle
std::unique_ptr<handle_struct> test_handle(new handle_struct);
hipsparseHandle_t handle = test_handle->handle;
// Host structures
std::vector<I> hrow_ptr;
std::vector<I> hcol_ind;
std::vector<T> hval;
// Initial Data on CPU
srand(12345ULL);
I m;
I n;
I nnz;
if(read_bin_matrix(filename.c_str(), m, n, nnz, hrow_ptr, hcol_ind, hval, idx_base) != 0)
{
fprintf(stderr, "Cannot open [read] %s\n", filename.c_str());
return HIPSPARSE_STATUS_INTERNAL_ERROR;
}
std::vector<I> hind(2 * nnz);
// Convert to COO (AoS)
for(I i = 0; i < m; ++i)
{
for(I j = hrow_ptr[i] - idx_base; j < hrow_ptr[i + 1] - idx_base; ++j)
{
hind[2 * j] = i + idx_base;
hind[2 * j + 1] = hcol_ind[j];
}
}
std::vector<T> hx(n);
std::vector<T> hy_1(m);
std::vector<T> hy_2(m);
std::vector<T> hy_gold(m);
hipsparseInit<T>(hx, 1, n);
hipsparseInit<T>(hy_1, 1, m);
// copy vector is easy in STL; hy_gold = hx: save a copy in hy_gold which will be output of CPU
hy_2 = hy_1;
hy_gold = hy_1;
// allocate memory on device
auto dind_managed = hipsparse_unique_ptr{device_malloc(sizeof(I) * 2 * nnz), device_free};
auto dval_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * nnz), device_free};
auto dx_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * n), device_free};
auto dy_1_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
auto dy_2_managed = hipsparse_unique_ptr{device_malloc(sizeof(T) * m), device_free};
auto d_alpha_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
auto d_beta_managed = hipsparse_unique_ptr{device_malloc(sizeof(T)), device_free};
I* dind = (I*)dind_managed.get();
T* dval = (T*)dval_managed.get();
T* dx = (T*)dx_managed.get();
T* dy_1 = (T*)dy_1_managed.get();
T* dy_2 = (T*)dy_2_managed.get();
T* d_alpha = (T*)d_alpha_managed.get();
T* d_beta = (T*)d_beta_managed.get();
if(!dval || !dind || !dx || !dy_1 || !dy_2 || !d_alpha || !d_beta)
{
verify_hipsparse_status_success(HIPSPARSE_STATUS_ALLOC_FAILED,
"!dval || !dind || !dx || "
"!dy_1 || !dy_2 || !d_alpha || !d_beta");
return HIPSPARSE_STATUS_ALLOC_FAILED;
}
// copy data from CPU to device
CHECK_HIP_ERROR(hipMemcpy(dind, hind.data(), sizeof(I) * 2 * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dval, hval.data(), sizeof(T) * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dx, hx.data(), sizeof(T) * n, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dy_1, hy_1.data(), sizeof(T) * m, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dy_2, hy_2.data(), sizeof(T) * m, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_beta, &h_beta, sizeof(T), hipMemcpyHostToDevice));
// Create matrices
hipsparseSpMatDescr_t A;
CHECK_HIPSPARSE_ERROR(hipsparseCreateCooAoS(&A, m, n, nnz, dind, dval, typeI, idx_base, typeT));
// Create dense vectors
hipsparseDnVecDescr_t x, y1, y2;
CHECK_HIPSPARSE_ERROR(hipsparseCreateDnVec(&x, n, dx, typeT));
CHECK_HIPSPARSE_ERROR(hipsparseCreateDnVec(&y1, m, dy_1, typeT));
CHECK_HIPSPARSE_ERROR(hipsparseCreateDnVec(&y2, m, dy_2, typeT));
// Query SpMV buffer
size_t bufferSize;
CHECK_HIPSPARSE_ERROR(hipsparseSpMV_bufferSize(
handle, transA, &h_alpha, A, x, &h_beta, y1, typeT, alg, &bufferSize));
void* buffer;
CHECK_HIP_ERROR(hipMalloc(&buffer, bufferSize));
// ROCSPARSE pointer mode host
CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_HOST));
CHECK_HIPSPARSE_ERROR(
hipsparseSpMV(handle, transA, &h_alpha, A, x, &h_beta, y1, typeT, alg, buffer));
// ROCSPARSE pointer mode device
CHECK_HIPSPARSE_ERROR(hipsparseSetPointerMode(handle, HIPSPARSE_POINTER_MODE_DEVICE));
CHECK_HIPSPARSE_ERROR(
hipsparseSpMV(handle, transA, d_alpha, A, x, d_beta, y2, typeT, alg, buffer));
// copy output from device to CPU
CHECK_HIP_ERROR(hipMemcpy(hy_1.data(), dy_1, sizeof(T) * m, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(hy_2.data(), dy_2, sizeof(T) * m, hipMemcpyDeviceToHost));
// Host SpMV
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 1024)
#endif
for(I i = 0; i < m; ++i)
{
hy_gold[i] = hy_gold[i] * h_beta;
}
for(I i = 0; i < nnz; ++i)
{
hy_gold[hind[2 * i] - idx_base] = testing_fma(testing_mult(h_alpha, hval[i]),
hx[hind[2 * i + 1] - idx_base],
hy_gold[hind[2 * i] - idx_base]);
}
unit_check_near(1, m, 1, hy_gold.data(), hy_1.data());
unit_check_near(1, m, 1, hy_gold.data(), hy_2.data());
CHECK_HIP_ERROR(hipFree(buffer));
CHECK_HIPSPARSE_ERROR(hipsparseDestroySpMat(A));
CHECK_HIPSPARSE_ERROR(hipsparseDestroyDnVec(x));
CHECK_HIPSPARSE_ERROR(hipsparseDestroyDnVec(y1));
CHECK_HIPSPARSE_ERROR(hipsparseDestroyDnVec(y2));
#endif
return HIPSPARSE_STATUS_SUCCESS;
}
#endif // TESTING_SPMV_COO_AOS_HPP
|