File: multikey_qsort.h

package info (click to toggle)
hisat2 2.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 13,756 kB
  • sloc: cpp: 86,309; python: 12,230; sh: 2,171; perl: 936; makefile: 375
file content (1237 lines) | stat: -rw-r--r-- 38,943 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef MULTIKEY_QSORT_H_
#define MULTIKEY_QSORT_H_

#include <iostream>
#include "sequence_io.h"
#include "alphabet.h"
#include "assert_helpers.h"
#include "diff_sample.h"
#include "sstring.h"
#include "btypes.h"

using namespace std;

/**
 * Swap elements a and b in s
 */
template <typename TStr, typename TPos>
static inline void swap(TStr& s, size_t slen, TPos a, TPos b) {
	assert_lt(a, slen);
	assert_lt(b, slen);
	swap(s[a], s[b]);
}

/**
 * Swap elements a and b in array s
 */
template <typename TVal, typename TPos>
static inline void swap(TVal* s, size_t slen, TPos a, TPos b) {
	assert_lt(a, slen);
	assert_lt(b, slen);
	swap(s[a], s[b]);
}

/**
 * Helper macro for swapping elements a and b in s.  Does some additional
 * sainty checking w/r/t begin and end (which are parameters to the sorting
 * routines below).
 */
#define SWAP(s, a, b) { \
	assert_geq(a, begin); \
	assert_geq(b, begin); \
	assert_lt(a, end); \
	assert_lt(b, end); \
	swap(s, slen, a, b); \
}

/**
 * Helper macro for swapping the same pair of elements a and b in two different
 * strings s and s2.  This is a helpful variant if, for example, the caller
 * would like to see how their input was permuted by the sort routine (in that
 * case, the caller would let s2 be an array s2[] where s2 is the same length
 * as s and s2[i] = i).
 */
#define SWAP2(s, s2, a, b) { \
	SWAP(s, a, b); \
	swap(s2, slen, a, b); \
}

#define SWAP1(s, s2, a, b) { \
	SWAP(s, a, b); \
}

/**
 * Helper macro that swaps a range of elements [i, i+n) with another
 * range [j, j+n) in s.
 */
#define VECSWAP(s, i, j, n) { \
	if(n > 0) { vecswap(s, slen, i, j, n, begin, end); } \
}

/**
 * Helper macro that swaps a range of elements [i, i+n) with another
 * range [j, j+n) both in s and s2.
 */
#define VECSWAP2(s, s2, i, j, n) { \
	if(n > 0) { vecswap2(s, slen, s2, i, j, n, begin, end); } \
}

/**
 * Helper function that swaps a range of elements [i, i+n) with another
 * range [j, j+n) in s.  begin and end represent the current range under
 * consideration by the caller (one of the recursive multikey_quicksort
 * routines below).
 */
template <typename TStr, typename TPos>
static inline void vecswap(TStr& s, size_t slen, TPos i, TPos j, TPos n, TPos begin, TPos end) {
	assert_geq(i, begin);
	assert_geq(j, begin);
	assert_lt(i, end);
	assert_lt(j, end);
	while(n-- > 0) {
		assert_geq(n, 0);
		TPos a = i+n;
		TPos b = j+n;
		assert_geq(a, begin);
		assert_geq(b, begin);
		assert_lt(a, end);
		assert_lt(b, end);
		swap(s, slen, a, b);
	}
}

template <typename TVal, typename TPos>
static inline void vecswap(TVal *s, size_t slen, TPos i, TPos j, TPos n, TPos begin, TPos end) {
	assert_geq(i, begin);
	assert_geq(j, begin);
	assert_lt(i, end);
	assert_lt(j, end);
	while(n-- > 0) {
		assert_geq(n, 0);
		TPos a = i+n;
		TPos b = j+n;
		assert_geq(a, begin);
		assert_geq(b, begin);
		assert_lt(a, end);
		assert_lt(b, end);
		swap(s, slen, a, b);
	}
}

/**
 * Helper function that swaps a range of elements [i, i+n) with another range
 * [j, j+n) both in s and s2.  begin and end represent the current range under
 * consideration by the caller (one of the recursive multikey_quicksort
 * routines below).
 */
template <typename TStr, typename TPos>
static inline void vecswap2(
	TStr& s,
	size_t slen,
	TStr& s2,
	TPos i,
	TPos j,
	TPos n,
	TPos begin,
	TPos end)
{
	assert_geq(i, begin);
	assert_geq(j, begin);
	assert_lt(i, end);
	assert_lt(j, end);
	while(n-- > 0) {
		assert_geq(n, 0);
		TPos a = i+n;
		TPos b = j+n;
		assert_geq(a, begin);
		assert_geq(b, begin);
		assert_lt(a, end);
		assert_lt(b, end);
		swap(s, slen, a, b);
		swap(s2, slen, a, b);
	}
}

template <typename TVal, typename TPos>
static inline void vecswap2(TVal* s, size_t slen, TVal* s2, TPos i, TPos j, TPos n, TPos begin, TPos end) {
	assert_geq(i, begin);
	assert_geq(j, begin);
	assert_lt(i, end);
	assert_lt(j, end);
	while(n-- > 0) {
		assert_geq(n, 0);
		TPos a = i+n;
		TPos b = j+n;
		assert_geq(a, begin);
		assert_geq(b, begin);
		assert_lt(a, end);
		assert_lt(b, end);
		swap(s, slen, a, b);
		swap(s2, slen, a, b);
	}
}

/// Retrieve an int-ized version of the ath character of string s, or,
/// if a goes off the end of s, return a (user-specified) int greater
/// than any TAlphabet character - 'hi'.
#define CHAR_AT(ss, aa) ((length(s[ss]) > aa) ? (int)(s[ss][aa]) : hi)

/// Retrieve an int-ized version of the ath character of string s, or,
/// if a goes off the end of s, return a (user-specified) int greater
/// than any TAlphabet character - 'hi'.
#define CHAR_AT_SUF(si, off) \
	(((off + s[si]) < hlen) ? ((int)(host[off + s[si]])) : (hi))

/// Retrieve an int-ized version of the ath character of string s, or,
/// if a goes off the end of s, return a (user-specified) int greater
/// than any TAlphabet character - 'hi'.

