1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
|
\documentclass[a4paper,11pt]{jvetdoc}
\usepackage{geometry}[2010/02/12]
\usepackage{hyperref}
\hypersetup{colorlinks=true,
linkcolor=black, % color of internal links (change box color with linkbordercolor)
citecolor=black, % color of links to bibliography
filecolor=black, % color of file links
urlcolor=blue}
\usepackage{color,soul}
\usepackage[position=bottom]{subfig}
\captionsetup[subfloat]{position=top}
\usepackage{multirow}
\usepackage{dcolumn}
\newcolumntype{.}{D{.}{.}{-1}}
\usepackage{colortbl}
\usepackage{makecell}
\usepackage{longtable}
\usepackage{array}
\usepackage{algorithm2e}
\usepackage{amsmath}
\urlstyle{same}
% code highlighting
\usepackage{minted,xcolor}
\definecolor{bggray}{gray}{0.95}
\setminted{
bgcolor=bggray,
xleftmargin=3ex,
breaklines=true,
fontsize=\footnotesize}
\usepackage[strings]{underscore}
\usepackage{csquotes}
\MakeOuterQuote{"}
\EnableQuotes
\newcommand\None{}
\newcommand\NotSet{}
\makeatletter
\newcommand{\Option}[1]{\ifx\optOption\@empty\gdef\optOption{#1}\else\g@addto@macro\optOption{ \\ #1}\fi}
\newcommand{\ShortOption}[1]{\ifx\optShortOption\@empty\gdef\optShortOption{#1}\else\g@addto@macro\optShortOption{ \\ #1}\fi}
\newcommand{\Default}[1]{\ifx\optDefault\@empty\gdef\optDefault{#1}\else\g@addto@macro\optDefault{ \\ #1}\fi}
\newcommand{\clearOptions}{\gdef\optOption{}\gdef\optShortOption{}\gdef\optDefault{}}
\makeatother
\newenvironment{OptionTable}[1]{%
\footnotesize
\def\arraystretch{1.8}
\clearOptions
\begin{longtable}{l<{\makecell[tl]{\optOption}}%
>{\texttt\bgroup}l<{\makecell[tl]{\optShortOption}\egroup}%
c<{\makecell[tc]{\optDefault}}%
>{\def\arraystretch{1.0}}p{0.5\textwidth}<{\clearOptions}}
\caption{#1} \\
\hspace*{12em}&&\hspace*{8em}&\kill
\hline
\thead{Option} &
\egroup\thead{Shorthand}\bgroup &
\thead{Default} &
\thead{Description} \\
\hline
\endfirsthead
\caption[]{#1 (Continued)} \\
\hspace*{12em}&&\hspace*{8em}&\kill
\hline
\thead{Option} &
\egroup\thead{Shorthand}\bgroup &
\thead{Default} &
\thead{Description} \\
\hline
\endhead
\multicolumn{4}{r}{Continued...}\\
\hline
\endfoot
\hline
\endlastfoot
}{%
\hline
\end{longtable}
}
\newenvironment{OptionTableNoShorthand}[2]{%
\scriptsize
\def\arraystretch{1.8}
\clearOptions
\begin{longtable}{l<{\makecell[tl]{\optOption}}%
c<{\makecell[tc]{\optDefault}}%
>{\def\arraystretch{1.0}}p{0.5\textwidth}<{\clearOptions}}
\caption{#1} \label{#2} \\
\hspace*{12em}&\hspace*{8em}&\kill
\hline
\thead{Option} &
\thead{Default} &
\thead{Description} \\
\hline
\endfirsthead
\caption[]{#1 (Continued)} \\
\hspace*{12em}&\hspace*{8em}&\kill
\hline
\thead{Option} &
\thead{Default} &
\thead{Description} \\
\hline
\endhead
\multicolumn{3}{r}{Continued...}\\
\hline
\endfoot
\hline
\endlastfoot
}{%
\hline
\end{longtable}
}
\newenvironment{SEIListTable}[1]{%
\scriptsize
\def\arraystretch{1.8}
\clearOptions
\begin{longtable}{c<{\makecell[tl]{\optOption}}%
l<{\makecell[tc]{\optDefault}}%
>{\def\arraystretch{1.0}}p{0.3\textwidth}<{\clearOptions}}
\caption{#1} \\
\hspace*{12em}&\hspace*{8em}&\kill
\hline
\thead{SEI Number} &
\thead{SEI Name} &
\thead{Table number of encoder controls, if available} \\
\hline
\endfirsthead
\caption[]{#1 (Continued)} \\
\hspace*{12em}&\hspace*{8em}&\kill
\hline
\thead{SEI Number} &
\thead{SEI Name} &
\thead{Table number of encoder controls, if available} \\
\hline
\endhead
\multicolumn{3}{r}{Continued...}\\
\hline
\endfoot
\hline
\endlastfoot
}{%
\hline
\end{longtable}
}
\newenvironment{MacroTable}[1]{%
\scriptsize
\def\arraystretch{1.3}
\clearOptions
\begin{longtable}{lcp{0.5\textwidth}}
\caption{#1} \\
%\hspace*{12em}&&\hspace*{8em}&\kill
\hline
\thead{Option} &
\thead{Default} &
\thead{Description} \\
\hline
\endfirsthead
\caption[]{#1 (Continued)} \\
\hline
\thead{Option} &
\thead{Default} &
\thead{Description} \\
\hline
\endhead
\multicolumn{3}{r}{Continued...}\\
\hline
\endfoot
\hline
\endlastfoot
}{%
\end{longtable}
}
\title{HM Software Manual}
\author{%
Frank Bossen
\email{frank@bossentech.com}
\and
David Flynn
\email{dflynn@blackberry.com}
\and
Karl Sharman
\email{karl.sharman@eu.sony.com}
\and
Karsten S\"uhring
\email{karsten.suehring@hhi.fraunhofer.de}
}
\jvetmeeting{}
\jvetdocnum{Software Manual}
\jvetdocstatus{Software AHG working document}
\jvetdocpurpose{Information}
\jvetdocsource{AHG chairs}
\begin{document}
\maketitle
\begin{abstract}
This document is a user manual describing usage of reference software
for the HEVC project. It applies to version 18.0
of the software.
\end{abstract}
\tableofcontents
\listoftables
\section{General Information}
Reference software is being made available to provide a reference
implementation of the HEVC standard being developed by the Joint
Collaborative Team on Video Coding (JCT-VC) regrouping experts from
ITU-T SG 16 and ISO/IEC SC29 WG11. One of the main goals of the
reference software is to provide a basis upon which to conduct
experiments in order to determine which coding tools provide desired
coding performance. It is not meant to be a particularly efficient
implementation of anything, and one may notice its apparent
unsuitability for a particular use. It should not be construed to be a
reflection of how complex a production-quality implementation of a
future HEVC standard would be.
This document aims to provide guidance on the usage of the reference
software. It is widely suspected to be incomplete and suggestions for
improvements are welcome. Such suggestions and general inquiries may be
sent to the general JCT-VC email reflector on
\url{https://lists.rwth-aachen.de/postorius/lists/jct-vc.lists.rwth-aachen.de/}
(registration required).
\subsection*{Bug reporting}
Bugs should be reported on the issue tracker set up at:
\url{https://hevc.hhi.fraunhofer.de/trac/hevc/}
\section{Installation and compilation}
The software may be retrieved from the GitLab server located at:
\url{https://vcgit.hhi.fraunhofer.de/jct-vc/HM}
Table~\ref{tab:project-files} lists the compiler environments and versions
for which building the software is tested.
\begin{table}[ht]
\caption{Supported compilers}
\label{tab:project-files}
\centering
\begin{tabular}{ll}
\hline
\thead{Compiler environment} &
\thead{Versions} \\
\hline
MS Visual Studio & 2017 and 2019 \\
GCC & 7.3 and 8.3\\
Xcode/clang & latest \\
\hline
\end{tabular}
\end{table}
By default the software is built as 64-bit binaries to be used on a 64-bit OS.
This allows the software to use more than 2GB of RAM.
The software uses CMake to create platform-specific build files.
\subsection {Build instructions for plain CMake (suggested)}
\textbf{Note:} A working CMake installation is required for building the software.
CMake generates configuration files for the compiler environment/development
environment on each platform. The following is a list of examples for Windows
(MS Visual Studio), macOS (Xcode) and Linux (make).
Open a command prompt on your system and change into the root directory
of this project.
Create a build directory in the root directory:
\begin{minted}{bash}
mkdir build
\end{minted}
Use one of the following CMake commands, based on your platform. Feel free to change the
commands to satisfy your needs.
\textbf{Windows Visual Studio 2015 64 Bit:}
\begin{minted}{bash}
cd build
cmake .. -G "Visual Studio 14 2015 Win64"
\end{minted}
Then open the generated solution file in MS Visual Studio.
\textbf{macOS Xcode:}
\begin{minted}{bash}
cd build
cmake .. -G "Xcode"
\end{minted}
Then open the generated work space in Xcode.
\textbf{Linux}
For generating Linux Release Makefile:
\begin{minted}{bash}
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
\end{minted}
For generating Linux Debug Makefile:
\begin{minted}{bash}
cd build
cmake .. -DCMAKE_BUILD_TYPE=Debug
\end{minted}
Then type
\begin{minted}{bash}
make -j
\end{minted}
to build the software.
For more details, refer to the CMake documentation: \url{https://cmake.org/cmake/help/latest/}
\subsection {Build instructions for make}
\textbf{Note:}
The build instructions in this section require the make tool and Python
to be installed, which are part of usual Linux and macOS environments.
See section \ref{windowsinstall} for installation instruction for Python
and GnuWin32 on Windows.
Open a command prompt on your system and change into the root directory
of this project.
To use the default system compiler simply call:
\begin{minted}{bash}
make all
\end{minted}
For MSYS2 and MinGW:
Open an MSYS MinGW 64-Bit terminal and change into the root directory
of this project.
Call:
\begin{minted}{bash}
make all toolset=gcc
\end{minted}
\subsection{Tool Installation on Windows}
\label{windowsinstall}
Download CMake: \url{http://www.cmake.org/} and install it.
Python and GnuWin32 are not mandatory, but they simplify the build process for the user.
\begin{table}[ht]
\footnotesize
\centering
\begin{tabular}{ll}
\hline
Python & \url{https://www.python.org/downloads/release/python-371/} \\
GnuWin32 & \url{https://sourceforge.net/projects/getgnuwin32/files/getgnuwin32/0.6.30/GetGnuWin32-0.6.3.exe/download} \\
\hline
\end{tabular}
\end{table}
To use MinGW, install MSYS2:
\url{http://repo.msys2.org/distrib/msys2-x86_64-latest.exe}
Installation instructions:
\url{https://www.msys2.org/}
Install the needed toolchains:
\begin{minted}{bash}
pacman -S --needed base-devel mingw-w64-i686-toolchain mingw-w64-x86_64-toolchain git subversion mingw-w64-i686-cmake mingw-w64-x86_64-cmake
\end{minted}
%%%%
%%%%
%%%%
\section{Using the encoder}
\begin{minted}{bash}
TAppEncoder [--help] [-c config.cfg] [--parameter=value]
\end{minted}
\begin{table}[ht]
\footnotesize
\centering
\begin{tabular}{lp{0.5\textwidth}}
\hline
\thead{Option} &
\thead{Description} \\
\hline
\texttt{--help} & Prints parameter usage. \\
\texttt{-c} & Defines configuration file to use. Multiple configuration files
may be used with repeated --c options. \\
\texttt{--}\emph{parameter}\texttt{=}\emph{value}
& Assigns value to a given parameter as further described below.
Some parameters are also supported by shorthand
"--\em{opt}~\emph{value}". These are shown in brackets after the parameter
name in the tables of this document\\
\hline
\end{tabular}
\end{table}
Sample configuration files are provided in the cfg/ folder.
Parameters are defined by the last value encountered on the command line.
Therefore if a setting is set via a configuration file, and then a subsequent
command line parameter changes that same setting, the command line parameter
value will be used.
\subsection{GOP structure table}
\label{sec:gop-structure}
Defines the cyclic GOP structure that will be used repeatedly
throughout the sequence. The table should contain GOPSize lines,
named Frame1, Frame2, etc. The frames are listed in decoding
order, so Frame1 is the first frame in decoding order, Frame2 is
the second and so on. Among other things, the table specifies all
reference pictures kept by the decoder for each frame. This
includes pictures that are used for reference for the current
picture as well as pictures that will be used for reference in
the future. The encoder will not automatically calculate which
pictures have to be kept for future references, they must
be specified. Note that some specified reference frames for
pictures encoded in the very first GOP after an IDR frame might
not be available. This is handled automatically by the encoder,
so the reference pictures can be given in the GOP structure table
as if there were infinitely many identical GOPs before the
current one. Each line in the table contains the parameters used
for the corresponding frame, separated by whitespace:
\begin{itemize}
\item[]\textbf{Type}: Slice type, can be either I, P or B.
\item[]\textbf{POC}: Display order of the frame within a GOP, ranging
from 1 to GOPSize.
\item[]\textbf{QPOffset}: QP offset is added to the QP parameter to set
the final QP value to use for this frame.
\item[]\textbf{QPOffsetModelOff}: Offset parameter to a linear model to adjust final QP based on QP + QPoffset.
\item[]\textbf{QPOffsetModelScale}: Scale parameter to a linear model to adjust final QP based on QP + QPoffset.
\item[]\textbf{SliceCbQPOffset}: The slice-level Cb QP offset.
\item[]\textbf{SliceCrQPOffset}: The slice-level Cr QP offset.
\item[]\textbf{QPFactor}: Weight used during rate distortion
optimization. Higher values mean lower quality and less bits. Typical
range is between
0.3 and 1.
\item[]\textbf{tcOffsetDiv2}: In-loop deblocking filter parameter tcOffsetDiv2
is added to the base parameter LoopFilterTcOffset_div2 to set the final tc_offset_div2
parameter for this picture signalled in the slice segment header. The final
value of tc_offset_div2 shall be an integer number in the range $-6..6$.
\item[]\textbf{betaOffsetDiv2}: In-loop deblocking filter parameter betaOffsetDiv2
is added to the base parameter LoopFilterBetaOffset_div2 to set the final beta_offset_div2
parameter for this picture signalled in the slice segment header. The final
value of beta_offset_div2 shall be an integer number in the range $-6..6$.
\item[]\textbf{temporal_id}: Temporal layer of the frame. A frame cannot
predict from a frame with a higher temporal id. If a frame with higher
temporal IDs is listed among a frame's reference pictures, it is
not used, but is kept for possible use in future frames.
\item[]\textbf{num_ref_pics_active}: Size of reference picture lists L0
and L1, indicating how many reference pictures in each direction that
are used during coding.
\item[]\textbf{num_ref_pics}: The number of reference pictures kept for
this frame. This includes pictures that are used for reference for the
current picture as well as pictures that will be used for reference in
the future.
\item[]\textbf{reference_pictures}: A space-separated list of
num_ref_pics integers, specifying the POC of the reference pictures
kept, relative the POC of the current frame. The picture list shall be
ordered, first with negative numbers from largest to smallest, followed
by positive numbers from smallest to largest (e.g. \verb|-1 -3 -5 1 3|).
Note that any pictures not supplied in this list will be discarded and
therefore not available as reference pictures later.
\item[]\textbf{predict}: Defines the value of the syntax element
inter_ref_pic_set_prediction_flag. A value of 0 indicates that the
reference picture set is encoded without inter RPS prediction and the
subsequent parameters deltaRIdx$-1$, deltaRPS, num_ref_idcs and
Reference_idcs are ignored and do not need to be present. A value of 1
indicates that the reference picture set is encoded with inter
prediction RPS using the subsequent parameters deltaRIdx$-1$, deltaRPS,
num_ref_idcs and Reference_idcs in the line. A value of 2 indicates that
the reference picture set is encoded with inter RPS but only the
deltaRIdx$-1$ parameters is needed. The deltaRPS, num_ref_idcs and
Reference_idcs values are automatically derived by the encoder based on
the POC and refPic values of the current line and the RPS pointed to by
the deltaRIdx$-1$ parameters.
\item[]\textbf{deltaRIdx$-1$}: The difference between the index of the
curent RPS and the predictor RPS minus 1.
\item[]\textbf{deltaRPS}: The difference between the POC of the
predictor RPS and POC the current RPS.
