File: GuessLambdaModifiers.cpp

package info (click to toggle)
hm 18.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,544 kB
  • sloc: cpp: 71,684; python: 4,382; sh: 471; makefile: 186; ansic: 16
file content (484 lines) | stat: -rw-r--r-- 15,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
 * Copyright (c) 2010-2022, ITU/ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "GuessLambdaModifiers.h"
#include <limits>
#include <cassert>
#include <cmath>

namespace
{
  /// Formatted input for a bitrate vector
  /// \param left The input stream that contains the bitrate vector
  /// \param right The vector to be written to
  /// \pre right must be empty
  void parseBitrateVector( std::istream& left, std::vector< double >& right )
  {
    assert( right.empty( ) );

    for( ; ; )
    {
      assert( left.good( ) );

      double bitrate;
      left >> bitrate;
      if( left.fail( ) )
      {
        break;
      }
      if( bitrate <= ( double )0.0 )
      {
        left.setstate( std::istream::failbit );
      }
      else
      {
        right.push_back( bitrate );
      }
      if( !left.good( ) )
      {
        break;
      }

      if( left.peek( ) == ' ' )
      {
        left.ignore( );
      }
      else
      {
        break;
      }
    }
  }

  /// Makes a next guess for a single Lambda-modifier based on only one previous guess
  /// \param initialAdjustmentParameter The proportionality to use between the target bitrate and the previous guess
  /// \param target The target bitrate value that this Lambda-modifier is trying to reach
  /// \param previousPoint The previous guess
  /// \return The Lambda-modifier guess
  /// \pre The given point must contain only positive non-zero values
  double incrementLambdaModifier(
      double initialAdjustmentParameter,
      double targetBitrate,
      const Point& previousPoint )
  {
    assert( ( double )0.0 < previousPoint.lambdaModifier );
    assert( ( double )0.0 < previousPoint.bitrate );

    double extrapolated( previousPoint.lambdaModifier * targetBitrate / previousPoint.bitrate );
    return previousPoint.lambdaModifier + initialAdjustmentParameter * ( extrapolated - previousPoint.lambdaModifier );
  }
}

double polateLambdaModifier( double targetBitrate, const Point& point1, const Point& point2 )
{
  assert( 0.0 < point1.lambdaModifier );
  assert( 0.0 < point2.lambdaModifier );
  assert( 0.0 < point1.bitrate );
  assert( 0.0 < point2.bitrate );
  assert( point1.lambdaModifier != point2.lambdaModifier );
  assert( point1.bitrate != point2.bitrate );

  // Calculate and return the result
  double denominator( point1.bitrate - point2.bitrate );
  double result( point1.lambdaModifier
      + ( point1.lambdaModifier - point2.lambdaModifier ) / denominator * ( targetBitrate - point1.bitrate ) );
  return result;
}

double guessLambdaModifier(
    double initialAdjustmentParameter,
    double targetBitrate,
    const std::list< Point >& pointList,
    double interDampeningFactor )
{
  assert( ( double )0.0 < interDampeningFactor );
  assert( interDampeningFactor <= ( double )1.0 );
  assert( !pointList.empty( ) );

  double preliminaryResult;

  if( 1 == pointList.size( ) )  // If there is only one prevous point, then we cannot interpolate, so we call incrementLambdaModifier
  {
    preliminaryResult = incrementLambdaModifier( initialAdjustmentParameter, targetBitrate, pointList.back( ) );
  }
  else  // If there are at least two previous points, then we may be able to interpolate
  {
    std::list< Point >::const_reverse_iterator i( pointList.rbegin( ) );
    Point point1 = *i;
    ++i;
    Point point2 = *i;

    // If the slope is either horizontal or vertical, we cannot interpolate
    if( point1.lambdaModifier == point2.lambdaModifier || point1.bitrate == point2.bitrate )
    {
      preliminaryResult = incrementLambdaModifier( initialAdjustmentParameter, targetBitrate, pointList.back( ) );
    }
    else  // If the slope is not horizontal and not vertical, we can interpolate
    {
      preliminaryResult = polateLambdaModifier( targetBitrate, point1, point2 );
    }
  }

  double previousResult( pointList.back( ).lambdaModifier );