#define CHAR_AT_SUF_U8(si, off) char_at_suf_u8(host, hlen, s, si, off, hi)

// Note that CHOOSE_AND_SWAP_RANDOM_PIVOT is unused
#define CHOOSE_AND_SWAP_RANDOM_PIVOT(sw, ch) {                            \
	/* Note: rand() didn't really cut it here; it seemed to run out of */ \
	/* randomness and, after a time, returned the same thing over and */  \
	/* over again */                                                      \
	a = (rand() % n) + begin; /* choose pivot between begin and end */  \
	assert_lt(a, end); assert_geq(a, begin);                              \
	sw(s, s2, begin, a); /* move pivot to beginning */                    \
}

/**
 * Ad-hoc DNA-centric way of choose a pretty good pivot without using
 * the pseudo-random number generator.  We try to get a 1 or 2 if
 * possible, since they'll split things more evenly than a 0 or 4.  We
 * also avoid swapping in the event that we choose the first element.
 */
#define CHOOSE_AND_SWAP_SMART_PIVOT(sw, ch) {                                    \
	a = begin; /* choose first elt */                                            \
	/* now try to find a better elt */                                           \
	if(n >= 5) { /* n is the difference between begin and end */                 \
		if     (ch(begin+1, depth) == 1 || ch(begin+1, depth) == 2) a = begin+1; \
		else if(ch(begin+2, depth) == 1 || ch(begin+2, depth) == 2) a = begin+2; \
		else if(ch(begin+3, depth) == 1 || ch(begin+3, depth) == 2) a = begin+3; \
		else if(ch(begin+4, depth) == 1 || ch(begin+4, depth) == 2) a = begin+4; \
		if(a != begin) sw(s, s2, begin, a); /* move pivot to beginning */        \
	}                                                                            \
	/* the element at [begin] now holds the pivot value */                       \
}

#define CHOOSE_AND_SWAP_PIVOT CHOOSE_AND_SWAP_SMART_PIVOT

#ifndef NDEBUG

/**
 * Assert that the range of chars at depth 'depth' in strings 'begin'
 * to 'end' in string-of-suffix-offsets s is parititioned properly
 * according to the ternary paritioning strategy of Bentley and McIlroy
 * (*prior to* swapping the = regions to the center)
 */
template<typename THost>
bool assertPartitionedSuf(
	const THost& host,
	TIndexOffU *s,
	size_t slen,
	int hi,
	int pivot,
	size_t begin,
	size_t end,
	size_t depth)
{
	size_t hlen = host.length();
	int state = 0; // 0 -> 1st = section, 1 -> < section, 2 -> > section, 3 -> 2nd = section
	for(size_t i = begin; i < end; i++) {
		switch(state) {
		case 0:
			if       (CHAR_AT_SUF(i, depth) < pivot)  { state = 1; break; }
			else if  (CHAR_AT_SUF(i, depth) > pivot)  { state = 2; break; }
			assert_eq(CHAR_AT_SUF(i, depth), pivot);  break;
		case 1:
			if       (CHAR_AT_SUF(i, depth) > pivot)  { state = 2; break; }
			else if  (CHAR_AT_SUF(i, depth) == pivot) { state = 3; break; }
			assert_lt(CHAR_AT_SUF(i, depth), pivot);  break;
		case 2:
			if       (CHAR_AT_SUF(i, depth) == pivot) { state = 3; break; }
			assert_gt(CHAR_AT_SUF(i, depth), pivot);	 break;
		case 3:
			assert_eq(CHAR_AT_SUF(i, depth), pivot);	 break;
		}
	}
	return true;
}

/**
 * Assert that the range of chars at depth 'depth' in strings 'begin'
 * to 'end' in string-of-suffix-offsets s is parititioned properly
 * according to the ternary paritioning strategy of Bentley and McIlroy
 * (*after* swapping the = regions to the center)
 */
template<typename THost>
bool assertPartitionedSuf2(
	const THost& host,
	TIndexOffU *s,
	size_t slen,
	int hi,
	int pivot,
	size_t begin,
	size_t end,
	size_t depth)
{
	size_t hlen = host.length();
	int state = 0; // 0 -> < section, 1 -> = section, 2 -> > section
	for(size_t i = begin; i < end; i++) {
		switch(state) {
		case 0:
			if       (CHAR_AT_SUF(i, depth) == pivot) { state = 1; break; }
			else if  (CHAR_AT_SUF(i, depth) > pivot)  { state = 2; break; }
			assert_lt(CHAR_AT_SUF(i, depth), pivot);  break;
		case 1:
			if       (CHAR_AT_SUF(i, depth) > pivot)  { state = 2; break; }
			assert_eq(CHAR_AT_SUF(i, depth), pivot);  break;
		case 2:
			assert_gt(CHAR_AT_SUF(i, depth), pivot);  break;
		}
	}
	return true;
}
#endif