\item[]\textbf{num_ref_idcs}: The number of ref_idcs to encode for the
current RPS. The value is equal to the value of num_ref_pics of the
predictor RPS plus 1.
\item[]\textbf{reference_idcs}: A space-separated list of num_ref_idcs
integers, specifying the ref idcs of the inter RPS prediction. The value
of ref_idcs may be 0, 1 or 2 indicating that the reference picture is a
reference picture used by the current picture, a reference picture used
for future picture or not a reference picture anymore, respectively. The
first num_ref_pics of ref_idcs correspond to the Reference pictures in
the predictor RPS. The last ref_idcs corresponds to the predictor
picture.
\end{itemize}
For example, consider the coding structure of Figure~\ref{fig:gop-example}.
This coding structure is of size 4. The pictures are listed in decoding
order. Frame1 shall therefore describe picture with $\textrm{POC}=4$. It
references picture 0, and therefore has $-4$ as a reference picture.
Similarly, Frame2 has a POC of 2, and since it references pictures 0 and
4, its reference pictures are listed as \verb|-2 2|. Frame3 is a special
case: even though it only references pictures with POC 0 and 2, it also
needs to include the picture with POC 4, which must be kept in order to
be used as a reference picture in the future. The reference picture list
for Frame3 therefore becomes \verb|-1 1 3|. Frame4 has a POC of 3 and
its list of reference pictures is \verb|-1 1|.
\begin{figure}[h]
\caption{A GOP structure}
\label{fig:gop-example}
\centering
\includegraphics[width=0.7\textwidth]{gop-structure-example}
\end{figure}
Inter RPS prediction may be used for Frame2, Frame3 and Frame4, hence
the predict parameter is set to 1 for these frames. Frame2 uses Frame1
as the predictor hence the deltaRIdx$-1$ is 0. Similarly for Frame3 and
Frame4 which use Frame2 and Frame3 as predictors, respectively. The
deltaRPS is equal to the POC of the predictor minus the POC of the
current picture, therefore the deltaRPS for Frame2 is $4 -2 = 2$, for
Frame3 is $2 - 1 = 1$ and for Frame4 is $1 - 3 = -2$.
In Frame2, reference pictures with POC 0 and 2 are used, so the
reference idcs for Frame2 are \verb|1 1| indicating that the reference
picture, $-4$, in Frame1 is still a reference picture in Frame2 and
Frame1 is also a reference picture in Frame2. The reference idcs for
Frame3 are \verb|1 1 1|. The first and second “1”s indicating that
the reference pictures "$-2$ $2$" in Frame2 are still reference pictures in
Frame3 and the last “1” indicating that Frame2 is also a reference
picture in Frame3. In Frame 4, the reference idcs are \verb|0 1 1 0|.
The first “0” indicates that the reference pictures “-1” in Frame 3 is
no longer a reference picture in Frame4. The next two “1”s indicate that
the reference pictures “$1$ $3$” are now reference pictures of Frame4.
The final “0” indicates that Frame3 is not a reference picture.
In order to specify this to the encoder, the parameters in
Table~\ref{tab:gop-example} could be used.
\begin{table}[ht]
\footnotesize
\caption{GOP structure example}
\label{tab:gop-example}
\centering
\begin{tabular}{lrrrr}
\hline
\thead{} &
\thead{Frame1} &
\thead{Frame2} &
\thead{Frame3} &
\thead{Frame4} \\
\hline
Type & P & B & B & B \\
POC & 4 & 2 & 1 & 3 \\
QPOffset & 1 & 2 & 3 & 3 \\
QPOffsetModelOff & 0.0 & 0.0 & 0.0 & 0.0 \\
QPOffsetModelScale & 0.0 & 0.0 & 0.0 & 0.0 \\
SliceCbQPOffset & 0 & 0 & 0 & 0 \\
SliceCrQPOffset & 0 & 0 & 0 & 0 \\
QPfactor & 0.5 & 0.5 & 0.5 & 0.5 \\
tcOffsetDiv2 & 0 & 1 & 2 & 2 \\
betaOffsetDiv2 & 0 & 0 & 0 & 0 \\
temporal_id & 0 & 1 & 2 & 2 \\
num_ref_pics_active & 1 & 1 & 1 & 1 \\
num_ref_pics & 1 & 2 & 3 & 2 \\
reference_pictures & $-$4 & $-$2 2 & $-$1 1 3 & $-$1 1 \\
predict & 0 & 1 & 1 & 1 \\
deltaRIdx$-$1 & & 0 & 0 & 0 \\
deltaRPS & & 2 & 1 & $-$2 \\
num_ref_idcs & & 2 & 3 & 4 \\
reference_idcs & & 1 1 & 1 1 1 & 0 1 1 0 \\
\hline
\end{tabular}
\end{table}
Here, the frames used for prediction have been given higher
quality by assigning a lower QP offset. Also, the non-reference
frames have been marked as belonging to a higher temporal layer,
to make it possible to decode only every other frame. Note: each
line should contain information for one frame, so this
configuration would be specified as:
\begin{verbatim}
Frame1: P 4 1 0 0 0.5 0 0 0 1 1 -4 0
Frame2: B 2 2 0 0 0.5 1 0 1 1 2 -2 2 1 0 2 2 1 1
Frame3: B 1 3 0 0 0.5 2 0 2 1 3 -1 1 3 1 0 1 3 1 1 1
Frame4: B 3 3 0 0 0.5 2 0 2 1 2 -1 1 1 0 -2 4 0 1 1 0
\end{verbatim}
The values of deltaRIdx$-1$, deltaRPS, num_ref_idcs and reference
idcs of Frame$K$ can be derived from the POC value of Frame$_K$ and
the POC, num_ref_pics and reference_pictures values of Frame$_M$, where
$K$ is the index of the RPS to be inter coded and the $M$ is the
index of the reference RPS, as follows.
\setlength{\algomargin}{2em}
\begin{algorithm}[ht]
\SetKwData{deltaRIdx}{deltaRIdx}
\SetKwData{deltaRPS}{deltaRPS}
\SetKwData{numrefidcs}{num_ref_idcs}
\SetKwData{numrefpics}{num_ref_pics}
\SetKwData{referencepictures}{reference_pictures}
\SetKwData{referenceidcs}{reference_idcs}
\SetKwData{POC}{POC}
$\deltaRIdx_K - 1 \leftarrow K - M - 1$ \;
$\deltaRPS_K \leftarrow \POC_M - \POC_K$ \;
$\numrefidcs_K \leftarrow \numrefpics_M + 1$ \;
\For{$j \leftarrow 0$ \KwTo $\numrefpics_M$}{
\For{$i \leftarrow 0$ \KwTo $\numrefidcs_K$}{
\eIf{$\referencepictures_{M,j} + \deltaRPS_K == \referencepictures_{K,i}$}{
\lIf{$\referencepictures_{K,i}$ is used by the current frame}{
$\referenceidcs_{K,j} = 1$} \;
\lElse{$\referenceidcs_{K,j} = 2$} \;
}{
$\referenceidcs_K[j] = 0$ \;
}
}
}
\tcc{$\referencepictures_{M,\numrefpics_M}$ does not exist and is assumed to be 0}
\end{algorithm}
Note: The above (automatic) generation of the inter RPS parameter
values has been integrated into the encoder, and is activated by
the value of predict $= 2$ followed by the value of deltaRIdx$-1$,
only, as described above.
%%%%
%%%%
%%%%
\newgeometry{tmargin=1.6cm,lmargin=1cm,rmargin=1cm,bmargin=1in,nohead}
\subsection{Encoder parameters}
%%
%% File, I/O and source parameters
%%
Shorthand alternatives for the parameter that can be used on the command line are shown in brackets after the parameter name.
\begin{OptionTableNoShorthand}{File, I/O and source parameters.}{tab:fileIO}
\Option{InputFile (-i)} &
%\ShortOption{-i} &
\Default{\NotSet} &
Specifies the input video file.
Video data must be in a raw 4:2:0, or 4:2:2 planar format, 4:4:4 planar format (Y$'$CbCr, RGB or GBR), or in a raw 4:0:0 format.
Note: When the bit depth of samples is larger than 8, each sample is encoded in
2 bytes (little endian, LSB-justified).
\\
\Option{InputPathPrefix (-ipp)} &
%\ShortOption{-ipp} &
\Default{\NotSet} &
Specifies a string to prepend to the input video file string, specified using -i.
\\
\Option{BitstreamFile (-b)} &
%\ShortOption{-b} &
\Default{\NotSet} &
Specifies the output coded bit stream file.
\\
\Option{ReconFile (-o)} &
%\ShortOption{-o} &
\Default{\NotSet} &
Specifies the output locally reconstructed video file.
\\
\Option{SourceWidth (-wdt)}%
\Option{SourceHeight (-hgt)} &
%\ShortOption{-wdt}%
%\ShortOption{-hgt} &
\Default{0}%
\Default{0} &
Specifies the width and height of the input video in luma samples.
\\
\Option{InputBitDepth}
&
%\ShortOption{\None} &
\Default{8} &
Specifies the bit depth of the input video.
\\
\Option{MSBExtendedBitDepth} &
%\ShortOption{\None} &
\Default{0} &
Extends the input video by adding MSBs of value 0. When 0, no extension is applied and the InputBitDepth is used.
The MSBExtendedBitDepth becomes the effective file InputBitDepth for subsequent processing.
\\
\Option{InternalBitDepth} &
%\ShortOption{\None} &
\Default{0} &
Specifies the bit depth used for coding. When 0, the setting defaults to the
value of the MSBExtendedBitDepth.
If the input video is a different bit depth to InternalBitDepth, it is
automatically converted by:
\begin{displaymath}
\left\lfloor
\frac{\mathrm{Pel} * 2^{\mathrm{InternalBitDepth}}}{
2^{\mathrm{MSBExtendedBitDepth}}}
\right\rfloor
\end{displaymath}
Note: The effect of this option is as if the input video is externally
converted to the MSBExtendedBitDepth and then to the InternalBitDepth
and then coded with this value as InputBitDepth. The codec has no
notion of different bit depths.
\\
\Option{OutputBitDepth} &
%\ShortOption{\None} &
\Default{0} &
Specifies the bit depth of the output locally reconstructed video file.
When 0, the setting defaults to the value of InternalBitDepth.
Note: This option has no effect on the decoding process.
\\
\Option{InputBitDepthC}%
\Option{MSBExtendedBitDepthC}%
\Option{InternalBitDepthC}%
\Option{OutputBitDepthC} &
%\ShortOption{\None} &
\Default{0}%
\Default{0}%
\Default{0}%
\Default{0} &
Specifies the various bit-depths for chroma components. These only need
to be specified if non-equal luma and chroma bit-depth processing is
required. When 0, the setting defaults to the corresponding non-Chroma value.
\\
\Option{InputColourSpaceConvert} &
%\ShortOption{\None} &
\Default{\NotSet} &
The colour space conversion to apply to input video. Permitted values are:
\par
\begin{tabular}{lp{0.3\textwidth}}
UNCHANGED & No colour space conversion is applied \\
YCbCrToYCrCb & Swap the second and third components \\
YCbCrtoYYY & Set the second and third components to the values in the first \\
RGBtoGBR & Reorder the three components \\
\end{tabular}
\par
If no value is specified, no colour space conversion is applied. The list may eventually also include RGB to YCbCr or YCgCo conversions.
\\
\Option{SNRInternalColourSpace} &
%\ShortOption{\None} &
\Default{false} &
When this is set true, then no colour space conversion is applied prior to PSNR calculation, otherwise the inverse of InputColourSpaceConvert is applied.
\\
\Option{OutputInternalColourSpace} &
%\ShortOption{\None} &
\Default{false} &
When this is set true, then no colour space conversion is applied to the reconstructed video, otherwise the inverse of InputColourSpaceConvert is applied.
\\
\Option{InputChromaFormat} &
%\ShortOption{\None} &
\Default{420} &
Specifies the chroma format used in the input file. Permitted values (depending on the profile) are 400, 420, 422 or 444.
\\
\Option{ChromaFormatIDC (-cf)} &
%\ShortOption{-cf} &
\Default{0} &
Specifies the chroma format to use for processing. Permitted values (depending on the profile) are 400, 420, 422 or 444; the value of 0 indicates that the value of InputChromaFormat should be used instead.
\\
\Option{MSEBasedSequencePSNR} &
%\ShortOption{\None} &
\Default{false} &
When 0, the PSNR output is a linear average of the frame PSNRs; when 1, additional PSNRs are output which are formed from the average MSE of all the frames. The latter is useful when coding near-losslessly, where occasional frames become lossless.
\\
\Option{PrintHexPSNR} &
%\ShortOption{\None} &
\Default{false} &
When 1, each POC line will include the 64-bit hexadecimal representation of the PSNR for each channel. This allows some types of simulations to be split into sub-simulations and the results later combined without loss of accuracy.
\\
\Option{PrintFrameMSE} &
%\ShortOption{\None} &
\Default{false} &
When 1, the Mean Square Error (MSE) values of each frame will also be output alongside the default PSNR values.
\\
\Option{PrintSequenceMSE} &
%\ShortOption{\None} &
\Default{false} &
When 1, the Mean Square Error (MSE) values of the entire sequence will also be output alongside the default PSNR values.
\\
\Option{PrintMSSSIM} &
%\ShortOption{\None} &
\Default{false} &
When 1, the multi-scale structural similarity (MS-SSIM) will also be output alongside the PSNR values.
\\
\Option{xPSNREnableFlag (-xPS} &
%\ShortOption{\None} &
\Default{false} &
When 1, the cross component PSNR is calculated, using the weights provided with xPSNRYWeight, xPSNRCbWeight and xPSNRCrWeight.
\\
\Option{xPSNRYWeight (-xPS0)} &
%\ShortOption{\None} &
\Default{1.0} &
Specifies the xPSNR weighting factor for Y.
\\
\Option{xPSNRCbWeight (-xPS1)} &
%\ShortOption{\None} &
\Default{1.0} &
Specifies the xPSNR weighting factor for Cb.
\\
\Option{xPSNRCrWeight (-xPS2)} &
%\ShortOption{\None} &
\Default{1.0} &
Specifies the xPSNR weighting factor for Cr.
\\
\Option{SummaryOutFilename} &
%\ShortOption{\None} &
\Default{false} &
Filename to use for producing summary output file. If empty, do not produce a file.
\\
\Option{SummaryPicFilenameBase} &
%\ShortOption{\None} &
\Default{false} &
Base filename to use for producing summary picture output files. The actual filenames used will have I.txt, P.txt and B.txt appended. If empty, do not produce a file.
\\
\Option{SummaryVerboseness} &
%\ShortOption{\None} &
\Default{false} &
Specifies the level of the verboseness of the text output.
\\
\Option{CabacZeroWordPaddingEnabled} &
%\ShortOption{\None} &
\Default{false} &
When 1, CABAC zero word padding will be enabled. This is currently not the default value for the setting.
\\
\Option{ConformanceWindowMode} &
%\ShortOption{\None} &
\Default{0} &
Specifies how the parameters related to the conformance window are interpreted (cropping/padding).
The following modes are available:
\par
\begin{tabular}{cp{0.43\textwidth}}
0 & No cropping / padding \\
1 & Automatic padding to the next minimum CU size \\
2 & Padding according to parameters HorizontalPadding and VerticalPadding \\
3 & Cropping according to parameters ConfWinLeft, ConfWinRight, ConfWinTop and ConfWinBottom \\
\end{tabular}
\\
\Option{HorizontalPadding (-pdx)}%
\Option{VerticalPadding (-pdy)} &
%\ShortOption{-pdx}%
%\ShortOption{-pdy} &
\Default{0} &
Specifies the horizontal and vertical padding to be applied to the input
video in luma samples when ConformanceWindowMode is 2. Must be a multiple of
the chroma resolution (e.g. a multiple of two for 4:2:0).
\\
\Option{ConfWinLeft}%
\Option{ConfWinRight}%
\Option{ConfWinTop}%
\Option{ConfWinBottom} &
%\ShortOption{\None} &
\Default{0} &
Specifies the horizontal and vertical cropping to be applied to the
input video in luma samples when ConformanceWindowMode is 3.
Must be a multiple of the chroma resolution (e.g. a multiple of
two for 4:2:0).
\\
\Option{FrameRate (-fr)} &
%\ShortOption{-fr} &
\Default{0} &
Specifies the frame rate of the input video.
Note: This option only affects the reported bit rates.