  // Apply "intra dampening"
  {
    double intermediate( std::log( ( double )1.0 + std::abs( preliminaryResult - previousResult ) / previousResult ) );
    assert( ( double )0.0 <= intermediate );
    if( ( preliminaryResult - previousResult ) < 0.0 )
    {
      preliminaryResult = previousResult * ( ( double )1.0 - intermediate );
    }
    else
    {
      preliminaryResult = previousResult * ( ( double )1.0 + intermediate );
    }
  }

  // Apply "inter dampening factor".  If necessary, reduce the factor until a positive result is acheived.
  double result;
  do
  {
    result = previousResult + interDampeningFactor * ( preliminaryResult - previousResult );
    interDampeningFactor /= ( double )2.0;
  } while( result <= ( double )0.0 );
  return result;
}

namespace
{
  /// Extracts a single point at the given index from a full meta-log entry
  Point pointFromFullMetaLogEntry( unsigned char index, const MetaLogEntry< std::vector< double > >& fullEntry )
  {
    Point result;
    result.lambdaModifier = fullEntry.lambdaModifiers[ index ];
    result.bitrate = fullEntry.bitrateVector[ index ];
    return result;
  }

  /// Calculates the inter dampening factor based
  /// \param parameter The inter dampening parameter which determines how severely the inter dampening factor is affected by Lambda-modifier changes at previous temporal layers
  /// \param cumulativeDelta The sum of the percentage changes of the Lambda-modifiers at the previous temporal layers
  /// \return The calculated inter dampening factor
  /// \pre cumulativeDelta must be non-negative
  /// \pre parameter must be non-negative
  double interDampeningFactor( double parameter, double cumulativeDelta )
  {
    assert( 0.0 <= cumulativeDelta );
    assert( 0.0 <= parameter );
    return ( double )1.0 / ( parameter * cumulativeDelta + ( double )1.0 );
  }
}

std::vector< double > guessLambdaModifiers(
    double initialAdjustmentParameter,
    const std::vector< double > &targetBitrateVector,
    const std::list< MetaLogEntry< std::vector< double > > >& metaLogEntryList )
{
  assert( !targetBitrateVector.empty( ) );
  assert( !metaLogEntryList.empty( ) );

  double cumulativeDelta( 0.0 );
  std::vector< double > resultVector;
  for( unsigned char i( 0 ); i < targetBitrateVector.size( ); ++i )
  {
    // Populate pointList with up to two of the previous points
    std::list< Point > pointList;
    std::list< MetaLogEntry< std::vector< double > > >::const_reverse_iterator j( metaLogEntryList.rbegin( ) );
    pointList.push_front( pointFromFullMetaLogEntry( i, *j ) );
    ++j;
    if( j != metaLogEntryList.rend( ) )
    {
      pointList.push_front( pointFromFullMetaLogEntry( i, *j ) );
    }

    // Calculate the new Lambda-modifier guess and add it to the result vector
    const double newLambdaModifier( guessLambdaModifier(
        initialAdjustmentParameter,
        targetBitrateVector[ i ],  // target bitrate
        pointList,
        interDampeningFactor( 50.0, cumulativeDelta ) ) );
    resultVector.push_back( newLambdaModifier );

    // Increment the cumulativeDelta
    const double oldLambdaModifier( pointList.back( ).lambdaModifier );
    cumulativeDelta += std::abs( newLambdaModifier - oldLambdaModifier ) / oldLambdaModifier;
  }

  return resultVector;
}

namespace
{
  /// Ignores all of the the characters up to and including a given character
  /// \param i The active input stream
  /// \param character The character to ignore up to
  /// \throw MetaLogParseException if the stream goes bad before character is encountered or just after character is encountered
  void ignoreUpTo( std::istream& i, char character )
  {
    while( i.good( ) && character != i.get( ) )
      ;
    if( !i.good( ) )
    {
      throw MetaLogParseException( );
    }
  }

  /// Parses a Lambda-modifier map
  /// \param right The map to write the output to
  void parseLambdaModifierMap( std::istream& left, std::map< unsigned char, double >& right )
  {
    for( ; ; )
    {
      assert( left.good( ) );

      // Ignore the "-LM"
      if( '-' != left.get( ) )
      {
        left.setstate( std::istream::failbit );
      }
      if( !left.good( ) )
      {
        break;
      }
      if( 'L' != left.get( ) )
      {
        left.setstate( std::istream::failbit );
      }
      if( !left.good( ) )
      {
        break;
      }
      if( 'M' != left.get( ) )
      {
        left.setstate( std::istream::failbit );
      }
      if( !left.good( ) )
      {
        break;
      }

