File: aligner_cache.h

package info (click to toggle)
hisat2 2.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 13,756 kB
  • sloc: cpp: 86,309; python: 12,230; sh: 2,171; perl: 936; makefile: 375
file content (1013 lines) | stat: -rw-r--r-- 26,936 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ALIGNER_CACHE_H_
#define ALIGNER_CACHE_H_

/**
 * CACHEING
 *
 * By caching the results of some alignment sub-problems, we hope to
 * enable a "fast path" for read alignment whereby answers are mostly
 * looked up rather than calculated from scratch.  This is particularly
 * effective when the input is sorted or otherwise grouped in a way
 * that brings together reads with (at least some) seed sequences in
 * common.
 *
 * But the cache is also where results are held, regardless of whether
 * the results are maintained & re-used across reads.
 *
 * The cache consists of two linked potions:
 *
 * 1. A multimap from seed strings (i.e. read substrings) to reference strings
 *    that are within some edit distance (roughly speaking).  This is the "seed
 *    multimap".
 *
 *    Key:   Read substring (2-bit-per-base encoded + length)
 *    Value: Set of reference substrings (i.e. keys into the suffix
 *           array multimap).
 *
 * 2. A multimap from reference strings to the corresponding elements of the
 *    suffix array.  Elements are filled in with reference-offset info as it's
 *    calculated.  This is the "suffix array multimap"
 *
 *    Key:   Reference substring (2-bit-per-base encoded + length)
 *    Value: (a) top from BWT, (b) length of range, (c) offset of first
 *           range element in 
 *
 * For both multimaps, we use a combo Red-Black tree and EList.  The payload in
 * the Red-Black tree nodes points to a range in the EList.
 */

#include <iostream>
#include "ds.h"
#include "read.h"
#include "threading.h"
#include "mem_ids.h"
#include "simple_func.h"
#include "btypes.h"

#define CACHE_PAGE_SZ (16 * 1024)

typedef PListSlice<TIndexOffU, CACHE_PAGE_SZ> TSlice;

/**
 * Key for the query multimap: the read substring and its length.
 */
struct QKey {

	/**
	 * Initialize invalid QKey.
	 */
	QKey() { reset(); }

	/**
	 * Initialize QKey from DNA string.
	 */
	QKey(const BTDnaString& s ASSERT_ONLY(, BTDnaString& tmp)) {
		init(s ASSERT_ONLY(, tmp));
	}
	
	/**
	 * Initialize QKey from DNA string.  Rightmost character is placed in the
	 * least significant bitpair.
	 */
	bool init(
		const BTDnaString& s
		ASSERT_ONLY(, BTDnaString& tmp))
	{
		seq = 0;
		len = (uint32_t)s.length();
		ASSERT_ONLY(tmp.clear());
		if(len > 32) {
			len = 0xffffffff;
			return false; // wasn't cacheable
		} else {
			// Rightmost char of 's' goes in the least significant bitpair
			for(size_t i = 0; i < 32 && i < s.length(); i++) {
				int c = (int)s.get(i);
				assert_range(0, 4, c);
				if(c == 4) {
					len = 0xffffffff;
					return false;
				}
				seq = (seq << 2) | s.get(i);
			}
			ASSERT_ONLY(toString(tmp));
			assert(sstr_eq(tmp, s));
			assert_leq(len, 32);
			return true; // was cacheable
		}
	}
	
	/**
	 * Convert this key to a DNA string.
	 */
	void toString(BTDnaString& s) {
		s.resize(len);
		uint64_t sq = seq;
		for(int i = (len)-1; i >= 0; i--) {
			s.set((uint32_t)(sq & 3), i);
			sq >>= 2;
		}
	}
	
	/**
	 * Return true iff the read substring is cacheable.
	 */
	bool cacheable() const { return len != 0xffffffff; }
	
	/**
	 * Reset to uninitialized state.
	 */
	void reset() { seq = 0; len = 0xffffffff; }

	/**
	 * True -> my key is less than the given key.
	 */
	bool operator<(const QKey& o) const {
		return seq < o.seq || (seq == o.seq && len < o.len);
	}

	/**
	 * True -> my key is greater than the given key.
	 */
	bool operator>(const QKey& o) const {
		return !(*this < o || *this == o);
	}