\\
\Option{FrameSkip (-fs)} &
%\ShortOption{-fs} &
\Default{0} &
Specifies a number of frames to skip at beginning of input video file.
\\
\Option{FramesToBeEncoded (-f)} &
%\ShortOption{-f} &
\Default{0} &
Specifies the number of frames to be encoded (see note regarding TemporalSubsampleRatio). When 0, all frames are coded.
\\
\Option{TemporalSubsampleRatio (-ts)} &
%\ShortOption{-fs} &
\Default{1} &
Temporally subsamples the input video sequence. A value of $N$ will skip $(N-1)$ frames of input video after each coded input video frame. Note the FramesToBeEncoded does not account for the temporal skipping of frames, which will reduce the number of frames encoded accordingly. The reported bit rates will be reduced and VUI information is scaled so as to present the video at the correct speed. The minimum and default value is 1.
\\
\Option{FieldCoding} &
%\ShortOption{\None} &
\Default{false} &
When 1, indicates that field-based coding is to be applied.
\\
\Option{TopFieldFirst (-Tff)} &
%\ShortOption{\None} &
\Default{0} &
Indicates the order of the fields packed into the input frame. When 1, the top field is temporally first.
\\
\Option{ClipInputVideoToRec709Range} &
%\ShortOption{\None} &
\Default{0} &
If 1 then clip input video to the Rec. 709 Range on loading when InternalBitDepth is less than MSBExtendedBitDepth.
\\
\Option{ClipOutputVideoToRec709Range} &
%\ShortOption{\None} &
\Default{0} &
If 1 then clip output video to the Rec. 709 Range on saving when OutputBitDepth is less than InternalBitDepth.
\\
\Option{EfficientFieldIRAPEnabled} &
%\ShortOption{\None} &
\Default{1} &
Enable to code fields in a specific, potentially more efficient, order.
\\
\Option{HarmonizeGopFirstFieldCoupleEnabled} &
%\ShortOption{\None} &
\Default{1} &
Enables harmonization of Gop first field couple.
\\
\Option{AccessUnitDelimiter} &
%\ShortOption{\None} &
\Default{0} &
Add Access Unit Delimiter NAL units between all Access Units.
\\
\end{OptionTableNoShorthand}
%%
%% profile, level and conformance options
%%
\begin{OptionTableNoShorthand}{Profile and level parameters}{tab:profile}
\Option{Profile} &
%\ShortOption{\None} &
\Default{none} &
Specifies the profile to which the encoded bitstream complies.
Valid HEVC Ver. 1 values are: none, main, main10, main-still-picture
Valid HEVC Ver. 2 (RExt) values are: main-RExt, high-throughput-RExt,
monochrome, monochrome12, monochrome16, main12, main_422_10,
main_422_12, main_444, main_444_10, main_444_12, main_444_16,
main_intra, main_10_intra, main_12_intra, main_422_10_intra, main_422_12_intra,
main_444_intra, main_444_10_intra, main_444_12_intra, main_444_16_intra,
high_throughput_444_16_intra.
In addition, the following profiles strings are available: high_throughput_444, high_throughput_444_10, high_throughput_444_14.
When main-RExt or high-throughput-RExt is specified, the constraint flags are either manually specified, or calculated via the other supplied settings.
Compatibility flags are automatically determined according to the profile.
NB: There is currently only limited validation that the encoder configuration complies with the profile, level and tier constraints.
\\
\Option{Level} &
%\ShortOption{\None} &
\Default{none} &
Specifies the level to which the encoded bitstream complies.
Valid values are: none, 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, 6.2, 8.5
NB: There is currently only limited validation that the encoder configuration complies with the profile, level and tier constraints.
\\
\Option{Tier} &
%\ShortOption{\None} &
\Default{main} &
Specifies the level tier to which the encoded bitsream complies.
Valid values are: main, high.
NB: There is currently only limited validation that the encoder configuration complies with the profile, level and tier constraints.
\\
\Option{MaxBitDepthConstraint} &
%\ShortOption{\None} &
\Default{0} &
For --profile=main-RExt, specifies the value to use to derive the general_max_bit_depth constraint flags for RExt profiles; when 0, use $\max(InternalBitDepth, InternalBitDepthC)$
\\
\Option{MaxChromaFormatConstraint} &
%\ShortOption{\None} &
\Default{0} &
For --profile=main-RExt, specifies the chroma-format to use for the general profile constraints for RExt profiles; when 0, use the value of ChromaFormatIDC.
\\
\Option{IntraConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
For --profile=main-RExt, specifies the value of general_intra_constraint_flag to use for RExt profiles.
\\
\Option{OnePictureOnlyConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
For --profile=main-RExt, specifies the value of general_one_picture_only_constraint_flag to use for RExt profiles.
\\
\Option{LowerBitRateConstraintFlag} &
%\ShortOption{\None} &
\Default{true} &
Specifies the value of general_lower_bit_constraint_flag to use for RExt profiles.
\\
\Option{ProgressiveSource} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of general_progressive_source_flag
\\
\Option{InterlacedSource} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of general_interlaced_source_flag
\\
\Option{NonPackedSource} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of general_non_packed_constraint_flag
\\
\Option{FrameOnly} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of general_frame_only_constraint_flag
\\
\end{OptionTableNoShorthand}
%%
%% Unit definition parameters
%%
\begin{OptionTableNoShorthand}{Unit definition parameters}{tab:unit}
\Option{MaxCUWidth} &
%\ShortOption{\None} &
\Default{64} &
Defines the maximum CU width.
\\
\Option{MaxCUHeight} &
%\ShortOption{\None} &
\Default{64} &
Defines the maximum CU height.
\\
\Option{MaxCUSize (-s)} &
%\ShortOption{\None} &
\Default{64} &
Defines the maximum CU size.
\\
\Option{MaxPartitionDepth (-h)} &
%\ShortOption{-h} &
\Default{4} &
Defines the depth of the CU tree.
\\
\Option{QuadtreeTULog2MaxSize} &
%\ShortOption{\None} &
\Default{6 \\ ($= \mathrm{log}_2(64)$)} &
Defines the Maximum TU size in logarithm base 2.
\\
\Option{QuadtreeTULog2MinSize} &
%\ShortOption{\None} &
\Default{2 \\ ($= \mathrm{log}_2(4)$)} &
Defines the Minimum TU size in logarithm base 2.
\\
\Option{QuadtreeTUMaxDepthIntra} &
%\ShortOption{\None} &
\Default{1} &
Defines the depth of the TU tree for intra CUs.
\\
\Option{QuadtreeTUMaxDepthInter} &
%\ShortOption{\None} &
\Default{2} &
Defines the depth of the TU tree for inter CUs.
\\
\end{OptionTableNoShorthand}
%%
%% Coding structure parameters
%%
\begin{OptionTableNoShorthand}{Coding structure parameters}{tab:coding-structure}
\Option{IntraPeriod (-ip)} &
%\ShortOption{-ip} &
\Default{$-1$} &
Specifies the intra frame period.
A value of $-1$ implies an infinite period.
\\
\Option{DecodingRefreshType (-dr)} &
%\ShortOption{-dr} &
\Default{0} &
Specifies the type of decoding refresh to apply at the intra frame period
picture.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Applies an I picture (not a intra random access point). \\
1 & Applies a CRA intra random access point (open GOP). \\
2 & Applies an IDR intra random access point (closed GOP). \\
3 & Use recovery point SEI messages to indicate random access. \\
\end{tabular}
\\
\Option{GOPSize (-g)} &
%\ShortOption{-g} &
\Default{1} &
Specifies the size of the cyclic GOP structure.
\\
\Option{ReWriteParamSetsFlag} &
%\ShortOption{\None} &
\Default{1} &
When enabled, VPS, SPS and PPS are repeated in front of every IRAP picture.
\\
\Option{Frame\emph{N}} &
%\ShortOption{\None} &
\Default{\NotSet} &
Multiple options that define the cyclic GOP structure that will be used
repeatedly throughout the sequence. The table should contain GOPSize
elements.
\par
See section~\ref{sec:gop-structure} for further details.
\\
\end{OptionTableNoShorthand}
%%
%% Motion estimation parameters
%%
\begin{OptionTableNoShorthand}{Motion estimation parameters}{tab:motion-estimation}
\Option{FastSearch} &
%\ShortOption{\None} &
\Default{1} &
Enables or disables the use of a fast motion search.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Full search method \\
1 & Fast search method - TZSearch\\
2 & Predictive motion vector fast search method \\
3 & Extended TZSearch method \\
\end{tabular}
\\
\Option{SearchRange (-sr)} &
%\ShortOption{-sr} &
\Default{96} &
Specifies the search range used for motion estimation.
Note: the search range is defined around a predictor. Motion vectors
derived by the motion estimation may thus have values larger than the
search range.
\\
\Option{BipredSearchRange} &
%\ShortOption{\None} &
\Default{4} &
Specifies the search range used for bi-prediction refinement in motion
estimation.
\\
\Option{ClipForBiPredMEEnabled} &
%\ShortOption{\None} &
\Default{0} &
Enables clipping in the Bi-Pred ME, which prevents values over- or under-flowing. It is usually disabled to reduce encoder run-time.
\\
\Option{FastMEAssumingSmootherMVEnabled} &
%\ShortOption{\None} &
\Default{0} &
Enables fast ME assuming a smoother MV.
\\
\Option{HadamardME} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the use of the Hadamard transform in fractional-pel motion
estimation.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & SAD for cost estimation \\
1 & Hadamard for cost estimation \\
\end{tabular}
\\
\Option{ASR} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of adaptive search ranges, where the motion
search range is dynamically adjusted according to the POC difference
between the current and the reference pictures.
\begin{displaymath}
\resizebox{\hsize}{!}{$
\mathrm{SearchRange}’ = \mathrm{Round}\left(
\mathrm{SearchRange}
* \mathrm{ADAPT\_SR\_SCALE}
* \frac{\mathrm{abs}(
\mathrm{POCcur} - \mathrm{POCref} )}{
\mathrm{RateGOPSize}}\right)
$}
\end{displaymath}
\\
\Option{MaxNumMergeCand} &
%\ShortOption{\None} &
\Default{5} &
Specifies the maximum number of merge candidates to use.
\\
\Option{DisableIntraInInter} &
%\ShortOption{\None} &
\Default{0} &
Flag to disable intra PUs in inter slices.
\\
\end{OptionTableNoShorthand}
%%
%% Mode decision parameters
%%
\begin{OptionTableNoShorthand}{Mode decision parameters}{tab:mode-decision}
\Option{LambdaModifier$N$ (-LM$N$)} &
%\ShortOption{-LM$N$} &
\Default{1.0} &
Specifies a value that is multiplied with the Lagrange multiplier
$\lambda$, for use in the rate-distortion optimised cost calculation
when encoding temporal layer~$N$.
If LambdaModifierI is specified, then LambdaModifierI will be used for intra pictures.
\par
$N$ may be in the range 0 (inclusive) to 7 (exclusive).
\\
\Option{LambdaModifierI (-LMI)} &
%\ShortOption{-LMI} &
\Default{} &
Specifies one or more of the LambdaModifiers to use intra pictures at each of the temporal layers.
If not present, then the LambdaModifier$N$ settings are used instead. If the list of values
(comma or space separated) does not include enough values for each of the temporal layers,
the last value is repeated as required.
\\
\Option{IQPFactor (-IQF)} &
%\ShortOption{-IQF} &
\Default{-1} &
Specifies the QP factor to be used for intra pictures during the lambda computation.
(The values specified in the GOP structure are only used for inter pictures).
If negative (default), the following equation is used to derive the value:
\par
$IQP_{factor}=0.57*(1.0-Max(0.5, Min(0.0, 0.05*s)))$
\par
where $s = Int(isField ? (GS-1)/2 : GS-1)$ and
$GS$ is the gop size.
\\
\Option{ECU} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of early CU determination. When enabled, skipped CUs will not be split further.
\\
\Option{CFM} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of Cbf-based fast encoder mode. When enabled, once a 2Nx2N CU has been evaluated, if the RootCbf is 0, further PU splits will not be evaluated.
\\
\Option{ESD} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of early skip detection. When enabled, the skip mode will be tested before any other.
\\
\Option{FEN} &
%\ShortOption{\None} &
\Default{0} &
Controls the use of different fast encoder coding tools. The following
tools are supported in different combinations:
\par
\begin{tabular}{cp{0.45\textwidth}}
a & In the SAD computation for blocks having size larger than 8, only
the lines of even rows in the block are considered. \\
b & The number of iterations used in the bi-directional motion vector
refinement in the motion estimation process is reduced from 4 to 1. \\
\end{tabular}
Depending on the value of the parameter, the following combinations are
supported:
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Disable all modes \\
1 & Use both a \& b tools\\
2 & Use only tool b \\
3 & Use only tool a \\
\end{tabular}
\\
\Option{FDM} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the use of fast encoder decisions for 2Nx2N merge
mode. When enabled, the RD cost for the merge mode of the current
candidate is not evaluated if the merge skip mode was the best merge
mode for one of the previous candidates.
\\
\Option{RDpenalty} &
%\ShortOption{\None} &
\Default{0} &
RD-penalty for 32x32 TU for intra in non-intra slices.
Enabling this parameter can reduce the visibility of CU boundaries in the coded picture.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & No RD-penalty \\
1 & RD-penalty \\
2 & Maximum RD-penalty (no 32x32 TU)\\
\end{tabular}
\\
\end{OptionTableNoShorthand}
%%
%% Quantization parameters
%%
\begin{OptionTableNoShorthand}{Quantization parameters}{tab:quantization}
\Option{QP (-q)} &
%\ShortOption{-q} &
\Default{30} &
Specifies the base value of the quantization parameter.
\\
\Option{QPIncrementFrame (-qpif)} &
\Default{\NotSet} &
If a source file frame number is specified, the internal QP will be incremented for all POCs associated with source frames beyond and including that frame. If empty, do not increment.
\\
\Option{IntraQPOffset} &
%\ShortOption{\None} &
\Default{0} &
Specifies a QP offset from the base QP value to be used for intra frames.
\\
\Option{LambdaFromQpEnable} &
%\ShortOption{\None} &
\Default{false} &
When enabled, the $\lambda$, which is used to convert a cost in bits to a cost in distortion terms, is calculated as:
$\lambda=qpFactor \times 2^{qp+6*(bitDepthLuma-8)-12}$,
where $qp$ is the slice QP and $qpFactor$ is calculated as follows:
\begin{tabular}{lp{0.45\textwidth}}
$= IQF$ & if $IQF >= 0$ and slice is a periodic intra slice \\
$= 0.57 \times \lambda_{scale}$ & if slice is a non-periodic intra slice \\
$=$ value from GOP table & otherwise \\
\end{tabular}
where $IQF$ is the value specified using the IntraQPFactor option, and where $\lambda_{scale}$ is:
\begin{tabular}{lp{0.45\textwidth}}
$1$ & if LambdaFromQpEnable=true \\
$1.0 - max(0,min(0.5,0.05*B))$ & if LambdaFromQpEnable=false \\
\end{tabular}
where $B$ is the number of B frames.
If LambdaFromQpEnable=false, then the $\lambda$ is also subsequently scaled for non-top-level hiearchical depths, as follows:
$\lambda = \lambda_{base} \times max(2, min(4, (sliceQP-12)/6))$
In addition, independent on the IntraQPFactor, if HadamardME=false, then for an inter slice the final $\lambda$ is scaled by a factor of $0.95$.
\\
\Option{CbQpOffset (-cbqpofs)}%
\Option{CrQpOffset (-crqpofs)} &
%\ShortOption{-cbqpofs}%
%\ShortOption{-crqpofs} &
\Default{0}%
\Default{0} &
Global offset to apply to the luma QP to derive the QP of Cb and Cr
respectively. These options correspond to the values of cb_qp_offset
and cr_qp_offset, that are transmitted in the PPS. Valid values are in
the range $[-12, 12]$.
\\
\Option{LumaLevelToDeltaQPMode} &
\Default{0} &
Luma-level based Delta QP modulation.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & not used \\
1 & Based on CTU average \\
2 & Based on Max luma in CTU\\
\end{tabular}
\\
\Option{LumaLevelToDeltaQPMaxValWeight} &
\Default{1.0} &
Weight of per block maximum luma value when LumaLevelToDeltaQPMode=2.
\\
\Option{LumaLevelToDeltaQPMappingLuma} &
\Default{\NotSet} &
Specify luma values to use for the luma to delta QP mapping instead of using default values. Default values are: 0, 301, 367, 434, 501, 567, 634, 701, 767, 834.