/**
 * Assert that string s of suffix offsets into string 'host' is a seemingly
 * legitimate suffix-offset list (at this time, we just check that it doesn't
 * list any suffix twice).
 */
static inline void sanityCheckInputSufs(TIndexOffU *s, size_t slen) {
	assert_gt(slen, 0);
	for(size_t i = 0; i < slen; i++) {
		// Actually, it's convenient to allow the caller to provide
		// suffix offsets thare are off the end of the host string.
		// See, e.g., build() in diff_sample.cpp.
		//assert_lt(s[i], length(host));
		for(size_t j = i+1; j < slen; j++) {
			assert_neq(s[i], s[j]);
		}
	}
}

/**
 * Assert that the string s of suffix offsets into  'host' really are in
 * lexicographical order up to depth 'upto'.
 */
template <typename T>
void sanityCheckOrderedSufs(
	const T& host,
	size_t hlen,
	TIndexOffU *s,
	size_t slen,
	size_t upto,
	size_t lower = 0,
	size_t upper = OFF_MASK)
{
	assert_lt(s[0], hlen);
	upper = min<size_t>(upper, slen-1);
	for(size_t i = lower; i < upper; i++) {
		// Allow s[i+t] to point off the end of the string; this is
		// convenient for some callers
		if(s[i+1] >= hlen) continue;
#ifndef NDEBUG
		if(upto == OFF_MASK) {
			assert(sstr_suf_lt(host, s[i], hlen, host, s[i+1], hlen, false));
		} else {
			if(sstr_suf_upto_lt(host, s[i], host, s[i+1], upto, false)) {
				// operator > treats shorter strings as
				// lexicographically smaller, but we want to opposite
				//assert(isPrefix(suffix(host, s[i+1]), suffix(host, s[i])));
			}
		}
#endif
	}
}

/**
 * Main multikey quicksort function for suffixes.  Based on Bentley &
 * Sedgewick's algorithm on p.5 of their paper "Fast Algorithms for
 * Sorting and Searching Strings".  That algorithm has been extended in
 * three ways:
 *
 *  1. Deal with keys of different lengths by checking bounds and
 *     considering off-the-end values to be 'hi' (b/c our goal is the
 *     BWT transform, we're biased toward considring prefixes as
 *     lexicographically *greater* than their extensions).
 *  2. The multikey_qsort_suffixes version takes a single host string
 *     and a list of suffix offsets as input.  This reduces memory
 *     footprint compared to an approach that treats its input
 *     generically as a set of strings (not necessarily suffixes), thus
 *     requiring that we store at least two integers worth of
 *     information for each string.
 *  3. Sorting functions take an extra "upto" parameter that upper-
 *     bounds the depth to which the function sorts.
 *
 * TODO: Consult a tie-breaker (like a difference cover sample) if two
 * keys share a long prefix.
 */
template<typename T>
void mkeyQSortSuf(
	const T& host,
	size_t hlen,
	TIndexOffU *s,
	size_t slen,
	int hi,
	size_t begin,
	size_t end,
	size_t depth,
	size_t upto = OFF_MASK)
{
	// Helper for making the recursive call; sanity-checks arguments to
	// make sure that the problem actually got smaller.
	#define MQS_RECURSE_SUF(nbegin, nend, ndepth) { \
		assert(nbegin > begin || nend < end || ndepth > depth); \
		if(ndepth < upto) { /* don't exceed depth of 'upto' */ \
			mkeyQSortSuf(host, hlen, s, slen, hi, nbegin, nend, ndepth, upto); \
		} \
	}
	assert_leq(begin, slen);
	assert_leq(end, slen);
	size_t a, b, c, d, /*e,*/ r;
	size_t n = end - begin;
	if(n <= 1) return;                 // 1-element list already sorted
	CHOOSE_AND_SWAP_PIVOT(SWAP1, CHAR_AT_SUF); // pick pivot, swap it into [begin]
	int v = CHAR_AT_SUF(begin, depth); // v <- randomly-selected pivot value
	#ifndef NDEBUG
	{
		bool stillInBounds = false;
		for(size_t i = begin; i < end; i++) {
			if(depth < (hlen-s[i])) {
				stillInBounds = true;
				break;
			} else { /* already fell off this suffix */ }
		}
		assert(stillInBounds); // >=1 suffix must still be in bounds
	}
	#endif
	a = b = begin;
	c = d = end-1;
	while(true) {
		// Invariant: everything before a is = pivot, everything
		// between a and b is <
		int bc = 0; // shouldn't have to init but gcc on Mac complains
		while(b <= c && v >= (bc = CHAR_AT_SUF(b, depth))) {
			if(v == bc) {
				SWAP(s, a, b); a++;
			}
			b++;
		}
		// Invariant: everything after d is = pivot, everything
		// between c and d is >
		int cc = 0; // shouldn't have to init but gcc on Mac complains
		while(b <= c && v <= (cc = CHAR_AT_SUF(c, depth))) {
			if(v == cc) {
				SWAP(s, c, d); d--;
			}
			c--;
		}
		if(b > c) break;
		SWAP(s, b, c);
		b++;
		c--;
	}
	assert(a > begin || c < end-1);                      // there was at least one =s
	assert_lt(d-c, n); // they can't all have been > pivot
	assert_lt(b-a, n); // they can't all have been < pivot
	assert(assertPartitionedSuf(host, s, slen, hi, v, begin, end, depth));  // check pre-=-swap invariant
	r = min(a-begin, b-a); VECSWAP(s, begin, b-r,   r);  // swap left = to center
	r = min(d-c, end-d-1); VECSWAP(s, b,     end-r, r);  // swap right = to center
	assert(assertPartitionedSuf2(host, s, slen, hi, v, begin, end, depth)); // check post-=-swap invariant
	r = b-a; // r <- # of <'s
	if(r > 0) {
		MQS_RECURSE_SUF(begin, begin + r, depth); // recurse on <'s
	}
	// Do not recurse on ='s if the pivot was the off-the-end value;
	// they're already fully sorted
	if(v != hi) {
		MQS_RECURSE_SUF(begin + r, begin + r + (a-begin) + (end-d-1), depth+1); // recurse on ='s
	}
	r = d-c; // r <- # of >'s excluding those exhausted
	if(r > 0 && v < hi-1) {
		MQS_RECURSE_SUF(end-r, end, depth); // recurse on >'s
	}
}