	/**
	 * True -> my key is equal to the given key.
	 */
	bool operator==(const QKey& o) const {
		return seq == o.seq && len == o.len;
	}


	/**
	 * True -> my key is not equal to the given key.
	 */
	bool operator!=(const QKey& o) const {
		return !(*this == o);
	}
	
#ifndef NDEBUG
	/**
	 * Check that this is a valid, initialized QKey.
	 */
	bool repOk() const {
		return len != 0xffffffff;
	}
#endif

	uint64_t seq; // sequence
	uint32_t len; // length of sequence
};

template <typename index_t>
class AlignmentCache;

/**
 * Payload for the query multimap: a range of elements in the reference
 * string list.
 */
template <typename index_t>
class QVal {

public:

	QVal() { reset(); }

	/**
	 * Return the offset of the first reference substring in the qlist.
	 */
	index_t offset() const { return i_; }

	/**
	 * Return the number of reference substrings associated with a read
	 * substring.
	 */
	index_t numRanges() const {
		assert(valid());
		return rangen_;
	}

	/**
	 * Return the number of elements associated with all associated
	 * reference substrings.
	 */
	index_t numElts() const {
		assert(valid());
		return eltn_;
	}
	
	/**
	 * Return true iff the read substring is not associated with any
	 * reference substrings.
	 */
	bool empty() const {
		assert(valid());
		return numRanges() == 0;
	}

	/**
	 * Return true iff the QVal is valid.
	 */
	bool valid() const { return rangen_ != (index_t)OFF_MASK; }
	
	/**
	 * Reset to invalid state.
	 */
	void reset() {
		i_ = 0; rangen_ = eltn_ = (index_t)OFF_MASK;
	}
	
	/**
	 * Initialize Qval.
	 */
	void init(index_t i, index_t ranges, index_t elts) {
		i_ = i; rangen_ = ranges; eltn_ = elts;
	}
	
	/**
	 * Tally another range with given number of elements.
	 */
	void addRange(index_t numElts) {
		rangen_++;
		eltn_ += numElts;
	}
	
#ifndef NDEBUG
	/**
	 * Check that this QVal is internally consistent and consistent
	 * with the contents of the given cache.
	 */
	bool repOk(const AlignmentCache<index_t>& ac) const;
#endif

protected:

	index_t i_;      // idx of first elt in qlist
	index_t rangen_; // # ranges (= # associated reference substrings)
	index_t eltn_;   // # elements (total)
};

/**
 * Key for the suffix array multimap: the reference substring and its
 * length.  Same as QKey so I typedef it.
 */
typedef QKey SAKey;

/**
 * Payload for the suffix array multimap: (a) the top element of the
 * range in BWT, (b) the offset of the first elt in the salist, (c)
 * length of the range.
 */
template <typename index_t>
struct SAVal {

	SAVal() : topf(), topb(), i(), len(OFF_MASK) { }

	/**
	 * Return true iff the SAVal is valid.
	 */
	bool valid() { return len != (index_t)OFF_MASK; }

#ifndef NDEBUG
	/**
	 * Check that this SAVal is internally consistent and consistent
	 * with the contents of the given cache.
	 */
	bool repOk(const AlignmentCache<index_t>& ac) const;
#endif
	
	/**
	 * Initialize the SAVal.
	 */
	void init(
		index_t tf,
		index_t tb,
		index_t ii,
		index_t ln)
	{
		topf = tf;
		topb = tb;
		i = ii;
		len = ln;
	}

	index_t topf;  // top in BWT
	index_t topb;  // top in BWT'
	index_t i;     // idx of first elt in salist
	index_t len;   // length of range
};

/**
 * One data structure that encapsulates all of the cached information
 * associated with a particular reference substring.  This is useful
 * for summarizing what info should be added to the cache for a partial
 * alignment.
 */
template <typename index_t>
class SATuple {

public:

	SATuple() { reset(); };

	SATuple(SAKey k, index_t tf, index_t tb, TSlice o) {
		init(k, tf, tb, o);
	}
	
	void init(SAKey k, index_t tf, index_t tb, TSlice o) {
		key = k; topf = tf; topb = tb; offs = o;
	}