\\
\Option{LumaLevelToDeltaQPMappingDQP} &
\Default{\NotSet} &
Specify DQP values to use for the luma to delta QP mapping instead of using default values. Default values are: -3, -2, -1, 0, 1, 2, 3, 4, 5, 6.
\\
\Option{WCGPPSEnable} &
\Default{0} &
Enable the WCG PPS modulation of the chroma QP, rather than the slice,
which, unlike slice-level modulation, allows the deblocking process
to consider the adjustment.
To use, specify a fractional QP:
the first part of the sequence will use $qpc=floor(QP)$ in the following
calculation and PPS-0; the second part of the sequence will use $qpc=ceil(QP)$
and PPS-1. The $chromaQp$ that is then stored in the PPS is given as:
$clip(round(WCGPPSXXQpScale*baseCQp)+XXQpOffset)$ where $baseCQp=(WCGPPSChromaQpScale*qpc+WCGPPSChromaQpOffset)$.
Note that the slices will continue to have a delta QP applied.
\\
\Option{WCGPPSChromaQpScale} &
\Default{0.0} &
Scale parameter for the linear chroma QP offset mapping used for WCG content.
\\
\Option{WCGPPSChromaQpOffset} &
\Default{0.0} &
Offset parameter for the linear chroma QP offset mapping used for WCG content.
\\
\Option{WCGPPSCbQpScale}%
\Option{WCGPPSCrQpScale} &
\Default{1.0} &
Per chroma component QP scale factor depending on capture and representation color space.
For Cb component with BT.2020 container use 1.14; for BT.709 material and 1.04 for P3 material.
For Cr component with BT.2020 container use 1.79; for BT.709 material and 1.39 for P3 material.
\\
\Option{SmoothQPReductionEnable} &
\Default{0} &
Enable QP reduction for smooth blocks according to a QP reduction model:
$Clip3(SmoothQPReductionLimit, 0, SmoothQPReductionModelScale*QP+SmoothQPReductionModelOffset)$.
The QP reduction model is used when SAD is less than SmoothQPReductionThreshold * number of samples in block.
Where SAD is defined as the sum of absolute differences between original luma samples and luma samples predicted by a 2nd order polynomial model.
The model parameters are determined by a least square fit to original luma samples on a granularity of 64x64 samples.
\\
\Option{SmoothQPReductionThreshold} &
\Default{3.0} &
Threshold parameter for smoothness.
\\
\Option{SmoothQPReductionModelScale} &
\Default{-1.0} &
Scale parameter of the QP reduction model.
\\
\Option{SmoothQPReductionModelOffset} &
\Default{27.0} &
Offset parameter of the QP reduction model.
\\
\Option{SmoothQPReductionLimit} &
\Default{-16.0} &
Threshold parameter for controlling amount of QP reduction by the QP reduction model.
\\
\Option{SmoothQPReductionPeriodicity} &
\Default{1} &
Periodicity parameter for application of the QP reduction model. 1: all frames, 0: only intra pictures, 2: every second frame, etc.
\\
\Option{BIM} &
\Default{false} &
Enable or disable Block Importance Mapping, QP adaptation depending on estimated propagation of reference samples. Depends on future and past reference frames configured for temporal filter.
\\
\Option{SliceChromaQPOffsetPeriodicity} &
\Default{0} &
Defines the periodicity for inter slices that use the slice-level chroma QP offsets, as defined by SliceCbQpOffsetIntraOrPeriodic and SliceCrQpOffsetIntraOrPeriodic. A value of 0 disables the periodicity. It is intended to be used in low-delay configurations where an regular intra period is not defined.
\\
\Option{SliceCbQpOffsetIntraOrPeriodic}%
\Option{SliceCrQpOffsetIntraOrPeriodic} &
\Default{0} &
Defines the slice-level QP offset to be used for intra slices, or once every 'SliceChromaQPOffsetPeriodicity' pictures.
\\
\Option{MaxCuDQPDepth (-dqd)} &
%\ShortOption{\None} &
\Default{0} &
Defines maximum depth of a minimum CuDQP for sub-LCU-level delta QP.
MaxCuDQPDepth shall be greater than or equal to SliceGranularity.
\\
\Option{RDOQ} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables rate-distortion-optimized quantization for transformed TUs.
\\
\Option{RDOQTS} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables rate-distortion-optimized quantization for transform-skipped TUs.
\\
\Option{SelectiveRDOQ} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables selective rate-distortion-optimized quantization.
A simple quantization is use to pre-analyze, whether to bypass the RDOQ process or not.
If all the coefficients are quantized to 0, the RDOQ process is bypassed.
Otherwise, the RDOQ process is performed as usual.
\\
\Option{DeltaQpRD (-dqr)} &
%\ShortOption{-dqr} &
\Default{0} &
Specifies the maximum QP offset at slice level for multi-pass slice
encoding. When encoding, each slice is tested multiple times by using
slice QP values in the range $[-\mathrm{DeltaQpRD}, \mathrm{DeptaQpRD}]$,
and the best QP value is chosen as the slice QP.
\\
\Option{MaxDeltaQP (-d)} &
%\ShortOption{-d} &
\Default{0} &
Specifies the maximum QP offset at the largest coding unit level for
the block-level adaptive QP assignment scheme. In the encoder, each
largest coding unit is tested multiple times by using the QP values in
the range $[-\mathrm{MaxDeltaQP}, \mathrm{MaxDeltaQP}]$, and the best QP
value is chosen as the QP value of the largest coding unit.
\\
\Option{dQPFile (-m)} &
%\ShortOption{-m} &
\Default{\NotSet} &
Specifies a file containing a list of QP deltas. The $n$-th line
(where $n$ is 0 for the first line) of this file corresponds to the QP
value delta for the picture with POC value $n$.
\\
\Option{AdaptiveQp (-aq)} &
%\ShortOption{-aq} &
\Default{false} &
Enable or disable QP adaptation based upon a psycho-visual model.
\\
\Option{MaxQPAdaptationRange (-aqr)} &
%\ShortOption{-aqps} &
\Default{6} &
Specifies the maximum QP adaptation range.
\\
\Option{AdaptiveQpSelection (-aqps)} &
%\ShortOption{-aqps} &
\Default{false} &
Specifies whether QP values for non-I frames will be calculated on the
fly based on statistics of previously coded frames.
\\
\Option{RecalculateQP...} \Option{AccordingToLambda} &
%\ShortOption{\None} &
\Default{false} &
Recalculate QP values according to lambda values. Do not suggest to be enabled in all intra case.
\\
\Option{ScalingList} &
%\ShortOption{\None} &
\Default{0} &
Controls the specification of scaling lists:
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Scaling lists are disabled \\
1 & Use default scaling lists \\
2 & Scaling lists are specified in the file indicated by ScalingListFile \\
\end{tabular}
\\
\Option{ScalingListFile} &
%\ShortOption{\None} &
\Default{\NotSet} &
When ScalingList is set to 2, this parameter indicates the name of the file, which contains the defined scaling lists.
If ScalingList is set to 2 and this parameter is an empty string, information on the format of the scaling list file
is output and the encoder stops.
\\
\Option{MaxCUChromaQpAdjustmentDepth} &
%\ShortOption{\None} &
\Default{-1} &
Specifies the maximum depth for CU chroma QP adjustment; if negative, CU chroma QP adjustment is disabled.
\\
\end{OptionTableNoShorthand}
%%
%% Slice coding parameters
%%
\begin{OptionTableNoShorthand}{Slice coding parameters}{tab:slice-coding}
%\Option{SliceGranularity} &
%\ShortOption{\None} &
%\Default{0} &
%Determines the depth in an LCU at which slices may begin and end.
%\par
%\begin{tabular}{cp{0.45\textwidth}}
% 0 & Slice addresses are LCU aligned \\
% $1 \leq n \leq 3$
% & Slice start addresses are aligned to CUs at depth $n$ \\
%\end{tabular}
%
%Note: The smallest permissible alignment is 16x16 CUs.
%Values of $n$ must satisfy this constraint, for example, with a 64x64
%LCU, $n$ must be less than or equal to 2.
%\\
\Option{SliceMode} &
%\ShortOption{\None} &
\Default{0} &
Controls the slice partitioning method in conjunction with
SliceArgument.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Single slice \\
1 & Maximum number of CTUs per slice \\
2 & Maximum number of bytes per slice \\
3 & Maximum number of tiles per slice \\
\end{tabular}
\\
\Option{SliceArgument} &
%\ShortOption{\None} &
\Default{\NotSet} &
Specifies the maximum number of CTUs, bytes or tiles in a slice depending on the
SliceMode setting.
\\
\Option{SliceSegmentMode} &
%\ShortOption{\None} &
\Default{0} &
Enables (dependent) slice segment coding in conjunction with
SliceSegmentArgument.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Single slice \\
1 & Maximum number of CTUs per slice segment\\
2 & Maximum number of bytes per slice segment\\
3 & Maximum number of tiles per slice segment\\
\end{tabular}
\\
\Option{SliceSegmentArgument} &
%\ShortOption{\None} &
\Default{\NotSet} &
Defines the maximum number of CTUs, bytes or tiles a slice segment
depending on the SliceSegmentMode setting.
\\
\Option{WaveFrontSynchro} &
%\ShortOption{\None} &
\Default{false} &
Enables the use of specific CABAC probabilities synchronization at the
beginning of each line of CTBs in order to produce a bitstream that can
be encoded or decoded using one or more cores.
\\
\Option{TileUniformSpacing} &
%\ShortOption{\None} &
\Default{false} &
Controls the mode used to determine per row and column tile sizes.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Each tile column width and tile row height is explicitly set
by TileColumnWidthArray and TileRowHeightArray respectively \\
1 & Tile columns and tile rows are uniformly spaced. \\
\end{tabular}
\\
\Option{NumTileColumnsMinus1}%
\Option{NumTileRowsMinus1} &
%\ShortOption{\None} &
\Default{0} &
Specifies the tile based picture partitioning geometry as
$\mathrm{NumTileColumnsMinus1} + 1 \times \mathrm{NumTileRowsMinus1} + 1$
columns and rows.
\\
\Option{TileColumnWidthArray}%
\Option{TileRowHeightArray} &
%\ShortOption{\None} &
\Default{\NotSet} &
Specifies a space or comma separated list of widths and heights,
respectively, of each tile column or tile row. The first value in the
list corresponds to the leftmost tile column or topmost tile row.
\\
\end{OptionTableNoShorthand}
%%
%% Deblocking filter parameters
%%
\begin{OptionTableNoShorthand}{Deblocking filter parameters}{tab:deblocking-filter}
\Option{LoopFilterDisable} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the in-loop deblocking filter.
\\
\Option{LFCrossSliceBoundaryFlag} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the use of in-loop filtering across slice
boundaries.
\\
\Option{LoopFilterOffsetInPPS}&
%\ShortOption{\None}&
\Default{false}&
If enabled, the in-loop deblocking filter control parameters are sent in PPS.
Otherwise, the in-loop deblocking filter control parameters are sent in the slice segment header.
If deblocking filter parameters are sent in PPS, the same values of deblocking filter parameters
are used for all pictures in the sequence (i.e. deblocking parameter = base parameter value).
If deblocking filter parameters are sent in the slice segment header, varying deblocking filter
parameters can be specified by setting parameters tcOffsetDiv2 and betaOffsetDiv2 in the GOP structure table.
In this case, the final value of the deblocking filter parameter sent for a certain GOP picture is equal to
(base parameter + GOP parameter for this picture). Intra-pictures use the base parameters values.
\\
\Option{LoopFilterTcOffset_div2}&
%\ShortOption{\None}&
\Default{0}&
Specifies the base value for the in-loop deblocking filter parameter tc_offset_div2. The final value of tc_offset_div2
shall be an integer number in the range $-6..6$.
\\
\Option{LoopFilterBetaOffset_div2}&
%\ShortOption{\None}&
\Default{0}&
Specifies the base value for the in-loop deblocking filter parameter beta_offset_div2. The final value of beta_offset_div2
shall be an integer number in the range $-6..6$.
\\
\Option{DeblockingFilterMetric}&
%\ShortOption{\None}&
\Default{0}&
Specifies the use of a deblocking filter metric to evaluate the suitability of deblocking. If non-zero then
LoopFilterOffsetInPPS and LoopFilterDisable must be 0. Currently excepted values are 0, 1 and 2.
\\
\Option{LFCrossSliceBoundaryFlag}&
%\ShortOption{\None}&
\Default{true}&
Enables or disables the use of a deblocking across tile boundaries.
\\
\end{OptionTableNoShorthand}
%%
%% Coding tools parameters
%%
\begin{OptionTableNoShorthand}{Coding tools parameters}{tab:coding-tools}
\Option{AMP} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the use of asymmetric motion partitions.
\\
\Option{SAO} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the sample adaptive offset (SAO) filter.
\\
\Option{TestSAODisableAtPictureLevel} &
%\ShortOption{\None} &
\Default{false} &
Enables the testing of disabling SAO at the picture level after having analysed all blocks.
\\
\Option{SaoEncodingRate} &
%\ShortOption{\None} &
\Default{0.75} &
When >0 SAO early picture termination is enabled for luma and chroma.
\\
\Option{SaoEncodingRateChroma} &
%\ShortOption{\None} &
\Default{0.5} &
The SAO early picture termination rate to use for chroma (when m_SaoEncodingRate is >0). If <=0, use results for luma.
\\
\Option{SAOLcuBoundary} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables SAO parameter estimation using non-deblocked pixels
for LCU bottom and right boundary areas.
\\
\Option{ResetEncoderStateAfterIRAP} &
%\ShortOption{\None} &
\Default{true} &
When true, resets the encoder's decisions after an IRAP (POC order)
\\
\Option{ConstrainedIntraPred} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables constrained intra prediction. Constrained intra
prediction only permits samples from intra blocks in the same slice as the
current block to be used for intra prediction.
\\
\Option{FastUDIUseMPMEnabled} &
%\ShortOption{\None} &
\Default{true} &
If enabled, adapt intra direction search, accounting for MPM
\\
\Option{FastMEForGenBLowDelayEnabled} &
%\ShortOption{\None} &
\Default{true} &
If enabled use a fast ME for generalised B Low Delay slices
\\
\Option{UseBLambdaForNonKeyLowDelayPictures} &
%\ShortOption{\None} &
\Default{true} &
Enables use of B-Lambda for non-key low-delay pictures
\\
\Option{TransquantBypassEnable} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the ability to bypass the transform,
quantization and filtering stages at CU level.
This option corresponds to the value of
transquant_bypass_enabled_flag that is transmitted in the PPS.
See CUTransquantBypassFlagForce for further details.
\\
\Option{CUTransquantBypassFlagForce} &
%\ShortOption{\None} &
\Default{0} &
Controls the per CU transformation, quantization and filtering
mode decision.
This option controls the value of the per CU cu_transquant_bypass_flag.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Bypass is searched on a CU-by-CU basis and will be used if the cost is lower than not bypassing. \\
1 & Bypass is forced for all CUs. \\
\end{tabular}
This option has no effect if TransquantBypassEnable is disabled.
\\
\Option{PCMEnabledFlag} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of PCM. The encoder will use cost measures on a CU-by-CU basis to determine if PCM mode is to be applied.
\\
\Option{PCMLog2MaxSize} &
%\ShortOption{\None} &
\Default{5 \\ ($= \mathrm{log}_2(32)$)} &
Specifies log2 of the maximum PCM block size. When PCM is enabled, the
PCM mode is available for 2Nx2N intra PUs smaller than or equal to the
specified maximum PCM block size
\\
\Option{PCMLog2MinSize} &
%\ShortOption{\None} &
\Default{3} &
Specifies log2 of the minimum PCM block size. When PCM is enabled, the
PCM mode is available for 2Nx2N intra PUs larger than or equal to the
specified minimum PCM block size.
\par
When larger than PCMLog2MaxSize, PCM mode is not used.
\\
\Option{PCMInputBitDepthFlag} &
%\ShortOption{\None} &
\Default{true} &
If enabled specifies that PCM sample bit-depth is set equal to
InputBitDepth. Otherwise, it specifies that PCM sample bit-depth is set
equal to InternalBitDepth.
\\
\Option{PCMFilterDisableFlag} &
%\ShortOption{\None} &
\Default{false} &
If enabled specifies that loop-filtering on reconstructed samples of PCM
blocks is skipped. Otherwise, it specifies that loop-filtering on
reconstructed samples of PCM blocks is not skipped.