/**
 * Toplevel function for multikey quicksort over suffixes.
 */
template<typename T>
void mkeyQSortSuf(
	const T& host,
	TIndexOffU *s,
	size_t slen,
	int hi,
	bool verbose = false,
	bool sanityCheck = false,
	size_t upto = OFF_MASK)
{
	size_t hlen = host.length();
	assert_gt(slen, 0);
	if(sanityCheck) sanityCheckInputSufs(s, slen);
	mkeyQSortSuf(host, hlen, s, slen, hi, (size_t)0, slen, (size_t)0, upto);
	if(sanityCheck) sanityCheckOrderedSufs(host, hlen, s, slen, upto);
}

/**
 * Just like mkeyQSortSuf but all swaps are applied to s2 as well as s.
 * This is a helpful variant if, for example, the caller would like to
 * see how their input was permuted by the sort routine (in that case,
 * the caller would let s2 be an array s2[] where s2 is the same length
 * as s and s2[i] = i).
 */
struct QSortRange {
    size_t begin;
    size_t end;
    size_t depth;
};
template<typename T>
void mkeyQSortSuf2(
                   const T& host,
                   size_t hlen,
                   TIndexOffU *s,
                   size_t slen,
                   TIndexOffU *s2,
                   int hi,
                   size_t _begin,
                   size_t _end,
                   size_t _depth,
                   size_t upto = OFF_MASK,
                   EList<size_t>* boundaries = NULL)
{
    ELList<QSortRange, 3, 1024> block_list;
    while(true) {
        size_t begin = 0, end = 0, depth = 0;
        if(block_list.size() == 0) {
            begin = _begin;
            end = _end;
            depth = _depth;
        } else {
            if(block_list.back().size() > 0) {
                begin = block_list.back()[0].begin;
                end = block_list.back()[0].end;
                depth = block_list.back()[0].depth;
                block_list.back().erase(0);
            } else {
                block_list.resize(block_list.size() - 1);
                if(block_list.size() == 0) {
                    break;
                }
            }
        }
        if(depth == upto) {
            if(boundaries != NULL) {
                (*boundaries).push_back(end);
            }
            continue;
        }
        assert_leq(begin, slen);
        assert_leq(end, slen);
        size_t a, b, c, d, /*e,*/ r;
        size_t n = end - begin;
        if(n <= 1) { // 1-element list already sorted
            if(n == 1 && boundaries != NULL) {
                boundaries->push_back(end);
            }
            continue;
        }
        CHOOSE_AND_SWAP_PIVOT(SWAP2, CHAR_AT_SUF); // pick pivot, swap it into [begin]
        int v = CHAR_AT_SUF(begin, depth); // v <- randomly-selected pivot value
#ifndef NDEBUG
        {
            bool stillInBounds = false;
            for(size_t i = begin; i < end; i++) {
                if(depth < (hlen-s[i])) {
                    stillInBounds = true;
                    break;
                } else { /* already fell off this suffix */ }
            }
            assert(stillInBounds); // >=1 suffix must still be in bounds
        }
#endif
        a = b = begin;
        c = d = /*e =*/ end-1;
        while(true) {
            // Invariant: everything before a is = pivot, everything
            // between a and b is <
            int bc = 0; // shouldn't have to init but gcc on Mac complains
            while(b <= c && v >= (bc = CHAR_AT_SUF(b, depth))) {
                if(v == bc) {
                    SWAP2(s, s2, a, b); a++;
                }
                b++;
            }
            // Invariant: everything after d is = pivot, everything
            // between c and d is >
            int cc = 0; // shouldn't have to init but gcc on Mac complains
            while(b <= c && v <= (cc = CHAR_AT_SUF(c, depth))) {
                if(v == cc) {
                    SWAP2(s, s2, c, d); d--; /*e--;*/
                }
                //else if(c == e && v == hi) e--;
                c--;
            }
            if(b > c) break;
            SWAP2(s, s2, b, c);
            b++;
            c--;
        }
        assert(a > begin || c < end-1);                      // there was at least one =s
        assert_lt(/*e*/d-c, n); // they can't all have been > pivot
        assert_lt(b-a, n); // they can't all have been < pivot
        assert(assertPartitionedSuf(host, s, slen, hi, v, begin, end, depth));  // check pre-=-swap invariant
        r = min(a-begin, b-a); VECSWAP2(s, s2, begin, b-r,   r);  // swap left = to center
        r = min(d-c, end-d-1); VECSWAP2(s, s2, b,     end-r, r);  // swap right = to center
        assert(assertPartitionedSuf2(host, s, slen, hi, v, begin, end, depth)); // check post-=-swap invariant
        r = b-a; // r <- # of <'s
        block_list.expand();
        block_list.back().clear();
        if(r > 0) { // recurse on <'s
            block_list.back().expand();
            block_list.back().back().begin = begin;
            block_list.back().back().end = begin + r;
            block_list.back().back().depth = depth;
        }
        // Do not recurse on ='s if the pivot was the off-the-end value;
        // they're already fully sorted
        if(v != hi) { // recurse on ='s
            block_list.back().expand();
            block_list.back().back().begin = begin + r;
            block_list.back().back().end = begin + r + (a-begin) + (end-d-1);
            block_list.back().back().depth = depth + 1;
        }
        r = d-c;   // r <- # of >'s excluding those exhausted
        if(r > 0 && v < hi-1) { // recurse on >'s
            block_list.back().expand();
            block_list.back().back().begin = end - r;
            block_list.back().back().end = end;
            block_list.back().back().depth = depth;
        }
    }
}