	/**
	 * Initialize this SATuple from a subrange of the SATuple 'src'.
	 */
	void init(const SATuple& src, index_t first, index_t last) {
		assert_neq((index_t)OFF_MASK, src.topb);
		key = src.key;
		topf = (index_t)(src.topf + first);
		topb = (index_t)OFF_MASK; // unknown!
		offs.init(src.offs, first, last);
	}
	
#ifndef NDEBUG
	/**
	 * Check that this SATuple is internally consistent and that its
	 * PListSlice is consistent with its backing PList.
	 */
	bool repOk() const {
		assert(offs.repOk());
		return true;
	}
#endif

	/**
	 * Function for ordering SATuples.  This is used when prioritizing which to
	 * explore first when extending seed hits into full alignments.  Smaller
	 * ranges get higher priority and we use 'top' to break ties, though any
	 * way of breaking a tie would be fine.
	 */
	bool operator<(const SATuple& o) const {
		if(offs.size() < o.offs.size()) {
			return true;
		}
		if(offs.size() > o.offs.size()) {
			return false;
		}
		return topf < o.topf;
	}
	bool operator>(const SATuple& o) const {
		if(offs.size() < o.offs.size()) {
			return false;
		}
		if(offs.size() > o.offs.size()) {
			return true;
		}
		return topf > o.topf;
	}
	
	bool operator==(const SATuple& o) const {
		return key == o.key && topf == o.topf && topb == o.topb && offs == o.offs;
	}

	void reset() { topf = topb = (index_t)OFF_MASK; offs.reset(); }
	
	/**
	 * Set the length to be at most the original length.
	 */
	void setLength(index_t nlen) {
		assert_leq(nlen, offs.size());
		offs.setLength(nlen);
	}
	
	/**
	 * Return the number of times this reference substring occurs in the
	 * reference, which is also the size of the 'offs' TSlice.
	 */
	index_t size() const { return (index_t)offs.size(); }

	// bot/length of SA range equals offs.size()
	SAKey   key;  // sequence key
	index_t topf;  // top in BWT index
	index_t topb;  // top in BWT' index
	TSlice  offs; // offsets
};

/**
 * Encapsulate the data structures and routines that constitute a
 * particular cache, i.e., a particular stratum of the cache system,
 * which might comprise many strata.
 *
 * Each thread has a "current-read" AlignmentCache which is used to
 * build and store subproblem results as alignment is performed.  When
 * we're finished with a read, we might copy the cached results for
 * that read (and perhaps a bundle of other recently-aligned reads) to
 * a higher-level "across-read" cache.  Higher-level caches may or may
 * not be shared among threads.
 *
 * A cache consists chiefly of two multimaps, each implemented as a
 * Red-Black tree map backed by an EList.  A 'version' counter is
 * incremented every time the cache is cleared.
 */
template <typename index_t>
class AlignmentCache {

	typedef RedBlackNode<QKey,  QVal<index_t> >  QNode;
	typedef RedBlackNode<SAKey, SAVal<index_t> > SANode;

	typedef PList<SAKey, CACHE_PAGE_SZ> TQList;
	typedef PList<index_t, CACHE_PAGE_SZ> TSAList;

public:

	AlignmentCache(
		uint64_t bytes,
		bool shared) :
		pool_(bytes, CACHE_PAGE_SZ, CA_CAT),
		qmap_(CACHE_PAGE_SZ, CA_CAT),
		qlist_(CA_CAT),
		samap_(CACHE_PAGE_SZ, CA_CAT),
		salist_(CA_CAT),
		shared_(shared),
        mutex_m(),
		version_(0)
	{
	}