% 0 = (loop-filtering is not skipped for PCM samples).
\\
\Option{WeightedPredP (-wpP)} &
%\ShortOption{-wpP} &
\Default{false} &
Enables the use of weighted prediction in P slices.
\\
\Option{WeightedPredB (-wpB)} &
%\ShortOption{-wpB} &
\Default{false} &
Enables the use of weighted prediction in B slices.
\\
\Option{WPMethod (-wpM)} &
%\ShortOption{\-wpM} &
\Default{0} &
Sets the Weighted Prediction method to be used.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Image DC based method with joint colour component decision. \\
1 & Image DC based method with separate colour component decision. \\
2 & DC + Histogram refinement method (no clipping). \\
3 & DC + Histogram refinement method (with clipping). \\
4 & DC + Dual Histogram refinement method (with clipping). \\
\end{tabular}
\\
\Option{Log2ParallelMergeLevel} &
%\ShortOption{\None} &
\Default{2} &
Defines the PPS-derived Log2ParMrgLevel variable.
\\
\Option{SignHideFlag (-SBH)} &
%\ShortOption{-SBH} &
\Default{true} &
If enabled specifies that for each 4x4 coefficient group for which the
number of coefficients between the first nonzero coefficient and the
last nonzero coefficient along the scanning line exceeds 4, the sign bit
of the first nonzero coefficient will not be directly transmitted in the
bitstream, but may be inferred from the parity of the sum of all nonzero
coefficients in the current coefficient group.
\\
\Option{StrongIntraSmoothing (-sis)} &
%\ShortOption{-sis} &
\Default{true} &
If enabled specifies that for 32x32 intra prediction block, the intra smoothing
when applied is either the 1:2:1 smoothing filter or a stronger bi-linear
interpolation filter. Key reference sample values are tested and if the criteria
is satisfied, the stronger intra smoothing filter is applied.
If disabled, the intra smoothing filter when applied is the 1:2:1 smoothing filter.
\\
\Option{TMVPMode} &
%\ShortOption{\None} &
\Default{1} &
Controls the temporal motion vector prediction mode.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Disabled for all slices. \\
1 & Enabled for all slices. \\
2 & Disabled only for the first picture of each GOPSize. \\
\end{tabular}
\\
\Option{TransformSkip} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables transform-skipping mode decision.
\\
\Option{TransformSkipFast} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables reduced testing of the transform-skipping mode
decision for chroma TUs. When enabled, no RDO search is performed for
chroma TUs, instead they are transform-skipped if the four corresponding
luma TUs are also skipped.
\par
This option has no effect if TransformSkip is disabled.
\\
\end{OptionTableNoShorthand}
%%
%% GOP based termporal filter parameters
%%
\begin{OptionTableNoShorthand}{GOP based temporal filter parameters}{tab:gop-based-temporal-filter}
\Option{TemporalFilter} &
%\ShortOption{\None} &
\Default{false} &
Enable motion-compensated temporal pre-filter. When enabled, at least one of TemporalFilterPastRefs and TemporalFilterFutureRefs
must be larger than 0.
\\
\Option{TemporalFilterPastRefs} &
%\ShortOption{\None} &
\Default{4} &
Number of past frames used by the temporal filter.
\\
\Option{TemporalFilterFutureRefs} &
%\ShortOption{\None} &
\Default{4} &
Number of future frames used by the temporal filter. This may be set to 0 to avoid using future frames.
\\
\Option{FirstValidFrame} &
%\ShortOption{\None} &
\Default{0} &
Index of first frame in video sequence that may be used by the temporal filter. If a negative value is given, the index defaults to the value
of FrameSkip.
\\
\Option{LastValidFrame} &
%\ShortOption{\None} &
\Default{MAX_INT} &
Index of last frame in video sequence that may be used by the temporal filter. If a negative value is given, the index defaults to the value
of FrameSkip + FramesToBeEncoded - 1.
\\
\Option{TemporalFilterStrengthFrame*} &
%\ShortOption{\None} &
\Default{} &
Strength for every * frame in GOP based temporal filter, where * is an integer. E.g. --TemporalFilterStrengthFrame8 0.95 will
enable GOP based temporal filter at every 8th frame with strength 0.95. Longer intervals overrides shorter when there a multiple
matches.
\\
\end{OptionTableNoShorthand}
%%
%% Rate control parameters
%%
\begin{OptionTableNoShorthand}{Rate control parameters}{tab:rate-control}
\Option{RateControl} &
%\ShortOption{\None} &
\Default{false} &
Rate control: enables rate control or not.
\\
\Option{TargetBitrate} &
%\ShortOption{\None} &
\Default{0} &
Rate control: target bitrate, in bps.
\\
\Option{KeepHierarchicalBit} &
%\ShortOption{\None} &
\Default{0} &
Rate control: 0: equal bit allocation among pictures;
1: fix ratio hierarchical bit allocation; 2: adaptive hierarchical ratio bit allocation.
It is suggested to enable hierarchical bit allocation for hierarchical-B coding structure.
\\
\Option{LCULevelRateControl} &
%\ShortOption{\None} &
\Default{true} &
Rate control: true: LCU level RC; false: picture level RC.
\\
\Option{RCLCUSeparateModel} &
%\ShortOption{\None} &
\Default{true} &
Rate control: use LCU level separate R-lambda model or not.
When LCULevelRateControl is equal to false, this parameter is meaningless.
\\
\Option{InitialQP} &
%\ShortOption{\None} &
\Default{0} &
Rate control: initial QP value for the first picture.
0 to auto determine the initial QP value.
\\
\Option{RCForceIntraQP} &
%\ShortOption{\None} &
\Default{false} &
Rate control: force intra QP to be equal to initial QP or not.
\\
\Option{RCCpbSaturation} &
%\ShortOption{\None} &
\Default{false} &
Rate control: enable target bits saturation to avoid CPB overflow and underflow or not.
\\
\Option{RCCpbSize} &
%\ShortOption{\None} &
\Default{0} &
Rate control: CPB size, in bps.
\\
\Option{RCInitialCpbFullness} &
%\ShortOption{\None} &
\Default{0.9} &
Rate control: ratio of initial CPB fullness per CPB size. (InitalCpbFullness/CpbSize)
RCInitialCpbFullness should be smaller than or equal to 1.
\\
\end{OptionTableNoShorthand}
%%
%% VUI parameters
%%
\begin{OptionTableNoShorthand}{VUI parameters}{tab:VUI}
\Option{VuiParametersPresent (-vui)} &
\Default{false} &
Enable generation of vui_parameters().
\\
\Option{AspectRatioInfoPresent} &
\Default{false} &
Signals whether aspect_ratio_idc is present.
\\
\Option{AspectRatioIdc} &
\Default{0} &
aspect_ratio_idc
\\
\Option{SarWidth} &
\Default{0} &
Specifies the horizontal size of the sample aspect ratio.
\\
\Option{SarHeight} &
\Default{0} &
Specifies the vertical size of the sample aspect ratio.
\\
\Option{OverscanInfoPresent} &
\Default{false} &
Signals whether overscan_info_present_flag is present.
\\
\Option{OverscanAppropriate} &
\Default{false} &
Indicates whether cropped decoded pictures are suitable for display using overscan.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Indicates that the decoded pictures should not be displayed using overscan. \\
1 & Indicates that the decoded pictures may be displayed using overscan. \\
\end{tabular}
\\
\Option{VideoSignalTypePresent} &
\Default{false} &
Signals whether video_format, video_full_range_flag, and colour_description_present_flag are present.
\\
\Option{VideoFormat} &
\Default{5} &
Indicates representation of pictures.
\\
\Option{VideoFullRange} &
\Default{false} &
Indicates the black level and range of luma and chroma signals.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Indicates that the luma and chroma signals are to be scaled prior to display. \\
1 & Indicates that the luma and chroma signals are not to be scaled prior to display. \\
\end{tabular}
\\
\Option{ColourDescriptionPresent} &
\Default{false} &
Signals whether colour_primaries, transfer_characteristics and matrix_coefficients are present.
\\
\Option{ColourPrimaries} &
\Default{2} &
Indicates chromaticity coordinates of the source primaries.
\\
\Option{TransferCharateristics} &
\Default{2} &
Indicates the opto-electronic transfer characteristics of the source.
\\
\Option{MatrixCoefficients} &
\Default{2} &
Describes the matrix coefficients used in deriving luma and chroma from RGB primaries.
\\
\Option{ChromaLocInfoPresent} &
\Default{false} &
Signals whether chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are present.
\\
\Option{ChromaSampleLocTypeTopField} &
\Default{0} &
Specifies the location of chroma samples for top field.
\\
\Option{ChromaSampleLocTypeBottomField} &
\Default{0} &
Specifies the location of chroma samples for bottom field.
\\
\Option{NeutralChromaIndication} &
\Default{false} &
Indicates that the value of all decoded chroma samples is equal to 1<<(BitDepthCr-1).
\\
\Option{DefaultDisplayWindowFlag} &
\Default{flag} &
Indicates the presence of the Default Window parameters.
\par
\begin{tabular}{cp{0.45\textwidth}}
false & Disabled \\
true & Enabled \\
\end{tabular}
\\
\Option{DefDispWinLeftOffset}%
\Option{DefDispWinRightOffset}%
\Option{DefDispWinTopOffset}%
\Option{DefDispWinBottomOffset} &
\Default{0} &
Specifies the horizontal and vertical offset to be applied to the
input video from the conformance window in luma samples.
Must be a multiple of the chroma resolution (e.g. a multiple of two for 4:2:0).
\\
\Option{FrameFieldInfoPresentFlag} &
\Default{false} &
Specificies the value of the VUI syntax element `frame_field_info_present_flag', which indicates that pic_struct and field coding related values are present in picture timing SEI messages.
\\
\Option{PocProportionalToTimingFlag} &
\Default{false} &
Specificies the value of the VUI syntax element `vui_poc_proportional_to_timing_flag', which indicates that the POC value is proportional to the output time with respect to the first picture in the CVS.
\\
\Option{NumTicksPocDiffOneMinus} &
\Default{0} &
Specificies the value of the VUI syntax element `vui_num_ticks_poc_diff_one_minus1', which specifies the number of clock ticks corresponding to a difference of picture order count values equal to 1, and is used only when PocProportionalToTimingFlag is true.
\\
\Option{BitstreamRestriction} &
\Default{false} &
Signals whether bitstream restriction parameters are present.
\\
\Option{TilesFixedStructure} &
\Default{false} &
Indicates that each active picture parameter set has the same values of the syntax elements related to tiles.
\\
\Option{MotionVectorsOverPicBoundaries} &
\Default{false} &
Indicates that no samples outside the picture boundaries are used for inter prediction.
\\
\Option{MaxBytesPerPicDenom} &
\Default{2} &
Indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units associated with any coded picture.
\\
\Option{MaxBitsPerMinCuDenom} &
\Default{1} &
Indicates an upper bound for the number of bits of coding_unit() data.
\\
\Option{Log2MaxMvLengthHorizontal} &
\Default{15} &
Indicate the maximum absolute value of a decoded horizontal MV component in quarter-pel luma units.
\\
\Option{Log2MaxMvLengthVertical} &
\Default{15} &
Indicate the maximum absolute value of a decoded vertical MV component in quarter-pel luma units.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Range Extensions (Version 2) tool parameters}{tab:rext-tools}
\Option{CostMode} &
\Default{lossy} &
Specifies the cost mode to use.
\par
\begin{tabular}{lp{0.3\textwidth}}
lossy & $cost=distortion+\lambda \times bits$ \\
sequence_level_lossless & $cost=distortion / \lambda + bits$. \\
lossless & As with sequence_level_lossless, but QP is also set to 0 (this will be deprecated in the future) \\
mixed_lossless_lossy & As with sequence_level_lossless, but QP'=4 is used for pre-estimates of transquant-bypass blocks \\
\end{tabular}
\\
\Option{ExtendedPrecision} &
\Default{false} &
Specifies the use of extended_precision_processing flag. Note that unless the HIGH_BIT_DEPTH_SUPPORT macro in TypeDef.h is enabled, all internal bit depths must be 8 when the ExtendedPrecision setting is enabled.
This setting is only valid for the 16-bit RExt profiles.
\\
\Option{HighPrecisionPredictionWeighting} &
\Default{false} &
Specifies the value of high_precision_prediction_weighting_flag. This setting is only valid for the 16-bit or 4:4:4 RExt profiles.
\\
\Option{CrossComponentPrediction} &
\Default{false} &
When true, specifies the use of the cross component prediction tool (4:4:4 processing only). Version 1 and some Version 2 (RExt) profiles require this to be false.
\\
\Option{ReconBasedCrossCPredictionEstimate} &
\Default{false} &
If true, then when determining the alpha value for cross-component prediction, use the reconstructed residual rather than the pre-transform encoder-side residual
\\
\Option{SaoLumaOffsetBitShift}
\Option{SaoChromaOffsetBitShift}&
\Default{0}
\Default{0} &
Specifies the shift to apply to the SAO parameters. If negative, an estimate will be calculated based upon the initial QP. Version 1 and some Version 2 (RExt) profiles require this to be 0.
\\
\Option{TransformSkipLog2MaxSize} &
\Default{2} &
Specifies the maximum TU size for which transform-skip can be used; the minimum value is 2. Version 1 and some Version 2 (RExt) profiles require this to be 2.
\\
\Option{ImplicitResidualDPCM} &
\Default{false} &
When true, specifies the use of the implicitly signalled residual RDPCM tool (for intra). Version 1 and some Version 2 (RExt) profiles require this to be false.
\\
\Option{ExplicitResidualDPCM} &
\Default{false} &
When true, specifies the use of the explicitly signalled residual RDPCM tool (for intra-block-copy and inter). Version 1 and some Version 2 (RExt) profiles require this to be false.
\\
\Option{ResidualRotation} &
\Default{false} &
When true, specifies the use of the residual rotation tool. Version 1 and some Version 2 (RExt) profiles require this to be false.
\\
\Option{SingleSignificanceMapContext} &
\Default{false} &
When true, specifies the use of a single significance map context for transform-skipped and transquant-bypassed TUs. Version 1 and some Version 2 (RExt) profiles require this to be false.
\\
\Option{GolombRiceParameterAdaptation} &
\Default{false} &
When true, enable the adaptation of the Golomb-Rice parameter over the course of each slice. Version 1 and some Version 2 (RExt) profiles require this to be false.
\\
\Option{AlignCABACBeforeBypass} &
\Default{false} &
When true, align the CABAC engine to a defined fraction of a bit prior to coding bypass data (including sign bits) when coeff_abs_level_remaining syntax elements are present in the group.
This must always be true for the high-throughput-RExt profile, and false otherwise.
\\
\Option{IntraReferenceSmoothing} &
\Default{true} &
When true, enable intra reference smoothing, otherwise disable it. Version 1 and some Version 2 (RExt) profiles require this to be true.