/**
 * Toplevel function for multikey quicksort over suffixes with double
 * swapping.
 */
template<typename T>
void mkeyQSortSuf2(
                   const T& host,
                   TIndexOffU *s,
                   size_t slen,
                   TIndexOffU *s2,
                   int hi,
                   bool verbose = false,
                   bool sanityCheck = false,
                   size_t upto = OFF_MASK,
                   EList<size_t>* boundaries = NULL)
{
    size_t hlen = host.length();
    if(sanityCheck) sanityCheckInputSufs(s, slen);
    TIndexOffU *sOrig = NULL;
    if(sanityCheck) {
        sOrig = new TIndexOffU[slen];
        memcpy(sOrig, s, OFF_SIZE * slen);
    }
    mkeyQSortSuf2(host, hlen, s, slen, s2, hi, (size_t)0, slen, (size_t)0, upto, boundaries);
    if(sanityCheck) {
        sanityCheckOrderedSufs(host, hlen, s, slen, upto);
        for(size_t i = 0; i < slen; i++) {
            assert_eq(s[i], sOrig[s2[i]]);
        }
        delete[] sOrig;
    }
}

// Ugly but necessary; otherwise the compiler chokes dramatically on
// the DifferenceCoverSample<> template args to the next few functions
template <typename T>
class DifferenceCoverSample;

/**
 * Constant time
 */
template<typename T1, typename T2> inline
bool sufDcLt(
	const T1& host,
	const T2& s1,
	const T2& s2,
	const DifferenceCoverSample<T1>& dc,
	bool sanityCheck = false)
{
	size_t diff = dc.tieBreakOff(s1, s2);
	ASSERT_ONLY(size_t hlen = host.length());
	assert_lt(diff, dc.v());
	assert_lt(diff, hlen-s1);
	assert_lt(diff, hlen-s2);
	if(sanityCheck) {
		for(size_t i = 0; i < diff; i++) {
			assert_eq(host[s1+i], host[s2+i]);
		}
	}
	bool ret = dc.breakTie(s1+diff, s2+diff) < 0;
#ifndef NDEBUG
	if(sanityCheck && ret != sstr_suf_lt(host, s1, hlen, host, s2, hlen, false)) {
		assert(false);
	}
#endif
	return ret;
}

/**
 * k log(k)
 */
template<typename T> inline
void qsortSufDc(
	const T& host,
	size_t hlen,
	TIndexOffU* s,
	size_t slen,
	const DifferenceCoverSample<T>& dc,
	size_t begin,
	size_t end,
	bool sanityCheck = false)
{
	assert_leq(end, slen);
	assert_lt(begin, slen);
	assert_gt(end, begin);
	size_t n = end - begin;
	if(n <= 1) return;                 // 1-element list already sorted
	// Note: rand() didn't really cut it here; it seemed to run out of
	// randomness and, after a time, returned the same thing over and
	// over again
	size_t a = (rand() % n) + begin; // choose pivot between begin and end
	assert_lt(a, end);
	assert_geq(a, begin);
	SWAP(s, end-1, a); // move pivot to end
	size_t cur = 0;
	for(size_t i = begin; i < end-1; i++) {
		if(sufDcLt(host, s[i], s[end-1], dc, sanityCheck)) {
			if(sanityCheck)
				assert(dollarLt(suffix(host, s[i]), suffix(host, s[end-1])));
			assert_lt(begin + cur, end-1);
			SWAP(s, i, begin + cur);
			cur++;
		}
	}
	// Put pivot into place
	assert_lt(cur, end-begin);
	SWAP(s, end-1, begin+cur);
	if(begin+cur > begin) qsortSufDc(host, hlen, s, slen, dc, begin, begin+cur);
	if(end > begin+cur+1) qsortSufDc(host, hlen, s, slen, dc, begin+cur+1, end);
}

/**
 * Toplevel function for multikey quicksort over suffixes.
 */
template<typename T1, typename T2>
void mkeyQSortSufDcU8(
	const T1& host1,
	const T2& host,
	size_t hlen,
	TIndexOffU* s,
	size_t slen,
	const DifferenceCoverSample<T1>& dc,
	int hi,
	bool verbose = false,
	bool sanityCheck = false)
{
	if(sanityCheck) sanityCheckInputSufs(s, slen);
	mkeyQSortSufDcU8(host1, host, hlen, s, slen, dc, hi, 0, slen, 0, sanityCheck);
	if(sanityCheck) sanityCheckOrderedSufs(host1, hlen, s, slen, OFF_MASK);
}

/**
 * Return a boolean indicating whether s1 < s2 using the difference
 * cover to break the tie.
 */
template<typename T1, typename T2> inline
bool sufDcLtU8(
	const T1& host1,
	const T2& host,
	size_t hlen,
	size_t s1,
	size_t s2,
	const DifferenceCoverSample<T1>& dc,
	bool sanityCheck = false)
{
	hlen += 0;
	size_t diff = dc.tieBreakOff((TIndexOffU)s1, (TIndexOffU)s2);
	assert_lt(diff, dc.v());
	assert_lt(diff, hlen-s1);
	assert_lt(diff, hlen-s2);
	if(sanityCheck) {
		for(size_t i = 0; i < diff; i++) {
			assert_eq(host[s1+i], host1[s2+i]);
		}
	}
	bool ret = dc.breakTie((TIndexOffU)(s1+diff), (TIndexOffU)(s2+diff)) < 0;
	// Sanity-check return value using dollarLt
#ifndef NDEBUG
	bool ret2 = sstr_suf_lt(host1, s1, hlen, host, s2, hlen, false);
	assert(!sanityCheck || ret == ret2);
#endif
	return ret;
}