	/**
	 * Given a QVal, populate the given EList of SATuples with records
	 * describing all of the cached information about the QVal's
	 * reference substrings.
	 */
	template <int S>
	void queryQval(
		const QVal<index_t>& qv,
		EList<SATuple<index_t>, S>& satups,
		index_t& nrange,
		index_t& nelt,
		bool getLock = true)
	{
        ThreadSafe ts(lockPtr(), shared_ && getLock);
		assert(qv.repOk(*this));
		const index_t refi = qv.offset();
		const index_t reff = refi + qv.numRanges();
		// For each reference sequence sufficiently similar to the
		// query sequence in the QKey...
		for(index_t i = refi; i < reff; i++) {
			// Get corresponding SAKey, containing similar reference
			// sequence & length
			SAKey sak = qlist_.get(i);
			// Shouldn't have identical keys in qlist_
			assert(i == refi || qlist_.get(i) != qlist_.get(i-1));
			// Get corresponding SANode
			SANode *n = samap_.lookup(sak);
			assert(n != NULL);
			const SAVal<index_t>& sav = n->payload;
			assert(sav.repOk(*this));
			if(sav.len > 0) {
				nrange++;
				satups.expand();
				satups.back().init(sak, sav.topf, sav.topb, TSlice(salist_, sav.i, sav.len));
				nelt += sav.len;
#ifndef NDEBUG
				// Shouldn't add consecutive identical entries too satups
				if(i > refi) {
					const SATuple<index_t> b1 = satups.back();
					const SATuple<index_t> b2 = satups[satups.size()-2];
					assert(b1.key != b2.key || b1.topf != b2.topf || b1.offs != b2.offs);
				}
#endif
			}
		}
	}

	/**
	 * Return true iff the cache has no entries in it.
	 */
	bool empty() const {
		bool ret = qmap_.empty();
		assert(!ret || qlist_.empty());
		assert(!ret || samap_.empty());
		assert(!ret || salist_.empty());
		return ret;
	}
	
	/**
	 * Add a new query key ('qk'), usually a 2-bit encoded substring of
	 * the read) as the key in a new Red-Black node in the qmap and
	 * return a pointer to the node's QVal.
	 *
	 * The expectation is that the caller is about to set about finding
	 * associated reference substrings, and that there will be future
	 * calls to addOnTheFly to add associations to reference substrings
	 * found.
	 */
	QVal<index_t>* add(
		const QKey& qk,
		bool *added,
		bool getLock = true)
	{
        ThreadSafe ts(lockPtr(), shared_ && getLock);
		assert(qk.cacheable());
		QNode *n = qmap_.add(pool(), qk, added);
		return (n != NULL ? &n->payload : NULL);
	}

	/**
	 * Add a new association between a read sequnce ('seq') and a
	 * reference sequence ('')
	 */
	bool addOnTheFly(
		QVal<index_t>& qv, // qval that points to the range of reference substrings
		const SAKey& sak,  // the key holding the reference substring
		index_t topf,      // top range elt in BWT index
		index_t botf,      // bottom range elt in BWT index
		index_t topb,      // top range elt in BWT' index
		index_t botb,      // bottom range elt in BWT' index
		bool getLock = true);

	/**
	 * Clear the cache, i.e. turn it over.  All HitGens referring to
	 * ranges in this cache will become invalid and the corresponding
	 * reads will have to be re-aligned.
	 */
	void clear(bool getLock = true) {
        ThreadSafe ts(lockPtr(), shared_ && getLock);
		pool_.clear();
		qmap_.clear();
		qlist_.clear();
		samap_.clear();
		salist_.clear();
		version_++;
	}

	/**
	 * Return the number of keys in the query multimap.
	 */
	index_t qNumKeys() const { return (index_t)qmap_.size(); }

	/**
	 * Return the number of keys in the suffix array multimap.
	 */
	index_t saNumKeys() const { return (index_t)samap_.size(); }

	/**
	 * Return the number of elements in the reference substring list.
	 */
	index_t qSize() const { return (index_t)qlist_.size(); }

	/**
	 * Return the number of elements in the SA range list.
	 */
	index_t saSize() const { return (index_t)salist_.size(); }

	/**
	 * Return the pool.
	 */
	Pool& pool() { return pool_; }
	
	/**
	 * Return the lock object.
	 */
	MUTEX_T& lock() {
	    return mutex_m;
	}

	/**
	 * Return a const pointer to the lock object.  This allows us to
	 * write const member functions that grab the lock.
	 */
	MUTEX_T* lockPtr() const {
	    return const_cast<MUTEX_T*>(&mutex_m);
	}
	
	/**
	 * Return true iff this cache is shared among threads.
	 */
	bool shared() const { return shared_; }
	
	/**
	 * Return the current "version" of the cache, i.e. the total number
	 * of times it has turned over since its creation.
	 */
	uint32_t version() const { return version_; }

protected:

	Pool                   pool_;   // dispenses memory pages
	RedBlack<QKey, QVal<index_t> >   qmap_;   // map from query substrings to reference substrings
	TQList                 qlist_;  // list of reference substrings
	RedBlack<SAKey, SAVal<index_t> > samap_;  // map from reference substrings to SA ranges
	TSAList                salist_; // list of SA ranges
	
	bool     shared_;  // true -> this cache is global
	MUTEX_T mutex_m;    // mutex used for syncronization in case the the cache is shared.
	uint32_t version_; // cache version
};

/**
 * Interface used to query and update a pair of caches: one thread-
 * local and unsynchronized, another shared and synchronized.  One or
 * both can be NULL.
 */
template <typename index_t>
class AlignmentCacheIface {

public:

	AlignmentCacheIface(
		AlignmentCache<index_t> *current,
		AlignmentCache<index_t> *local,
		AlignmentCache<index_t> *shared) :
		qk_(),
		qv_(NULL),
		cacheable_(false),
		rangen_(0),
		eltsn_(0),
		current_(current),
		local_(local),
		shared_(shared)
	{
		assert(current_ != NULL);
	}

#if 0
	/**
	 * Query the relevant set of caches, looking for a QVal to go with
	 * the provided QKey.  If the QVal is found in a cache other than
	 * the current-read cache, it is copied into the current-read cache
	 * first and the QVal pointer for the current-read cache is
	 * returned.  This function never returns a pointer from any cache
	 * other than the current-read cache.  If the QVal could not be
	 * found in any cache OR if the QVal was found in a cache other
	 * than the current-read cache but could not be copied into the
	 * current-read cache, NULL is returned.
	 */
	QVal* queryCopy(const QKey& qk, bool getLock = true) {
		assert(qk.cacheable());
		AlignmentCache* caches[3] = { current_, local_, shared_ };
		for(int i = 0; i < 3; i++) {
			if(caches[i] == NULL) continue;
			QVal* qv = caches[i]->query(qk, getLock);
			if(qv != NULL) {
				if(i == 0) return qv;
				if(!current_->copy(qk, *qv, *caches[i], getLock)) {
					// Exhausted memory in the current cache while
					// attempting to copy in the qk
					return NULL;
				}
				QVal* curqv = current_->query(qk, getLock);
				assert(curqv != NULL);
				return curqv;
			}
		}
		return NULL;
	}

	/**
	 * Query the relevant set of caches, looking for a QVal to go with
	 * the provided QKey.  If a QVal is found and which is non-NULL,
	 * *which is set to 0 if the qval was found in the current-read
	 * cache, 1 if it was found in the local across-read cache, and 2
	 * if it was found in the shared across-read cache.
	 */
	inline QVal* query(
		const QKey& qk,
		AlignmentCache** which,
		bool getLock = true)
	{
		assert(qk.cacheable());
		AlignmentCache* caches[3] = { current_, local_, shared_ };
		for(int i = 0; i < 3; i++) {
			if(caches[i] == NULL) continue;
			QVal* qv = caches[i]->query(qk, getLock);
			if(qv != NULL) {
				if(which != NULL) *which = caches[i];
				return qv;
			}
		}
		return NULL;
	}
#endif

	/**
	 * This function is called whenever we start to align a new read or
	 * read substring.  We make key for it and store the key in qk_.
	 * If the sequence is uncacheable, we don't actually add it to the
	 * map but the corresponding reference substrings are still added
	 * to the qlist_.
	 *
	 * Returns:
	 *  -1 if out of memory
	 *  0 if key was found in cache
	 *  1 if key was not found in cache (and there's enough memory to
	 *    add a new key)
	 */
	int beginAlign(
		const BTDnaString& seq,
		const BTString& qual,
		QVal<index_t>& qv,              // out: filled in if we find it in the cache
		bool getLock = true)
	{
		assert(repOk());
		qk_.init(seq ASSERT_ONLY(, tmpdnastr_));
		//if(qk_.cacheable() && (qv_ = current_->query(qk_, getLock)) != NULL) {
		//	// qv_ holds the answer
		//	assert(qv_->valid());
		//	qv = *qv_;
		//	resetRead();
		//	return 1; // found in cache
		//} else
		if(qk_.cacheable()) {
			// Make a QNode for this key and possibly add the QNode to the
			// Red-Black map; but if 'seq' isn't cacheable, just create the
			// QNode (without adding it to the map).
			qv_ = current_->add(qk_, &cacheable_, getLock);
		} else {
			qv_ = &qvbuf_;
		}
		if(qv_ == NULL) {
			resetRead();
 			return -1; // Not in memory
		}
		qv_->reset();
		return 0; // Need to search for it
	}
	ASSERT_ONLY(BTDnaString tmpdnastr_);
	