\\
\end{OptionTableNoShorthand}
\subsection{Encoder SEI parameters}
The table below lists the SEI messages defined for Version 1 and Range-Extensions, and if available, the respective table that lists the controls within the HM Encoder to include the messages within the bit stream.
\begin{SEIListTable}{List of Version 1 and RExt SEI messages}
0 & Buffering period & Table \ref{tab:sei-buffering-period} \\
1 & Picture timing & Table \ref{tab:sei-picture-timing} \\
2 & Pan-scan rectangle & (Not handled)\\
3 & Filler payload & (Not handled)\\
4 & User data registered by Rec. ITU-T T.35 & (Not handled)\\
5 & User data unregistered & Decoded only\\
6 & Recovery point & Table \ref{tab:sei-recovery-point} \\
9 & Scene information & (Not handled)\\
15 & Picture snapshot & (Not handled)\\
16 & Progressive refinement segment start & (Not handled)\\
17 & Progressive refinement segment end & (Not handled)\\
19 & Film grain characteristics & Table \ref{tab:sei-film-grain} \\
22 & Post-filter hint & (Not handled)\\
23 & Tone mapping information & Table \ref{tab:sei-tone-mapping-info} \\
45 & Frame packing arrangement & Table \ref{tab:sei-frame-packing-arrangement} \\
47 & Display orientation & Table \ref{tab:sei-display-orientation} \\
56 & Green Metadata & Table \ref{tab:sei-green-metadata} \\
128 & Structure of pictures information & Table \ref{tab:sei-sop-info} \\
129 & Active parameter sets & Table \ref{tab:sei-active-parameter-sets} \\
130 & Decoding unit information & Table \ref{tab:sei-decoding-unit-info} \\
131 & Temporal sub-layer zero index & Table \ref{tab:sei-temporal-level-0} \\
132 & Decoded picture hash & Table \ref{tab:sei-decoded-picture-hash} \\
133 & Scalable nesting & Table \ref{tab:sei-scalable-nesting} \\
134 & Region refresh information & Table \ref{tab:sei-region-refresh-info} \\
135 & No display & Table \ref{tab:sei-no-display} \\
136 & Time code & Table \ref{tab:sei-time-code} \\
137 & Mastering display colour volume & Table \ref{tab:sei-mastering-display-colour-volume} \\
138 & Segmented rectangular frame packing arrangement & Table \ref{tab:sei-seg-rect-fpa}\\
139 & Temporal motion-constrained tile sets & Table \ref{tab:sei-tmcts} \\
140 & Chroma resampling filter hint & Table \ref{tab:chroma-resampling-filter-hint} \\
141 & Knee function information & Table \ref{tab:sei-knee-function} \\
142 & Colour remapping information & Table \ref{tab:sei-colour-remapping}\\
143 & Deinterlaced field identification & (Not handled)\\
144 & Content light level info & Table \ref{tab:sei-content-light-level}\\
147 & Alternative transfer characteristics & Table \ref{tab:sei-alternative-transfer-characteristics}\\
148 & Ambient viewing environment & Table \ref{tab:sei-ambient-viewing-environment}\\
149 & Content colour volume & Table \ref{tab:sei-content-colour-volume}\\
150 & Equirectangular projection & Table \ref{tab:sei-erp} \\
151 & Cubemap projection & Table \ref{tab:sei-cmp} \\
154 & Sphere rotation & Table \ref{tab:sei-sphere-rotation} \\
155 & Region-wise packing & Table \ref{tab:sei-rwp} \\
156 & Omni viewport & Table \ref{tab:sei-omni-viewport} \\
158 & Motion-constrained tile set extraction information & Table \ref{tab:sei-mcts-extract} \\
200 & SEI manifest & Table \ref{tab:sei-sei-manifest} \\
201 & SEI prefix indication & Table \ref{tab:sei-sei-prefix-indication} \\
203 & Shutter interval information & Table \ref{tab:sei-sii}\\
\end{SEIListTable}
%%
%% SEI messages
%%
\begin{OptionTableNoShorthand}{Buffering period SEI message encoder parameters}{tab:sei-buffering-period}
\Option{SEIBufferingPeriod} &
\Default{0} &
Enables or disables the insertion of the Buffering period
SEI messages. This option has no effect if VuiParametersPresent is disabled.
SEIBufferingPeriod requires SEIActiveParameterSets to be enabled.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Picture timing SEI message encoder parameters}{tab:sei-picture-timing}
\Option{SEIPictureTiming} &
\Default{0} &
Enables or disables the insertion of the Picture timing
SEI messages. This option has no effect if VuiParametersPresent is disabled.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Recovery point SEI message encoder parameters}{tab:sei-recovery-point}
\Option{SEIRecoveryPoint} &
\Default{0} &
Enables or disables the insertion of the Recovery point
SEI messages.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Film grain characteristics SEI message encoder parameters}{tab:sei-film-grain}
\Option{SEIFGCEnabled} &
\Default{0} &
Enables or disables the insertion of the film grain characteristics SEI message.
\\
\Option{SEIFGCAnalysisEnabled} &
\Default{0} &
Enable film grain analysis to estimate film grain parameters.
\\
\Option{SEIFGCExternalMask} &
\Default{\NotSet} &
Read external file with mask for film grain analysis. If empty string, use internally calculated mask.
\\
\Option{SEIFGCExternalDenoised} &
\Default{\NotSet} &
Read external file with denoised sequence for film grain analysis. If empty string, use MCTF for denoising.
\\
\Option{SEIFGCCancelFlag} &
\Default{0} &
Specifies the persistence of any previous film grain characteristics SEI message in output order. For SMPTE-RDD5, the value must be 0.
\\
\Option{SEIFGCPersistenceFlag} &
\Default{0} &
Specifies the persistence of the film grain characteristics SEI message for the current layer. For SMPTE-RDD5, the value must be 0; set to 1 when FGC SEI frequency is once per I-period
\\
\Option{SEIFGCPerPictureSEI} &
\Default{0} &
Specifies the frequency of inserting the film grain characteristics SEI message. 0: FGC SEI is inserted once per I-period; 1: FGC SEI is inserted once per picture.
\\
\Option{SEIFGCModelID} &
\Default{0} &
Specifies the film grain simulation model. For SMPTE-RDD5, the value must be 0.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & frequency filtering \\
1 & auto-regression \\
\end{tabular}
\\
\Option{SEIFGCSepColourDescPresentFlag} &
\Default{0} &
Specifies the presence of a distinct colour space description for the film grain characteristics specified in the SEI message. For SMPTE-RDD5, the value must be 0.
\\
\Option{SEIFGCBlendingModeID} &
\Default{0} &
Specifies the blending mode used to blend the simulated film grain with the decoded images. For SMPTE-RDD5, the value must be 0.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & additive \\
1 & multiplicative \\
\end{tabular}
\\
\Option{SEIFGCLog2ScaleFactor} &
\Default{2} &
Specifies a scale factor used in the film grain characterization equations.
\\
\Option{SEIFGCCompModelPresentComp0} &
\Default{0} &
Specifies the presence of film grain modelling on colour component 0.
\\
\Option{SEIFGCCompModelPresentComp1} &
\Default{0} &
Specifies the presence of film grain modelling on colour component 1.
\\
\Option{SEIFGCCompModelPresentComp2} &
\Default{0} &
Specifies the presence of film grain modelling on colour component 2.
\\
\Option{SEIFGCNumIntensityIntervalMinus1Comp0} &
\Default{0} &
Specifies the number of intensity intervals minus 1 for comp 0
\\
\Option{SEIFGCNumIntensityIntervalMinus1Comp1} &
\Default{0} &
Specifies the number of intensity intervals minus 1 for comp 1
\\
\Option{SEIFGCNumIntensityIntervalMinus1Comp2} &
\Default{0} &
Specifies the number of intensity intervals minus 1 for comp 2
\\
\Option{SEIFGCNumModelValuesMinus1Comp0} &
\Default{0} &
Specifies the number of model values minus 1 for comp 0
\\
\Option{SEIFGCNumModelValuesMinus1Comp1} &
\Default{0} &
Specifies the number of model values minus 1 for comp 1
\\
\Option{SEIFGCNumModelValuesMinus1Comp2} &
\Default{0} &
Specifies the number of model values minus 1 for comp 2
\\
\Option{SEIFGCIntensityIntervalLowerBoundComp0} &
\Default{0} &
Specifies the lower bound of intensity interval for comp 0 (for SMPTE-RDD5, non-overlapping interval)
\\
\Option{SEIFGCIntensityIntervalLowerBoundComp1} &
\Default{0} &
Specifies the lower bound of intensity interval for comp 1 (for SMPTE-RDD5, non-overlapping interval)
\\
\Option{SEIFGCIntensityIntervalLowerBoundComp2} &
\Default{0} &
Specifies the lower bound of intensity interval for comp 2 (for SMPTE-RDD5, non-overlapping interval)
\\
\Option{SEIFGCIntensityIntervalUpperBoundComp0} &
\Default{0} &
Specifies the upper bound of intensity interval for comp 0 (for SMPTE-RDD5, non-overlapping interval)
\\
\Option{SEIFGCIntensityIntervalUpperBoundComp1} &
\Default{0} &
Specifies the upper bound of intensity interval for comp 1 (for SMPTE-RDD5, non-overlapping interval)
\\
\Option{SEIFGCIntensityIntervalUpperBoundComp2} &
\Default{0} &
Specifies the upper bound of intensity interval for comp 2 (for SMPTE-RDD5, non-overlapping interval)
\\
\Option{SEIFGCCompModelValuesComp0} &
\Default{0} &
Specifies the model values for each intensity interval for comp 0 (sigma, h, v (h,v might be inferred based on number of model value))
\\
\Option{SEIFGCCompModelValuesComp1} &
\Default{0} &
Specifies the model values for each intensity interval for comp 1 (sigma, h, v (h,v might be inferred based on number of model value))
\\
\Option{SEIFGCCompModelValuesComp2} &
\Default{0} &
Specifies the model values for each intensity interval for comp 2 (sigma, h, v (h,v might be inferred based on number of model value))
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Tone mapping information SEI message encoder parameters}{tab:sei-tone-mapping-info}
\Option{SEIToneMappingInfo} &
\Default{0} &
Enables or disables the insertion of the Tone Mapping SEI message.
\\
\Option{SEIToneMapId} &
\Default{0} &
Specifies Id of Tone Mapping SEI message for a given session.
\\
\Option{SEIToneMapCancelFlag} &
\Default{false} &
Indicates that Tone Mapping SEI message cancels the persistance or follows.
\\
\Option{SEIToneMapPersistenceFlag} &
\Default{true} &
Specifies the persistence of the Tone Mapping SEI message.
\\
\Option{SEIToneMapCodedDataBitDepth} &
\Default{8} &
Specifies Coded Data BitDepth of Tone Mapping SEI messages.
\\
\Option{SEIToneMapTargetBitDepth} &
\Default{8} &
Specifies Output BitDepth of Tome mapping function.
\\
\Option{SEIToneMapModelId} &
\Default{0} &
Specifies Model utilized for mapping coded data into
target_bit_depth range.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & linear mapping with clipping \\
1 & sigmoidal mapping \\
2 & user-defined table mapping \\
3 & piece-wise linear mapping \\
4 & luminance dynamic range mapping \\
\end{tabular}
\\
\Option{SEIToneMapMinValue} &
\Default{0} &
Specifies the minimum value in mode 0.
\\
\Option{SEIToneMapMaxValue} &
\Default{1023} &
Specifies the maxmum value in mode 0.
\\
\Option{SEIToneMapSigmoidMidpoint} &
\Default{512} &
Specifies the centre point in mode 1.
\\
\Option{SEIToneMapSigmoidWidth} &
\Default{960} &
Specifies the distance between 5% and 95% values of
the target_bit_depth in mode 1.
\\
\Option{SEIToneMapStartOfCodedInterval} &
\Default{\None} &
Array of user-defined mapping table.
Default table can be set to the following:
\par
\begin{tabular}{cp{0.35\textwidth}}
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
\\
192 192 196 204 208 216 220 228 232 240 248 252 260 264
\\
272 276 284 292 292 296 300 304 308 312 320 324 328 332
\\
336 344 348 352 356 360 368 372 376 380 384 388 396 400
\\
404 408 412 420 424 428 432 436 444 444 444 448 452 456
\\
460 464 468 472 476 476 480 484 488 492 496 500 504 508
\\
508 512 516 520 524 528 532 536 540 540 544 548 552 556
\\
560 564 568 572 572 576 580 584 588 592 596 600 604 604
\\
608 612 616 620 624 628 632 636 636 640 644 648 652 656
\\
660 664 668 672 672 672 676 680 680 684 688 692 692 696
\\
700 704 704 708 712 716 716 720 724 724 728 732 736 736
\\
740 744 748 748 752 756 760 760 764 768 768 772 776 780
\\
780 784 788 792 792 796 800 804 804 808 812 812 816 820
\\
824 824 828 832 836 836 840 844 848 848 852 856 860 860
\\
860 864 864 868 872 872 876 880 880 884 884 888 892 892
\\
896 900 900 904 908 908 912 912 916 920 920 924 928 928
\\
932 936 936 940 940 944 948 948 952 956 956 960 964 964
\\
968 968 972 976 976 980 984 984 988 992 992 996 996 1000
\\
1004 1004 1008 1012 1012 1016 1020 1024
\\
\end{tabular}
\\
\Option{SEIToneMapNumPivots} &
\Default{0} &
Specifies the number of pivot points in mode 3.
\\
\Option{SEIToneMapCodedPivotValue} &
\Default{\None} &
Array of coded pivot point in mode 3.
A suggested table is:
\par
\begin{tabular}{cp{0.45\textwidth}}
64 128 256 512 768
\end{tabular}
\\
\Option{SEIToneMapTargetPivotValue} &
\Default{\None} &
Array of target pivot point in mode 3.
A suggested table is:
\par
\begin{tabular}{cp{0.45\textwidth}}
48 73 111 168 215
\end{tabular}
\\
\Option{SEIToneMap...} \Option{CameraIsoSpeedIdc} &
\Default{0} &
Indicates the camera ISO speed for daylight illumination.
\\
\Option{SEIToneMap...} \Option{CameraIsoSpeedValue} &
\Default{400} &
Specifies the camera ISO speed for daylight illumination of Extended_ISO.
\\
\Option{SEIToneMap...} \Option{ExposureIndexIdc} &
\Default{0} &
Indicates the exposure index setting of the camera.
\\
\Option{SEIToneMap...} \Option{ExposureIndexValue} &
\Default{400} &
Specifies the exposure index setting of the cameran of Extended_ISO.
\\
\Option{SEIToneMapExposure...} \Option{CompensationValueSignFlag} &
\Default{0} &
Specifies the sign of ExposureCompensationValue.
\\
\Option{SEIToneMapExposure...} \Option{CompensationValueNumerator} &
\Default{0} &
Specifies the numerator of ExposureCompensationValue.
\\
\Option{SEIToneMapExposure...} \Option{CompensationValueDenomIdc} &
\Default{2} &
Specifies the denominator of ExposureCompensationValue.
\\
\Option{SEIToneMapRef...} \Option{ScreenLuminanceWhite} &
\Default{350} &
Specifies reference screen brightness setting in units of candela per square metre.
\\
\Option{SEIToneMapExtended...} \Option{RangeWhiteLevel} &
\Default{800} &
Indicates the luminance dynamic range.
\\
\Option{SEIToneMapNominal...} \Option{BlackLevelLumaCodeValue} &
\Default{16} &
Specifies luma sample value of the nominal black level assigned decoded pictures.
\\
\Option{SEIToneMapNominal...} \Option{WhiteLevelLumaCodeValue} &
\Default{235} &
Specifies luma sample value of the nominal white level assigned decoded pictures.
\\
\Option{SEIToneMapExtended...} \Option{WhiteLevelLumaCodeValue} &
\Default{300} &
Specifies luma sample value of the extended dynamic range assigned decoded pictures.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Frame packing arrangement SEI message encoder parameters}{tab:sei-frame-packing-arrangement}
\Option{SEIFramePacking} &
\Default{0} &
Enables or disables the insertion of the Frame packing arrangement SEI messages.
\\
\Option{SEIFramePackingType} &
\Default{0} &
Indicates the arrangement type in the Frame packing arrangement SEI message.
This option has no effect if SEIFramePacking is disabled.
\par
\begin{tabular}{cp{0.35\textwidth}}
3 & Side by Side \\
4 & Top Bottom \\
5 & Frame Alternate \\
\end{tabular}
\\
\Option{SEIFramePackingInterpretation} &
\Default{0} &
Indicates the constituent frames relationship in the Frame packing arrangement SEI message.
This option has no effect if SEIFramePacking is disabled.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & Unspecified \\
1 & Frame 0 is associated with the left view of a stereo pair \\
2 & Frame 0 is associated with the right view of a stereo pair \\
\end{tabular}
\\
\Option{SEIFramePackingQuincunx} &
\Default{0} &
Enables or disables the quincunx_sampling signalling in the
Frame packing arrangement SEI messages. This option has no
effect if SEIFramePacking is disabled.
\\
\Option{SEIFramePackingId} &
\Default{0} &
Indicates the session number in the Frame packing arrangement
SEI messages. This option has no effect if SEIFramePacking is
disabled.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Display orientation SEI message encoder parameters}{tab:sei-display-orientation}
\Option{SEIDisplayOrientation} &
\Default{0} &
Enables or disables the insertion of the Display orientation
SEI messages.