/**
 * k log(k)
 */
template<typename T1, typename T2> inline
void qsortSufDcU8(
	const T1& host1,
	const T2& host,
	size_t hlen,
	TIndexOffU* s,
	size_t slen,
	const DifferenceCoverSample<T1>& dc,
	size_t begin,
	size_t end,
	bool sanityCheck = false)
{
	assert_leq(end, slen);
	assert_lt(begin, slen);
	assert_gt(end, begin);
	size_t n = end - begin;
	if(n <= 1) return;                 // 1-element list already sorted
	// Note: rand() didn't really cut it here; it seemed to run out of
	// randomness and, after a time, returned the same thing over and
	// over again
	size_t a = (rand() % n) + begin; // choose pivot between begin and end
	assert_lt(a, end);
	assert_geq(a, begin);
	SWAP(s, end-1, a); // move pivot to end
	size_t cur = 0;
	for(size_t i = begin; i < end-1; i++) {
		if(sufDcLtU8(host1, host, hlen, s[i], s[end-1], dc, sanityCheck)) {
#ifndef NDEBUG
			if(sanityCheck) {
				assert(sstr_suf_lt(host1, s[i], hlen, host1, s[end-1], hlen, false));
			}
			assert_lt(begin + cur, end-1);
#endif
			SWAP(s, i, begin + cur);
			cur++;
		}
	}
	// Put pivot into place
	assert_lt(cur, end-begin);
	SWAP(s, end-1, begin+cur);
	if(begin+cur > begin) qsortSufDcU8(host1, host, hlen, s, slen, dc, begin, begin+cur);
	if(end > begin+cur+1) qsortSufDcU8(host1, host, hlen, s, slen, dc, begin+cur+1, end);
}

#define BUCKET_SORT_CUTOFF (4 * 1024 * 1024)
#define SELECTION_SORT_CUTOFF 6

/**
 * Straightforwardly obtain a uint8_t-ized version of t[off].  This
 * works fine as long as TStr is not packed.
 */
template<typename TStr>
inline uint8_t get_uint8(const TStr& t, size_t off) {
	return t[off];
}

/**
 * For incomprehensible generic-programming reasons, getting a uint8_t
 * version of a character in a packed String<> requires casting first
 * to Dna then to uint8_t.
 */
template<>
inline uint8_t get_uint8<S2bDnaString>(const S2bDnaString& t, size_t off) {
	return (uint8_t)t[off];
}

/**
 * Return character at offset 'off' from the 'si'th suffix in the array
 * 's' of suffixes.  If the character is out-of-bounds, return hi.
 */
template<typename TStr>
static inline int char_at_suf_u8(
	const TStr& host,
	size_t hlen,
	TIndexOffU* s,
	size_t si,
	size_t off,
	uint8_t hi)
{
	return ((off+s[si]) < hlen) ? get_uint8(host, off+s[si]) : (hi);
}

template<typename T1, typename T2>
static void selectionSortSufDcU8(
		const T1& host1,
		const T2& host,
        size_t hlen,
        TIndexOffU* s,
        size_t slen,
        const DifferenceCoverSample<T1>& dc,
        uint8_t hi,
        size_t begin,
        size_t end,
        size_t depth,
        bool sanityCheck = false)
{
#define ASSERT_SUF_LT(l, r) \
	if(sanityCheck && \
	   !sstr_suf_lt(host1, s[l], hlen, host1, s[r], hlen, false)) { \
		assert(false); \
	}