	/**
	 * Called when is finished aligning a read (and so is finished
	 * adding associated reference strings).  Returns a copy of the
	 * final QVal object and resets the alignment state of the
	 * current-read cache.
	 *
	 * Also, if the alignment is cacheable, it commits it to the next
	 * cache up in the cache hierarchy.
	 */
	QVal<index_t> finishAlign(bool getLock = true) {
		if(!qv_->valid()) {
			qv_->init(0, 0, 0);
		}
		// Copy this pointer because we're about to reset the qv_ field
		// to NULL
		QVal<index_t>* qv = qv_;
		// Commit the contents of the current-read cache to the next
		// cache up in the hierarchy.
		// If qk is cacheable, then it must be in the cache
#if 0
		if(qk_.cacheable()) {
			AlignmentCache* caches[3] = { current_, local_, shared_ };
			ASSERT_ONLY(AlignmentCache* which);
			ASSERT_ONLY(QVal* qv2 = query(qk_, &which, true));
			assert(qv2 == qv);
			assert(which == current_);
			for(int i = 1; i < 3; i++) {
				if(caches[i] != NULL) {
					// Copy this key/value pair to the to the higher
					// level cache and, if its memory is exhausted,
					// clear the cache and try again.
					caches[i]->clearCopy(qk_, *qv_, *current_, getLock);
					break;
				}
			}
		}
#endif
		// Reset the state in this iface in preparation for the next
		// alignment.
		resetRead();
		assert(repOk());
		return *qv;
	}

	/**
	 * A call to this member indicates that the caller has finished
	 * with the last read (if any) and is ready to work on the next.
	 * This gives the cache a chance to reset some of its state if
	 * necessary.
	 */
	void nextRead() {
		current_->clear();
		resetRead();
		assert(!aligning());
	}
	
	/**
	 * Return true iff we're in the middle of aligning a sequence.
	 */
	bool aligning() const {
		return qv_ != NULL;
	}
	
	/**
	 * Clears both the local and shared caches.
	 */
	void clear() {
		if(current_ != NULL) current_->clear();
		if(local_   != NULL) local_->clear();
		if(shared_  != NULL) shared_->clear();
	}
	
	/**
	 * Add an alignment to the running list of alignments being
	 * compiled for the current read in the local cache.
	 */
	bool addOnTheFly(
		const BTDnaString& rfseq, // reference sequence close to read seq
		index_t topf,            // top in BWT index
		index_t botf,            // bot in BWT index
		index_t topb,            // top in BWT' index
		index_t botb,            // bot in BWT' index
		bool getLock = true)      // true -> lock is not held by caller
	{
		
		assert(aligning());
		assert(repOk());
		ASSERT_ONLY(BTDnaString tmp);
		SAKey sak(rfseq ASSERT_ONLY(, tmp));
		//assert(sak.cacheable());
		if(current_->addOnTheFly((*qv_), sak, topf, botf, topb, botb, getLock)) {
			rangen_++;
			eltsn_ += (botf-topf);
			return true;
		}
		return false;
	}

	/**
	 * Given a QVal, populate the given EList of SATuples with records
	 * describing all of the cached information about the QVal's
	 * reference substrings.
	 */
	template<int S>
	void queryQval(
		const QVal<index_t>& qv,
		EList<SATuple<index_t>, S>& satups,
		index_t& nrange,
		index_t& nelt,
		bool getLock = true)
	{
		current_->queryQval(qv, satups, nrange, nelt, getLock);
	}

	/**
	 * Return a pointer to the current-read cache object.
	 */
	const AlignmentCache<index_t>* currentCache() const { return current_; }
	
	index_t curNumRanges() const { return rangen_; }
	index_t curNumElts()   const { return eltsn_;  }
	