\par
\begin{tabular}{cp{0.20\textwidth}}
0 & Disabled \\
N: $0 < N < (2^{16} - 1)$ & Enable display orientation SEI message with
\mbox{anticlockwise_rotation = N}
and \mbox{display_orientation_repetition_period = 1} \\
\end{tabular}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Green Metadata SEI message encoder parameters}{tab:sei-green-metadata}
\Option{SEIGreenMetadataType} &
\Default{0} &
Specifies the type of metadata that is present in the SEI message.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & Reserved \\
1 & Metadata enabling quality recovery after low-power encoding is present \\
\end{tabular}
\\
\Option{SEIXSDMetricType} &
\Default{0} &
Indicates the type of the objective quality metric.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & PSNR is used as objective quality metric \\
\end{tabular}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Structure of pictures information SEI message encoder parameters}{tab:sei-sop-info}
\Option{SEISOPDescription} &
\Default{0} &
Enables or disables the insertion of the Structure of pictures information SEI messages.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Active parameter sets SEI message encoder parameters}{tab:sei-active-parameter-sets}
\Option{SEIActiveParameterSets} &
\Default{0} &
Enables or disables the insertion of the Active parameter sets
SEI messages.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Decoding unit information SEI message encoder parameters}{tab:sei-decoding-unit-info}
\Option{SEIDecodingUnitInfo} &
\Default{0} &
Enables or disables the insertion of the Decoding unit information
SEI messages. This option has no effect if VuiParametersPresent is disabled.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Temporal sub-layer zero index SEI message encoder parameters}{tab:sei-temporal-level-0}
\Option{SEITemporalLevel0Index} &
\Default{0} &
Enables or disables the insertion of the Temporal level zero index
SEI messages.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Decoded picture hash SEI message encoder parameters}{tab:sei-decoded-picture-hash}
\Option{SEIDecodedPictureHash} &
\Default{0} &
Enables or disables the calculation and insertion of the Decoded picture hash
SEI messages.
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & Disabled \\
1 & Transmits MD5 in SEI message and writes the value to the encoder
log \\
2 & Transmits CRC in SEI message and writes the value to the encoder
log \\
3 & Transmits checksum in SEI message and writes the value to the encoder
log \\
\end{tabular}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Scalable nesting SEI message encoder parameters}{tab:sei-scalable-nesting}
\Option{SEIScalableNesting} &
\Default{0} &
Enables or disables the use of the scalable nesting SEI messages.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Region refresh information SEI message encoder parameters}{tab:sei-region-refresh-info}
\Option{SEIGradualDecodingRefreshInfo} &
\Default{0} &
Enables or disables the insertion of the Gradual decoding refresh information
SEI messages.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{No display SEI message encoder parameters}{tab:sei-no-display}
\Option{SEINoDisplay} &
\Default{0} &
When non-zero, generate no-display SEI message for temporal layer N or higher.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Time code SEI message encoder parameters}{tab:sei-time-code}
\Option{SEITimeCodeEnabled} &
\Default{false} &
When true (non-zero), generate Time code SEI messages.
\\
\Option{SEITimeCodeNumClockTs} &
\Default{0} &
Number of clock time sets, in the range of 0 to 3 (inclusive).
\\
\Option{SEITimeCodeTimeStampFlag} &
\Default{\None} &
Time stamp flag associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeFieldBasedFlag} &
\Default{\None} &
Field based flag associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeCountingType} &
\Default{\None} &
Counting type associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeFullTsFlag} &
\Default{\None} &
Full time stamp flag associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeDiscontinuityFlag} &
\Default{\None} &
Discontinuity flag associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeCntDroppedFlag} &
\Default{\None} &
Counter dropped flag associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeNumFrames} &
\Default{\None} &
Number of frames associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeSecondsFlag} &
\Default{\None} &
Flag to signal seconds value presence in each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeMinutesFlag} &
\Default{\None} &
Flag to signal minutes value presence in each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeHoursFlag} &
\Default{\None} &
Flag to signal hours value presence in each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeSecondsValue} &
\Default{\None} &
Seconds value for each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeMinutesValue} &
\Default{\None} &
Minutes value for each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeHoursValue} &
\Default{\None} &
Hours value for each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeOffsetLength} &
\Default{\None} &
Time offset length associated to each time set (comma or space separated list of entries).
\\
\Option{SEITimeCodeTimeOffset} &
\Default{\None} &
Time offset associated to each time set (comma or space separated list of entries).
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Mastering display colour volume SEI message encoder parameters}{tab:sei-mastering-display-colour-volume}
\Option{SEIMasteringDisplayColourVolume} &
\Default{false} &
When true (non-zero), generate Mastering display colour volume SEI message.
\\
\Option{SEIMasteringDisplayMaxLuminance} &
\Default{10000} &
Specifies the mastering display maximum luminance value in units of 1/10000 candela per square metre.
\\
\Option{SEIMasteringDisplayMinLuminance} &
\Default{0} &
Specifies the mastering display minimum luminance value in units of 1/10000 candela per square metre.
\\
\Option{SEIMasteringDisplayPrimaries} &
\Default{0,50000, 0,0, 50000,0} &
Mastering display primaries for all three colour planes in CIE xy coordinates in increments of 1/50000 (results in the ranges 0 to 50000 inclusive).
\\
\Option{SEIMasteringDisplayWhitePoint} &
\Default{16667, 16667} &
Mastering display white point CIE xy coordinates in normalized increments of 1/50000 (e.g. 0.333 = 16667).
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Segmented rectangular frame packing arrangement SEI message encoder parameters}{tab:sei-seg-rect-fpa}
\Option{SEISegmentedRectFramePacking} &
\Default{0} &
Controls generation of segmented rectangular frame packing SEI messages.
\\
\Option{SEISegmentedRectFramePackingCancel} &
\Default{false} &
If true, cancels the persistence of any previous SRFPA SEI message.
\\
\Option{SEISegmentedRectFramePackingType} &
\Default{0} &
Specifies the arrangement of the frames in the reconstructed picture.
\\
\Option{SEISegmentedRectFramePackingPersistence} &
\Default{false} &
If false the SEI applies to the current frame only.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Temporal motion-constrained tile sets SEI message encoder parameters}{tab:sei-tmcts}
\Option{SEITempMotionConstrainedTileSets} &
\Default{false} &
When true (non-zero), generates example temporal motion constrained tile sets SEI messages.
\\
\Option{SEITMCTSTileConstraint} &
\Default{false} &
When true (non-zero), the following encoding settings are enabled:
\begin{itemize}
\item mc_all_tiles_exact_sample_value_match_flag and each_tile_one_tile_set_flag will be set equal to one int the temporal motion constrained tile sets SEI message
\item Motion vectors are constrained to not cross tile boundaries
\item TMVP and merge mode are constrained to not cross tile boundaries
\item LFCrossTileBoundaryFlag will be disabled
\end{itemize}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Chroma resampling filter hint SEI message encoder parameters}{tab:chroma-resampling-filter-hint}
\Option{SEIChromaResamplingFilterHint} &
\Default{false} &
When true (non-zero), generates example chroma sampling filter hint SEI messages.
\\
\Option{SEIChromaResamplingHorizontalFilterType} &
\Default{2} &
Defines the index of the chroma sampling horizontal filter:
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & Unspecified \\
1 & Filters signalled within the SEI message \\
2 & Filters as described by SMPTE RP 2050-1:2012\\
\end{tabular}
\\
\Option{SEIChromaResamplingVerticalFilterType} &
\Default{2} &
Defines the index of the chroma sampling vertical filter:
\par
\begin{tabular}{cp{0.35\textwidth}}
0 & Unspecified \\
1 & Filters signalled within the SEI message \\
2 & Filters as described in the 5/3 filter description of ITU-T Rec. T.800 | ISO/IEC 15444-1\\
\end{tabular}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Knee function SEI message encoder parameters}{tab:sei-knee-function}
\Option{SEIKneeFunctionInfo} &
\Default{false} &
Enables (true) or disables (false) the insertion of the Knee function SEI messages.
\\
\Option{SEIKneeFunctionId} &
\Default{0} &
Specifies Id of Knee function SEI message for a given session.
\\
\Option{SEIKneeFunctionCancelFlag} &
\Default{false} &
Indicates that Knee function SEI message cancels the persistance (true) or follows (false).
\\
\Option{SEIKneeFunctionPersistenceFlag} &
\Default{true} &
Specifies the persistence of the Knee function SEI message.
\\
\Option{SEIKneeFunctionInputDrange} &
\Default{1000} &
Specifies the peak luminance level for the input picture of Knee function SEI messages.
\\
\Option{SEIKneeFunctionInputDispLuminance} &
\Default{100} &
Specifies the expected display brightness for the input picture of Knee function SEI messages.
\\
\Option{SEIKneeFunctionOutputDrange} &
\Default{4000} &
Specifies the peak luminance level for the output picture of Knee function SEI messages.
\\
\Option{SEIKneeFunctionOutputDispLuminance} &
\Default{800} &
Specifies the expected display brightness for the output picture of Knee function SEI messages.
\\
\Option{SEIKneeFunctionNumKneePointsMinus1} &
\Default{2} &
Specifies the number of knee points - 1.
\\
\Option{SEIKneeFunctionInputKneePointValue} &
\Default{} &
Array of input knee point. Default table can be set to the following:
\par
\begin{tabular}{cp{0.45\textwidth}}
600 800 900
\end{tabular}
\\
\Option{SEIKneeFunctionOutputKneePointValue} &
\Default{} &
Array of output knee point. Default table can be set to the following:
\par
\begin{tabular}{cp{0.45\textwidth}}
100 250 450
\end{tabular}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Colour remapping SEI message encoder parameters}{tab:sei-colour-remapping}
\Option{SEIColourRemappingInfoFileRoot (-cri)} &
\Default{\NotSet} &
Specifies the prefix of input Colour Remapping Information file. Prefix is completed by ``_x.txt'' where x is the POC number.
The contents of the file are a list of the SEI message's syntax element names (in decoding order) immediately followed by a `:' and then the associated value.
An example file can be found in cfg/misc/example_colour_remapping_sei_encoder_0.txt.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Content light level info SEI message encoder parameters}{tab:sei-content-light-level}
\Option{SEICLLEnabled} &
\Default{false} &
Enables or disables the insertion of the content light level SEI message.
\\
\Option{SEICLLMaxContentLightLevel} &
\Default{4000} &
When not equal to 0, specifies an upper bound on the maximum light level among all individual samples in a 4:4:4 representation of red, green, and blue colour primary intensities in the linear light domain for the pictures of the CLVS, in units of candelas per square metre. When equal to 0, no such upper bound is indicated.
\\
\Option{SEICLLMaxPicAvgLightLevel} &
\Default{0} &
When not equal to 0, specifies an upper bound on the maximum average light level among the samples in a 4:4:4 representation of red, green, and blue colour primary intensities in the linear light domain for any individual picture of the CLVS, in units of candelas per square metre. When equal to 0, no such upper bound is indicated.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Alternative transfer characteristics SEI message encoder parameters}{tab:sei-alternative-transfer-characteristics}
\Option{SEIPreferredTransferCharacteristics} &
\Default{18} &
Indicates a preferred alternative value for the transfer_characteristics syntax element that is indicated by the colour description syntax of VUI parameters.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Ambient viewing environment SEI message encoder parameters}{tab:sei-ambient-viewing-environment}
\Option{SEIAVEEnabled} &
\Default{false} &
Enables or disables the insertion of the ambient viewing environment SEI message.
\\
\Option{SEIAVEAmbientIlluminance} &
\Default{100000} &
Specifies the environmental illuminance of the ambient viewing environment in units of 1/10000 lux. The value shall not be 0.
\\
\Option{SEIAVEAmbientLightX} &
\Default{15635} &
Specifies the x chromaticity coordinate, according to the CIE 1931 definition, of the environmental ambient light in the nominal viewing environment in normalized increments of 1/50000. The value shall be in the range of 0 to 50,000, inclusive.
\\
\Option{SEIAVEAmbientLightY} &
\Default{16450} &
Specifies the y chromaticity coordinate, according to the CIE 1931 definition, of the environmental ambient light in the nominal viewing environment in normalized increments of 1/50000. The value shall be in the range of 0 to 50,000, inclusive.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Content colour volume SEI message encoder parameters}{tab:sei-content-colour-volume}
\Option{SEICCVEnabled} &
\Default{false} &
Enables or disables the insertion of the content colour volume SEI message.
\\
\Option{SEICCVCancelFlag} &
\Default{false} &
Specifies the persistence of any previous content colour volume SEI message in output order.
\\
\Option{SEICCVPersistenceFlag} &
\Default{true} &
Specifies the persistence of the content colour volume SEI message for the current layer.
\\
\Option{SEICCVPrimariesPresent} &
\Default{true} &
Specifies whether the CCV primaries are present in the content colour volume SEI message.
\\
\Option{m_ccvSEIPrimariesX0} &
\Default{0.300} &
Specifies the x coordinate, according to the CIE 1931 definition, of the first (green) colour primary component in normalized increments of 1/50000.
\\
\Option{m_ccvSEIPrimariesY0} &
\Default{0.600} &
Specifies the y coordinate, according to the CIE 1931 definition, of the first (green) colour primary component in normalized increments of 1/50000.
\\
\Option{m_ccvSEIPrimariesX1} &
\Default{0.150} &
Specifies the x coordinate, according to the CIE 1931 definition, of the second (blue) colour primary component in normalized increments of 1/50000.
\\
\Option{m_ccvSEIPrimariesY1} &
\Default{0.060} &
Specifies the y coordinate, according to the CIE 1931 definition, of the second (blue) colour primary component in normalized increments of 1/50000.
\\
\Option{m_ccvSEIPrimariesX2} &
\Default{0.640} &
Specifies the x coordinate, according to the CIE 1931 definition, of the third (red) colour primary component in normalized increments of 1/50000.
\\
\Option{m_ccvSEIPrimariesY2} &
\Default{0.330} &
Specifies the y coordinate, according to the CIE 1931 definition, of the third (red) colour primary component in normalized increments of 1/50000.
\\
\Option{SEICCVMinLuminanceValuePresent} &
\Default{true} &
Specifies whether the CCV min luminance value is present in the content colour volume SEI message.
\\
\Option{SEICCVMinLuminanceValue} &
\Default{0.0} &
specifies the CCV min luminance value in the content colour volume SEI message.
\\
\Option{SEICCVMaxLuminanceValuePresent} &
\Default{1} &
Specifies whether the CCV max luminance value is present in the content colour volume SEI message.
\\
\Option{SEICCVMaxLuminanceValue} &
\Default{0.1} &
specifies the CCV max luminance value in the content colour volume SEI message.
\\
\Option{SEICCVAvgLuminanceValuePresent} &
\Default{1} &
Specifies whether the CCV avg luminance value is present in the content colour volume SEI message.
\\
\Option{SEICCVAvgLuminanceValue} &
\Default{0.01} &
specifies the CCV avg luminance value in the content colour volume SEI message.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Equirectangular Projection SEI message encoder parameters}{tab:sei-erp}
\Option{SEIErpEnabled} &
\Default{false} &
Enables (true) or disables (false) the insertion of equirectangular projection SEI message.
\\
\Option{SEIErpCancelFlag} &
\Default{true} &
Indicates that equirectangular projection SEI message cancels the persistence (true) or follows (false).
\\
\Option{SEIErpPersistenceFlag} &
\Default{false} &
Specifies the persistence of the equirectangular projection SEI message.
\\
\Option{SEIErpGuardBandFlag} &
\Default{false} &
Indicates the existence of guard band areas in the constituent picture.
\\
\Option{SEIErpGuardBandType} &
\Default{0} &
Indicates the type of the guard bands.
\\
\Option{SEIErpLeftGuardBandWidth} &
\Default{0} &
Inicates the width of the guard band on the left side of the onstituent picture.
\\
\Option{SEIErpRightGuardBandWidth} &
\Default{0} &
Inicates the width of the guard band on the right side of the onstituent picture.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Cubemap Projection SEI message encoder parameters}{tab:sei-cmp}
\Option{SEICmpEnabled} &
\Default{false} &
Enables (true) or disables (false) the insertion of cubemap projection SEI message.
\\
\Option{SEICmpCancelFlag} &
\Default{true} &
Indicates that cubemap projection SEI message cancels the persistence (true) or follows (false).
\\
\Option{SEICmpPersistenceFlag} &
\Default{false} &
Specifies the persistence of the Cubemap Projection SEI message.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Sphere Rotation SEI message encoder parameters}{tab:sei-sphere-rotation}
\Option{SEISphereRotationEnabled} &
\Default{false} &
Enables (true) or disables (false) the insertion of sphere rotation SEI message.