	assert_gt(end, begin+1);
	assert_leq(end-begin, SELECTION_SORT_CUTOFF);
	assert_eq(hi, 4);
	size_t v = dc.v();
	if(end == begin+2) {
		size_t off = dc.tieBreakOff(s[begin], s[begin+1]);
		if(off + s[begin] >= hlen ||
		   off + s[begin+1] >= hlen)
		{
			off = OFF_MASK;
		}
		if(off != OFF_MASK) {
			if(off < depth) {
				qsortSufDcU8<T1,T2>(host1, host, hlen, s, slen, dc,
				                    begin, end, sanityCheck);
				// It's helpful for debugging if we call this here
				if(sanityCheck) {
					sanityCheckOrderedSufs(host1, hlen, s, slen,
					                       OFF_MASK, begin, end);
				}
				return;
			}
			v = off - depth + 1;
		}
	}
	assert_leq(v, dc.v());
	size_t lim = v;
	assert_geq(lim, 0);
	for(size_t i = begin; i < end-1; i++) {
		size_t targ = i;
		size_t targoff = depth + s[i];
		for(size_t j = i+1; j < end; j++) {
			assert_neq(j, targ);
			size_t joff = depth + s[j];
			size_t k;
			for(k = 0; k <= lim; k++) {
				assert_neq(j, targ);
				uint8_t jc = (k + joff < hlen)    ? get_uint8(host, k + joff)    : hi;
				uint8_t tc = (k + targoff < hlen) ? get_uint8(host, k + targoff) : hi;
				assert(jc != hi || tc != hi);
				if(jc > tc) {
					// the jth suffix is greater than the current
					// smallest suffix
					ASSERT_SUF_LT(targ, j);
					break;
				} else if(jc < tc) {
					// the jth suffix is less than the current smallest
					// suffix, so update smallest to be j
					ASSERT_SUF_LT(j, targ);
					targ = j;
					targoff = joff;
					break;
				} else if(k == lim) {
					// Check whether either string ends immediately
					// after this character
					assert_leq(k + joff + 1, hlen);
					assert_leq(k + targoff + 1, hlen);
					if(k + joff + 1 == hlen) {
						// targ < j
						assert_neq(k + targoff + 1, hlen);
						ASSERT_SUF_LT(targ, j);
						break;
					} else if(k + targoff + 1 == hlen) {
						// j < targ
						ASSERT_SUF_LT(j, targ);
						targ = j;
						targoff = joff;
						break;
					}
				} else {
					// They're equal so far, keep going
				}
			}
			// The jth suffix was equal to the current smallest suffix
			// up to the difference-cover period, so disambiguate with
			// difference cover
			if(k == lim+1) {
				assert_neq(j, targ);
				if(sufDcLtU8(host1, host, hlen, s[j], s[targ], dc, sanityCheck)) {
					// j < targ
					assert(!sufDcLtU8(host1, host, hlen, s[targ], s[j], dc, sanityCheck));
					ASSERT_SUF_LT(j, targ);
					targ = j;
					targoff = joff;
				} else {
					assert(sufDcLtU8(host1, host, hlen, s[targ], s[j], dc, sanityCheck));
					ASSERT_SUF_LT(targ, j); // !
				}
			}
		}
		if(i != targ) {
			ASSERT_SUF_LT(targ, i);
			// swap i and targ
			TIndexOffU tmp = s[i];
			s[i] = s[targ];
			s[targ] = tmp;
		}
		for(size_t j = i+1; j < end; j++) {
			ASSERT_SUF_LT(i, j);
		}
	}
	if(sanityCheck) {
		sanityCheckOrderedSufs(host1, hlen, s, slen, OFF_MASK, begin, end);
	}
}

template<typename T1, typename T2>
static void bucketSortSufDcU8(
                              const T1& host1,
                              const T2& host,
                              size_t hlen,
                              TIndexOffU* s,
                              size_t slen,
                              const DifferenceCoverSample<T1>& dc,
                              uint8_t hi,
                              size_t _begin,
                              size_t _end,
                              size_t _depth,
                              bool sanityCheck = false)
{
    // 5 64-element buckets for bucket-sorting A, C, G, T, $
    TIndexOffU* bkts[4];
    for(size_t i = 0; i < 4; i++) {
        bkts[i] = new TIndexOffU[4 * 1024 * 1024];
    }
    ELList<size_t, 5, 1024> block_list;
    bool first = true;
    while(true) {
        size_t begin = 0, end = 0;
        if(first) {
            begin = _begin;
            end = _end;
            first = false;
        } else {
            if(block_list.size() == 0) {
                break;
            }
            if(block_list.back().size() > 1) {
                end = block_list.back().back(); block_list.back().pop_back();
                begin = block_list.back().back();
            } else {
                block_list.resize(block_list.size() - 1);
                if(block_list.size() == 0) {
                    break;
                }
            }
        }
        size_t depth = block_list.size() + _depth;
        assert_leq(end-begin, BUCKET_SORT_CUTOFF);
        assert_eq(hi, 4);
        if(end <= begin + 1) { // 1-element list already sorted
            continue;
        }
        if(depth > dc.v()) {
            // Quicksort the remaining suffixes using difference cover
            // for constant-time comparisons; this is O(k*log(k)) where
            // k=(end-begin)
            qsortSufDcU8<T1,T2>(host1, host, hlen, s, slen, dc, begin, end, sanityCheck);
            continue;
        }
        if(end-begin <= SELECTION_SORT_CUTOFF) {
            // Bucket sort remaining items
            selectionSortSufDcU8(host1, host, hlen, s, slen, dc, hi,
                                 begin, end, depth, sanityCheck);
            if(sanityCheck) {
                sanityCheckOrderedSufs(host1, hlen, s, slen,
                                       OFF_MASK, begin, end);
            }
            continue;
        }
        size_t cnts[] = { 0, 0, 0, 0, 0 };
        for(size_t i = begin; i < end; i++) {
            size_t off = depth + s[i];
            uint8_t c = (off < hlen) ? get_uint8(host, off) : hi;
            assert_leq(c, 4);
            if(c == 0) {
                s[begin + cnts[0]++] = s[i];
            } else {
                bkts[c-1][cnts[c]++] = s[i];
            }
        }
        assert_eq(cnts[0] + cnts[1] + cnts[2] + cnts[3] + cnts[4], end - begin);
        size_t cur = begin + cnts[0];
        if(cnts[1] > 0) { memcpy(&s[cur], bkts[0], cnts[1] << (OFF_SIZE/4 + 1)); cur += cnts[1]; }
        if(cnts[2] > 0) { memcpy(&s[cur], bkts[1], cnts[2] << (OFF_SIZE/4 + 1)); cur += cnts[2]; }
        if(cnts[3] > 0) { memcpy(&s[cur], bkts[2], cnts[3] << (OFF_SIZE/4 + 1)); cur += cnts[3]; }
        if(cnts[4] > 0) { memcpy(&s[cur], bkts[3], cnts[4] << (OFF_SIZE/4 + 1)); }
        // This frame is now totally finished with bkts[][], so recursive
        // callees can safely clobber it; we're not done with cnts[], but
        // that's local to the stack frame.
        block_list.expand();
        block_list.back().clear();
        block_list.back().push_back(begin);
        for(size_t i = 0; i < 4; i++) {
            if(cnts[i] > 0) {
                block_list.back().push_back(block_list.back().back() + cnts[i]);
            }
        }
    }
    // Done
    
