1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
package hjson
import (
"fmt"
"reflect"
"sort"
"strings"
)
type fieldInfo struct {
field reflect.Value
name string
comment string
}
type structFieldInfo struct {
name string
tagged bool
comment string
omitEmpty bool
indexPath []int
}
// Use lower key name as key. Values are arrays in case some fields only differ
// by upper/lower case.
type structFieldMap map[string][]structFieldInfo
func (s structFieldMap) insert(sfi structFieldInfo) {
key := strings.ToLower(sfi.name)
s[key] = append(s[key], sfi)
}
func (s structFieldMap) getField(name string) (structFieldInfo, bool) {
key := strings.ToLower(name)
if arr, ok := s[key]; ok {
for _, elem := range arr {
if elem.name == name {
return elem, true
}
}
return arr[0], true
}
return structFieldInfo{}, false
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// JSON tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []structFieldInfo) (structFieldInfo, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].indexPath) == len(fields[1].indexPath) && fields[0].tagged == fields[1].tagged {
return structFieldInfo{}, false
}
return fields[0], true
}
// byIndex sorts by index sequence.
type byIndex []structFieldInfo
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].indexPath {
if k >= len(x[j].indexPath) {
return false
}
if xik != x[j].indexPath[k] {
return xik < x[j].indexPath[k]
}
}
return len(x[i].indexPath) < len(x[j].indexPath)
}
func getStructFieldInfo(rootType reflect.Type) []structFieldInfo {
type structInfo struct {
typ reflect.Type
indexPath []int
}
var sfis []structFieldInfo
structsToInvestigate := []structInfo{structInfo{typ: rootType}}
// Struct types already visited at an earlier depth.
visited := map[reflect.Type]bool{}
// Count the number of specific struct types on a specific depth.
typeDepthCount := map[reflect.Type]int{}
for len(structsToInvestigate) > 0 {
curStructs := structsToInvestigate
structsToInvestigate = []structInfo{}
curTDC := typeDepthCount
typeDepthCount = map[reflect.Type]int{}
for _, curStruct := range curStructs {
if visited[curStruct.typ] {
// The struct type has already appeared on an earlier depth. Fields on
// an earlier depth always have precedence over fields with identical
// name on a later depth, so no point in investigating this type again.
continue
}
visited[curStruct.typ] = true
for i := 0; i < curStruct.typ.NumField(); i++ {
sf := curStruct.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
// If the field is not exported and not a struct.
if sf.PkgPath != "" && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// since they may have exported fields.
} else if sf.PkgPath != "" {
// Ignore unexported non-embedded fields.
continue
}
jsonTag := sf.Tag.Get("json")
if jsonTag == "-" {
continue
}
sfi := structFieldInfo{
name: sf.Name,
comment: sf.Tag.Get("comment"),
}
splits := strings.Split(jsonTag, ",")
if splits[0] != "" {
sfi.name = splits[0]
sfi.tagged = true
}
if len(splits) > 1 {
for _, opt := range splits[1:] {
if opt == "omitempty" {
sfi.omitEmpty = true
}
}
}
sfi.indexPath = make([]int, len(curStruct.indexPath)+1)
copy(sfi.indexPath, curStruct.indexPath)
sfi.indexPath[len(curStruct.indexPath)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// If the current field should be included.
if sfi.tagged || !sf.Anonymous || ft.Kind() != reflect.Struct {
sfis = append(sfis, sfi)
if curTDC[curStruct.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
sfis = append(sfis, sfi)
}
continue
}
// Record new anonymous struct to explore in next round.
typeDepthCount[ft]++
if typeDepthCount[ft] == 1 {
structsToInvestigate = append(structsToInvestigate, structInfo{
typ: ft,
indexPath: sfi.indexPath,
})
}
}
}
}
sort.Slice(sfis, func(i, j int) bool {
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from json tag", then
// breaking ties with index sequence.
if sfis[i].name != sfis[j].name {
return sfis[i].name < sfis[j].name
}
if len(sfis[i].indexPath) != len(sfis[j].indexPath) {
return len(sfis[i].indexPath) < len(sfis[j].indexPath)
}
if sfis[i].tagged != sfis[j].tagged {
return sfis[i].tagged
}
return byIndex(sfis).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with JSON tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := sfis[:0]
for advance, i := 0, 0; i < len(sfis); i += advance {
// One iteration per name.
// Find the sequence of sfis with the name of this first field.
sfi := sfis[i]
name := sfi.name
for advance = 1; i+advance < len(sfis); advance++ {
fj := sfis[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, sfi)
continue
}
dominant, ok := dominantField(sfis[i : i+advance])
if ok {
out = append(out, dominant)
}
}
return out
}
func getStructFieldInfoSlice(rootType reflect.Type) []structFieldInfo {
sfis := getStructFieldInfo(rootType)
sort.Sort(byIndex(sfis))
return sfis
}
func getStructFieldInfoMap(rootType reflect.Type) structFieldMap {
sfis := getStructFieldInfo(rootType)
out := structFieldMap{}
for _, elem := range sfis {
out.insert(elem)
}
return out
}
func (e *hjsonEncoder) writeFields(
fis []fieldInfo,
noIndent bool,
separator string,
isRootObject bool,
isObjElement bool,
cm Comments,
) error {
indent1 := e.indent
if !isRootObject || e.EmitRootBraces || len(fis) == 0 {
e.bracesIndent(isObjElement, len(fis) == 0, cm, separator)
e.WriteString("{" + cm.InsideFirst)
if len(fis) == 0 {
if cm.InsideFirst != "" || cm.InsideLast != "" {
e.WriteString(e.Eol)
}
e.WriteString(cm.InsideLast)
if cm.InsideLast != "" {
endsInsideComment, endsWithLineFeed := investigateComment(cm.InsideLast)
if endsInsideComment {
e.writeIndent(e.indent)
}
if endsWithLineFeed {
e.writeIndentNoEOL(e.indent)
}
} else if cm.InsideFirst != "" {
e.writeIndentNoEOL(e.indent)
}
e.WriteString("}")
return nil
}
e.indent++
} else {
e.WriteString(cm.InsideFirst)
}
// Join all of the member texts together, separated with newlines
var elemCm Comments
for i, fi := range fis {
var elem reflect.Value
elem, elemCm = e.unpackNode(fi.field, elemCm)
if i > 0 || !isRootObject || e.EmitRootBraces {
e.WriteString(e.Eol)
}
if len(fi.comment) > 0 {
for _, line := range strings.Split(fi.comment, e.Eol) {
e.writeIndentNoEOL(e.indent)
e.WriteString(fmt.Sprintf("# %s\n", line))
}
}
if elemCm.Before == "" {
e.writeIndentNoEOL(e.indent)
} else {
e.WriteString(elemCm.Before)
}
e.WriteString(e.quoteName(fi.name))
e.WriteString(":")
e.WriteString(elemCm.Key)
if err := e.str(elem, false, " ", false, true, elemCm); err != nil {
return err
}
if len(fi.comment) > 0 && i < len(fis)-1 {
e.WriteString(e.Eol)
}
e.WriteString(elemCm.After)
}
if cm.InsideLast != "" {
e.WriteString(e.Eol + cm.InsideLast)
}
if !isRootObject || e.EmitRootBraces {
if cm.InsideLast == "" {
e.writeIndent(indent1)
} else {
endsInsideComment, endsWithLineFeed := investigateComment(cm.InsideLast)
if endsInsideComment {
e.writeIndent(indent1)
} else if endsWithLineFeed {
e.writeIndentNoEOL(indent1)
}
}
e.WriteString("}")
}
e.indent = indent1
return nil
}
|