#ifndef NDEBUG
	/**
	 * Check that AlignmentCacheIface is internally consistent.
	 */
	bool repOk() const {
		assert(current_ != NULL);
		assert_geq(eltsn_, rangen_);
		if(qv_ == NULL) {
			assert_eq(0, rangen_);
			assert_eq(0, eltsn_);
		}
		return true;
	}
#endif
	
	/**
	 * Return the alignment cache for the current read.
	 */
	const AlignmentCache<index_t>& current() {
		return *current_;
	}

protected:

	/**
	 * Reset fields encoding info about the in-process read.
	 */
	void resetRead() {
		cacheable_ = false;
		rangen_ = eltsn_ = 0;
		qv_ = NULL;
	}

	QKey qk_;  // key representation for current read substring
	QVal<index_t> *qv_; // pointer to value representation for current read substring
	QVal<index_t> qvbuf_; // buffer for when key is uncacheable but we need a qv
	bool cacheable_; // true iff the read substring currently being aligned is cacheable
	
	index_t rangen_; // number of ranges since last alignment job began
	index_t eltsn_;  // number of elements since last alignment job began

	AlignmentCache<index_t> *current_; // cache dedicated to the current read
	AlignmentCache<index_t> *local_;   // local, unsynchronized cache
	AlignmentCache<index_t> *shared_;  // shared, synchronized cache
};

#ifndef NDEBUG
/**
 * Check that this QVal is internally consistent and consistent
 * with the contents of the given cache.
 */
template <typename index_t>
bool QVal<index_t>::repOk(const AlignmentCache<index_t>& ac) const {
	if(rangen_ > 0) {
		assert_lt(i_, ac.qSize());
		assert_leq(i_ + rangen_, ac.qSize());
	}
	assert_geq(eltn_, rangen_);
	return true;
}
#endif

#ifndef NDEBUG
/**
 * Check that this SAVal is internally consistent and consistent
 * with the contents of the given cache.
 */
template <typename index_t>
bool SAVal<index_t>::repOk(const AlignmentCache<index_t>& ac) const {
	assert(len == 0 || i < ac.saSize());
	assert_leq(i + len, ac.saSize());
	return true;
}
#endif

/**
 * Add a new association between a read sequnce ('seq') and a
 * reference sequence ('')
 */
template <typename index_t>
bool AlignmentCache<index_t>::addOnTheFly(
								 QVal<index_t>& qv, // qval that points to the range of reference substrings
								 const SAKey& sak,  // the key holding the reference substring
								 index_t topf,      // top range elt in BWT index
								 index_t botf,      // bottom range elt in BWT index
								 index_t topb,      // top range elt in BWT' index
								 index_t botb,      // bottom range elt in BWT' index
								 bool getLock)
{
    ThreadSafe ts(lockPtr(), shared_ && getLock);
	bool added = true;
	// If this is the first reference sequence we're associating with
	// the query sequence, initialize the QVal.
	if(!qv.valid()) {
		qv.init((index_t)qlist_.size(), 0, 0);
	}
	qv.addRange(botf-topf); // update tally for # ranges and # elts
	if(!qlist_.add(pool(), sak)) {
		return false; // Exhausted pool memory
	}
#ifndef NDEBUG
	for(index_t i = qv.offset(); i < qlist_.size(); i++) {
		if(i > qv.offset()) {
			assert(qlist_.get(i) != qlist_.get(i-1));
		}
	}
#endif
	assert_eq(qv.offset() + qv.numRanges(), qlist_.size());
	SANode *s = samap_.add(pool(), sak, &added);
	if(s == NULL) {
		return false; // Exhausted pool memory
	}
	assert(s->key.repOk());
	if(added) {
		s->payload.i = (index_t)salist_.size();
		s->payload.len = botf - topf;
		s->payload.topf = topf;
		s->payload.topb = topb;
		for(size_t j = 0; j < (botf-topf); j++) {
			if(!salist_.add(pool(), (index_t)0xffffffff)) {
				// Change the payload's len field
				s->payload.len = (uint32_t)j;
				return false; // Exhausted pool memory
			}
		}
		assert(s->payload.repOk(*this));
	}
	// Now that we know all allocations have succeeded, we can do a few final
	// updates
	
	return true; 
}

#endif /*ALIGNER_CACHE_H_*/