    for(size_t i = 0; i < 4; i++) {
        delete [] bkts[i];
    }
}

/**
 * Main multikey quicksort function for suffixes.  Based on Bentley &
 * Sedgewick's algorithm on p.5 of their paper "Fast Algorithms for
 * Sorting and Searching Strings".  That algorithm has been extended in
 * three ways:
 *
 *  1. Deal with keys of different lengths by checking bounds and
 *     considering off-the-end values to be 'hi' (b/c our goal is the
 *     BWT transform, we're biased toward considring prefixes as
 *     lexicographically *greater* than their extensions).
 *  2. The multikey_qsort_suffixes version takes a single host string
 *     and a list of suffix offsets as input.  This reduces memory
 *     footprint compared to an approach that treats its input
 *     generically as a set of strings (not necessarily suffixes), thus
 *     requiring that we store at least two integers worth of
 *     information for each string.
 *  3. Sorting functions take an extra "upto" parameter that upper-
 *     bounds the depth to which the function sorts.
 */
template<typename T1, typename T2>
void mkeyQSortSufDcU8(
	const T1& host1,
	const T2& host,
	size_t hlen,
	TIndexOffU* s,
	size_t slen,
	const DifferenceCoverSample<T1>& dc,
	int hi,
	size_t begin,
	size_t end,
	size_t depth,
	bool sanityCheck = false)
{
	// Helper for making the recursive call; sanity-checks arguments to
	// make sure that the problem actually got smaller.
	#define MQS_RECURSE_SUF_DC_U8(nbegin, nend, ndepth) { \
		assert(nbegin > begin || nend < end || ndepth > depth); \
		mkeyQSortSufDcU8(host1, host, hlen, s, slen, dc, hi, nbegin, nend, ndepth, sanityCheck); \
	}
	assert_leq(begin, slen);
	assert_leq(end, slen);
	size_t n = end - begin;
	if(n <= 1) return; // 1-element list already sorted
	if(depth > dc.v()) {
		// Quicksort the remaining suffixes using difference cover
		// for constant-time comparisons; this is O(k*log(k)) where
		// k=(end-begin)
		qsortSufDcU8<T1,T2>(host1, host, hlen, s, slen, dc, begin, end, sanityCheck);
		if(sanityCheck) {
			sanityCheckOrderedSufs(host1, hlen, s, slen, OFF_MASK, begin, end);
		}
		return;
	}
	if(n <= BUCKET_SORT_CUTOFF) {
		// Bucket sort remaining items
		bucketSortSufDcU8(host1, host, hlen, s, slen, dc,
		                  (uint8_t)hi, begin, end, depth, sanityCheck);
		if(sanityCheck) {
			sanityCheckOrderedSufs(host1, hlen, s, slen, OFF_MASK, begin, end);
		}
		return;
	}
	size_t a, b, c, d, r;
	CHOOSE_AND_SWAP_PIVOT(SWAP1, CHAR_AT_SUF_U8); // choose pivot, swap to begin
	int v = CHAR_AT_SUF_U8(begin, depth); // v <- pivot value
	#ifndef NDEBUG
	{
		bool stillInBounds = false;
		for(size_t i = begin; i < end; i++) {
			if(depth < (hlen-s[i])) {
				stillInBounds = true;
				break;
			} else { /* already fell off this suffix */ }
		}
		assert(stillInBounds); // >=1 suffix must still be in bounds
	}
	#endif
	a = b = begin;
	c = d = end-1;
	while(true) {
		// Invariant: everything before a is = pivot, everything
		// between a and b is <
		int bc = 0; // shouldn't have to init but gcc on Mac complains
		while(b <= c && v >= (bc = CHAR_AT_SUF_U8(b, depth))) {
			if(v == bc) {
				SWAP(s, a, b); a++;
			}
			b++;
		}
		// Invariant: everything after d is = pivot, everything
		// between c and d is >
		int cc = 0; // shouldn't have to init but gcc on Mac complains
		//bool hiLatch = true;
		while(b <= c && v <= (cc = CHAR_AT_SUF_U8(c, depth))) {
			if(v == cc) {
				SWAP(s, c, d); d--;
			}
			//else if(hiLatch && cc == hi) { }
			c--;
		}
		if(b > c) break;
		SWAP(s, b, c);
		b++;
		c--;
	}
	assert(a > begin || c < end-1);                      // there was at least one =s
	assert_lt(d-c, n); // they can't all have been > pivot
	assert_lt(b-a, n); // they can't all have been < pivot
	r = min(a-begin, b-a); VECSWAP(s, begin, b-r,   r);  // swap left = to center
	r = min(d-c, end-d-1); VECSWAP(s, b,     end-r, r);  // swap right = to center
	r = b-a; // r <- # of <'s
	if(r > 0) {
		MQS_RECURSE_SUF_DC_U8(begin, begin + r, depth); // recurse on <'s
	}
	// Do not recurse on ='s if the pivot was the off-the-end value;
	// they're already fully sorted
	if(v != hi) {
		MQS_RECURSE_SUF_DC_U8(begin + r, begin + r + (a-begin) + (end-d-1), depth+1); // recurse on ='s
	}
	r = d-c; // r <- # of >'s excluding those exhausted
	if(r > 0 && v < hi-1) {
		MQS_RECURSE_SUF_DC_U8(end-r, end, depth); // recurse on >'s
	}
}


#endif /*MULTIKEY_QSORT_H_*/