\\
\Option{SEISphereRotationCancelFlag} &
\Default{true} &
Indicates that the sphere rotation SEI message cancels the persistence (true) or follows (false).
\\
\Option{SEISphereRotationPersistenceFlag} &
\Default{false} &
Specifies the persistence of the sphere rotation SEI message.
\\
\Option{SEISphereRotationYawRotation} &
\Default{0} &
Specifies the value of the yaw rotation angle.
\\
\Option{SEISphereRotationPitchRotation} &
\Default{0} &
Specifies the value of the pitch rotation angle.
\\
\Option{SEISphereRotationRollRotation} &
\Default{0} &
Specifies the value of the roll rotation angle.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Region-wise packing SEI message encoder parameters}{tab:sei-rwp}
\Option{SEIRwpEnabled} &
\Default{false} &
Enables (true) or disables (false) the insertion of region-wise packing SEI message.
\\
\Option{SEIRwpCancelFlag} &
\Default{true} &
Indicates that RWP SEI message cancels the persistence (true) or follows (false).
\\
\Option{SEIRwpPersistenceFlag} &
\Default{false} &
Specifies the persistence of the RWP SEI message.
\\
\Option{SEIRwpConstituentPictureMatchingFlag} &
\Default{false} &
Specifies the RWP SEI message applies individually to each constituent picture (true) or to the projected picture (false).
\\
\Option{SEIRwpNumPackedRegions} &
\Default{0} &
Specifies the number of packed regions when constituent picture matching flag is equal to 0.
\\
\Option{SEIRwpProjPictureWidth} &
\Default{0} &
Specifies the width of the projected picture.
\\
\Option{SEIRwpProjPictureHeight} &
\Default{0} &
Specifies the height of the projected picture.
\\
\Option{SEIRwpPackedPictureWidth} &
\Default{0} &
Specifies the width of the packed picture.
\\
\Option{SEIRwpPackedPictureHeight} &
\Default{0} &
Specifies the height of the packed picture.
\\
\Option{SEIRwpTransformType} &
\Default{} &
An array that specifies the rotation and mirroring to be applied to the packed regions.
\\
\Option{SEIRwpGuardBandFlag} &
\Default{} &
An array that specifies the existence of guard band in the packed regions.
\\
\Option{SEIRwpProjRegionWidth} &
\Default{} &
An array that specifies the width of the projected regions.
\\
\Option{SEIRwpProjRegionHeight} &
\Default{} &
An array that specifies the height of the projected regions.
\\
\Option{SEIRwpGuardBandFlag} &
\Default{} &
An array that specifies the existence of guard band in the packed regions.
\\
\Option{SEIRwpProjRegionTop} &
\Default{} &
An array that specifies the top sample row of the projected regions.
\\
\Option{SEIRwpProjRegionLeft} &
\Default{} &
An array that specifies the left-most sample column of the projected regions.
\\
\Option{SEIRwpPackedRegionWidth} &
\Default{} &
An array that specifies the width of the packed regions.
\\
\Option{SEIRwpPackedRegionHeight} &
\Default{} &
An array that specifies the height of the packed regions.
\\
\Option{SEIRwpPackedRegionTop} &
\Default{} &
An array that specifies the top luma sample row of the packed regions.
\\
\Option{SEIRwpPackedRegionLeft} &
\Default{} &
An array that specifies the left-most luma sample column of the packed regions.
\\
\Option{SEIRwpLeftGuardBandWidth} &
\Default{} &
An array that specifies the width of the guard band on the left side of the packed regions.
\\
\Option{SEIRwpRightGuardBandWidth} &
\Default{} &
An array that specifies the width of the guard band on the right side of the packed regions.
\\
\Option{SEIRwpTopGuardBandHeight} &
\Default{} &
An array that specifies the height of the guard band above the packed regions.
\\
\Option{SEIRwpBottomGuardBandHeight} &
\Default{} &
An array that specifies the height of the guard band below the packed regions.
\\
\Option{SEIRwpGuardBandNotUsedForPredFlag} &
\Default{} &
An array that specifies if the guard bands is used in the inter prediction process.
\\
\Option{SEIRwpGuardBandType} &
\Default{} &
An array that specifies the type of the guard bands for the packed regions.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Omni Viewport SEI message encoder parameters}{tab:sei-omni-viewport}
\Option{SEIOmniViewportEnabled} &
\Default{false} &
Enables (true) or disables (false) the insertion of omni viewport SEI message.
\\
\Option{SEIOmniViewportId} &
\Default{0} &
Contains an identifying number that may be used to identify the purpose of the one or more recommended viewport regions.
\\
\Option{SEIOmniViewportCancelFlag} &
\Default{true} &
Indicates that the omni viewport SEI message cancels the persistence (true) or follows (false).
\\
\Option{SEIOmniViewportPersistenceFlag} &
\Default{false} &
Specifies the persistence of the omni viewport SEI message.
\\
\Option{SEIOmniViewportCntMinus1} &
\Default{0} &
Specifies the number of recommended viewport regions minus 1.
\\
\Option{SEIOmniViewportAzimuthCentre} &
\Default{} &
An array that indicates the centre of the i-th recommended viewport region.
\\
\Option{SEIOmniViewportElevationCentre} &
\Default{} &
An array that indicates the centre of the i-th recommended viewport region.
\\
\Option{SEIOmniViewportTiltCentre} &
\Default{} &
An array that indicates the tilt angle of the i-th recommended viewport region.
\\
\Option{SEIOmniViewportHorRange} &
\Default{} &
An array that indicates the azimuth range of the i-th recommended viewport region.
\\
\Option{SEIOmniViewportVerRange} &
\Default{} &
An array that indicates the elevation range of the i-th recommended viewport region.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Motion-constrained tile sets extraction information sets SEI message encoder parameters}{tab:sei-mcts-extract}
\Option{SEIMctsExtractInfoSet} &
\Default{false} &
When true (non-zero), generates example motion-constrained tile sets extraction information sets SEI message. with the following settings:
\begin{itemize}
\item SliceMode will be set to 0 and SliceArgument will be set to 1 (Enforcing one slice per tile).
\item Extraction Info will be generated applying to each individual MCTS in the bitstream.
\end{itemize}
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{SEI manifest SEI message encoder parameters}{tab:sei-sei-manifest}
\Option{SEISEIManifestEnabled} &
\Default{false} &
Enables (true) or disables (false) the SEI manifest SEI message.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{SEI prefix indication SEI message encoder parameters}{tab:sei-sei-prefix-indication}
\Option{SEISEIPrefixIndicationEnabled} &
\Default{false} &
Enables (true) or disables (false) the SEI prefix indication SEI message.
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Shutter interval info SEI message encoder parameters}{tab:sei-sii}
\Option{SEIShutterIntervalEnabled} &
\Default{false} &
Enables or disables the insertion of the shutter interval info SEI message.
\\
\Option{SEISiiNumUnitsInShutterInterval} &
\Default{1080000} &
Specifies the number of time units of a clock operating at the frequency sii_time_scale Hz that corresponds to one increment of an shutter clock tick counter.
\\
\Option{SEISiiTimeScale} &
\Default{27000000} &
Specifies the number of time units that pass in one second.
\\
\Option{SEISiiMaxSubLayersMinus1} &
\Default{0} &
The value plus 1 specifies the maximum number of temporal sub-layers that may be present in each CVS referring to the SPS. The value shall be in the range of 0 to 6.
\\
\Option{SEISiiFixedShutterIntervalWithinCVSFlag} &
\Default{true} &
Specifies if shutter interval info is the same for all temporal sub-layers in the CVS.
\\
\Option{SEIShutterIntervalPreFilename (-sii)} &
%\ShortOption{-sii} &
\Default{\NotSet} &
Specifies the file name of pre-processed video with shutter interval info SEI message. If empty, not output video.
\\
\end{OptionTableNoShorthand}
%\Option{SEITimeCode} &
%\Default{false} &
%When true, generate time code SEI messages.
%\\
%%
%%
%%
\subsection{Hardcoded encoder parameters}
\begin{MacroTable}{CommonDef.h constants}
ADAPT_SR_SCALE &
1 &
Defines a scaling factor used to derive the motion search range is
adaptive (see ASR configuration parameter). Default value is 1.
\\
MAX_GOP &
64 &
maximum size of value of hierarchical GOP.
\\
MAX_NUM_REF &
4 &
maximum number of multiple reference frames
\\
MAX_NUM_REF_LC &
8 &
maximum number of combined reference frames
\\
AMVP_MAX_NUM_CANDS &
2 &
maximum number of final candidates
\\
AMVP_MAX_NUM_CANDS_MEM &
3 &
\\
MRG_MAX_NUM_CANDS &
5 &
\\
DYN_REF_FREE &
off &
dynamic free of reference memories
\\
MAX_TLAYER &
8 &
maximum number of temporal layers
\\
ADAPT_SR_SCALE &
on &
division factor for adaptive search range
\\
EARLY_SKIP_THRES &
1.5 &
early skip if RD < EARLY_SKIP_THRES*avg[BestSkipRD]
\\
MAX_NUM_REF_PICS &
16 &
\\
MAX_CHROMA_FORMAT_IDC &
3 &
\\
\end{MacroTable}
\subsubsection*{TypeDef.h}
Numerous constants that guard individual adoptions are defined within
\url{source/Lib/TLibCommon/TypeDef.h}.
%%
%%
%%
\clearpage
\section{Using the decoder}
\subsection{General}
\begin{minted}{bash}
TAppDecoder -b str.bin -o dec.yuv [options]
\end{minted}
\begin{OptionTableNoShorthand}{Decoder options}{tab:decoder-options}
\Option{(--help)} &
%\ShortOption{\None} &
\Default{\None} &
Prints usage information.
\\
\Option{BitStreamFile (-b)} &
%\ShortOption{-b} &
\Default{\NotSet} &
Defines the input bit stream file name.
\\
\Option{ReconFile (-o)} &
%\ShortOption{-o} &
\Default{\NotSet} &
Defines reconstructed YUV file name. If empty, no file is generated.
\\
\Option{SkipFrames (-s)} &
%\ShortOption{-s} &
\Default{0} &
Defines the number of pictures in decoding order to skip.
\\
\Option{MaxTemporalLayer (-t)} &
%\ShortOption{-t} &
\Default{-1} &
Defines the maximum temporal layer to be decoded. If -1, then all layers are decoded.
\\
\Option{TarDecLayerIdSetFile (-l)} &
%\ShortOption{-t} &
\Default{\NotSet} &
Specifies the targetDecLayerIdSet file name. The file would contain white-space separated LayerId values of the layers that are to be decoded.
Omitting the parameter, or using a value of -1 in the file decodes all layers.
\\
\Option{OutputBitDepth (-d)} &
%\ShortOption{-d} &
\Default{0 \\ (Native)} &
Specifies the luma bit-depth of the reconstructed YUV file (the value 0 indicates
that the native bit-depth is used)
\\
\Option{OutputBitDepthC} &
%\ShortOption{\None} &
\Default{0 \\ (Native)} &
Defines the chroma bit-depth of the reconstructed YUV file (the value 0 indicates
that the native bit-depth is used)
\\
\Option{SEIDecodedPictureHash} &
%\ShortOption{\None} &
\Default{1} &
Enable or disable verification of any Picture hash SEI messages. When
this parameter is set to 0, the feature is disabled and all messages are
ignored. When set to 1 (default), the feature is enabled and the decoder
has the following behaviour:
\begin{itemize}
\item
If Picture hash SEI messages are included in the bit stream, the same type
of hash is calculated for each decoded picture and written to the
log together with an indication whether the calculted value matches
the value in the SEI message.
Decoding will continue even if there is a mismatch.
\item
After decoding is complete, if any MD5sum comparison failed, a warning
is printed and the decoder exits with the status EXIT_FAILURE
\item
The per-picture MD5 log message has the following formats:
[MD5:d41d8cd98f00b204e9800998ecf8427e,(OK)],
[MD5:d41d8cd98f00b204e9800998ecf8427e,(unk)],
[MD5:d41d8cd98f00b204e9800998ecf8427e,(***ERROR***)] [rxMD5:b9e1...]
where, "(unk)" implies that no MD5 was signalled for this picture,
"(OK)" implies that the decoder agrees with the signalled MD5,
"(***ERROR***)" implies that the decoder disagrees with the signalled
MD5. "[rxMD5:...]" is the signalled MD5 if different.
\end{itemize}
\\
\Option{OutputDecodedSEIMessagesFilename} &
%\ShortOption{\None} &
\Default{\NotSet} &
When a non-empty file name is specified, information regarding any decoded SEI messages will be output to the indicated file. If the file name is '-', then stdout is used instead.
\\
\Option{SEIColourRemappingInfoFilename} &
%\ShortOption{\None} &
\Default{\NotSet} &
Specifies that the colour remapping SEI message should be applied to the output video, with the output written to this file.
If no value is specified, the SEI message is ignored and no mapping is applied.
\\
\Option{RespectDefDispWindow (-w)} &
%\ShortOption{-w} &
\Default{0} &
Video region to be output by the decoder.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Output content inside the conformance window. \\
1 & Output content inside the default window. \\
\end{tabular}
\\
\Option{OutputColourSpaceConvert} &
\Default{\NotSet} &
Specifies the colour space conversion to apply to 444 video. Permitted values are:
\par
\begin{tabular}{lp{0.45\textwidth}}
UNCHANGED & No colour space conversion is applied \\
YCrCbToYCbCr & Swap the second and third components \\
GBRtoRGB & Reorder the three components \\
\end{tabular}
If no value is specified, no colour space conversion is applied. The list may eventually also include RGB to YCbCr or YCgCo conversions.\\
\\
\Option{SEINoDisplay} &
\Default{false} &
When true, do not output frames for which there is an SEI NoDisplay message.
\\
\Option{ClipOutputVideoToRec709Range} &
%\ShortOption{\None} &
\Default{0} &
If 1 then clip output video to the Rec. 709 Range on saving when OutputBitDepth is less than InternalBitDepth.
\\
\Option{TMCTSCheck} &
%\ShortOption{\None} &
\Default{0} &
Enables checking of temporal motion constraints (Merge/TMVP, motion vectors) at tile boundaries. Checks are enabled, if
\begin{itemize}
\item a temporal motion constraint SEI is present in the bitstream
\item the SEI message contains mc_all_tiles_exact_sample_value_match_flag and each_tile_one_tile_set_flag equal to 1
\item TMCTSCheck is equal to 1
\end{itemize}
If violations are found, an error message is printed to stderr.
\\
\end{OptionTableNoShorthand}
\subsection{Using the decoder analyser}
If the decoder is compiled with the macro RExt__DECODER_DEBUG_BIT_STATISTICS defined as 1 (either externally, or by editing TypeDef.h), the decoder will gather fractional bit counts associated with the different syntax elements, producing a table of the number of bits per syntax element, and where appropriate, according to block size and colour component/channel.
The Linux makefile will compile both the analyser and standard version when the `all' or `everything' target is used (where the latter will also build high-bit-depth executables).
%%
%%
%%
\clearpage
\section{Using additional tools}
\subsection{MCTS extractor application}
\subsubsection{General}
\begin{minted}{bash}
TAppMCTSExtractor -i str_in.bin -b str_in.bin [options]
\end{minted}
\begin{OptionTableNoShorthand}{MCTS Extractor options}{tab:mcts-extractor-options}
\Option{(--help)} &
%\ShortOption{\None} &
\Default{\None} &
Prints usage information.
\\
\Option{InputBitstreamFile (-i)} &
%\ShortOption{-i} &
\Default{\NotSet} &
Defines the input bitstream file name.
\\
\Option{OutputBitstreamFile (-b)} &
%\ShortOption{-b} &
\Default{\NotSet} &
Defines the output sub-bitstream file name.
\\
\Option{TargetMCTSIdx (-d)} &
%\ShortOption{-d} &
\Default{0} &
Target MCTS index to be extracted from input bitstream to output sub-bitstream.
\\
\end{OptionTableNoShorthand}
\subsubsection{Usage example}
The MCTS extractor application allows extraction of MCTS sub-bitstreams from bitstreams containing the Temporal motion-constrained tile sets SEI message syntax and the Motion-constrained tile sets extraction information sets SEI message. In order to generate such a bitstream with TAppEncoder, the following parameters need to be set.
\begin{verbatim}
--SEITempMotionConstrainedTileSets=1
--SEITMCTSTileConstraint=1
--SEITMCTSExtractionInfo=1
\end{verbatim}
\end{document}
|