      // Parse the index
      long indexLong;
      left >> indexLong;
      if( !left.good( ) )
      {
        break;
      }
      if( indexLong < std::numeric_limits< unsigned char >::min( ) )
      {
        left.setstate( std::istream::failbit );
      }
      if( std::numeric_limits< unsigned char >::max( ) < indexLong )
      {
        left.setstate( std::istream::failbit );
      }
      if( !left.good( ) )
      {
        break;
      }
      unsigned char index( ( unsigned char )indexLong );

      if( ' ' != left.get( ) )
      {
        left.setstate( std::istream::failbit );
      }
      if( !left.good( ) )
      {
        break;
      }

      // Parse the Lambda-modifier
      double lambdaModifier;
      left >> lambdaModifier;
      if( lambdaModifier <= ( double )0.0 || ( !right.empty( ) && ( right.count( index ) != 0 || index <= right.rbegin( )->first ) ) )
      {
        left.setstate( std::istream::failbit );
      }
      else
      {
        right[ index ] = lambdaModifier;
      }
      if( !left.good( ) )
      {
        break;
      }

      // If we peek and see a space, then there should be more Lambda-modifiers to parse.  Otherwise, we are finished.
      if( left.peek( ) == ' ' )
      {
        left.ignore( );
      }
      else
      {
        break;
      }
    }
  }

  /// Extracts the indexes from the given maps
  /// \return The set of indexes
  std::set< unsigned char > indexSetFromMap( const std::map< unsigned char, double >& in )
  {
    std::set< unsigned char > result;
    for( typename std::map< unsigned char, double >::const_iterator i( in.begin( ) ); i != in.end( ); ++i )
    {
      result.insert( i->first );
    }
    return result;
  }
}

void guessLambdaModifiers(
    std::ostream& o,
    std::istream& initialAdjustmentParameterIstream,
    std::istream& targetsIstream,
    std::istream& metaLogIstream )
{
  // Parse the initialAdjustmentParameter
  double initialAdjustmentParameter;
  initialAdjustmentParameterIstream >> initialAdjustmentParameter;
  if( initialAdjustmentParameterIstream.fail( ) || initialAdjustmentParameterIstream.good( ) )
  {
    throw InitialAdjustmentParameterParseException( );
  }

  // Parse the targets
  std::vector< double > targetVector;
  parseBitrateVector( targetsIstream, targetVector );
  if( targetVector.empty( ) || targetsIstream.fail( ) || targetsIstream.good( ) )
  {
    throw TargetsParseException( );
  }

  // Parse the metalog
  std::list< MetaLogEntry< std::map< unsigned char, double > > > metaLogEntryList;
  do
  {
    // Parse the Lambda-modifiers
    MetaLogEntry< std::map< unsigned char, double > > entry;
    parseLambdaModifierMap( metaLogIstream, entry.lambdaModifiers );
    if( !metaLogIstream.good( ) )
    {
      throw MetaLogParseException( );
    }

    // Skip the ';'
    if( ';' != metaLogIstream.get( ) )
    {
      throw MetaLogParseException( );
    }
    if( !metaLogIstream.good( ) )
    {
      throw MetaLogParseException( );
    }

    // Parse the bitrates
    parseBitrateVector( metaLogIstream, entry.bitrateVector );
    if( metaLogIstream.fail( ) )
    {
      throw MetaLogParseException( );
    }
    metaLogEntryList.push_back( entry );

    if( !metaLogIstream.good( ) )
    {
      break;
    }
    if( metaLogIstream.get( ) != '\n' )
    {
      throw MetaLogParseException( );
    }
    metaLogIstream.peek( );
  } while( metaLogIstream.good( ) );
  if( metaLogEntryList.empty( ) )
  {
    throw MetaLogParseException( );  // The meta-log should not be empty
  }

  // Initialize firstIndexVector and check that the sizes and indexes match
  std::set< unsigned char > firstIndexSet( indexSetFromMap( metaLogEntryList.front( ).lambdaModifiers ) );
  if( firstIndexSet.size( ) != targetVector.size( ) )
  {
    throw MismatchedIndexesException( );
  }
  for( std::list< MetaLogEntry< std::map< unsigned char, double > > >::const_iterator i( metaLogEntryList.begin( ) );
      i != metaLogEntryList.end( );
      ++i )
  {
    if( indexSetFromMap( i->lambdaModifiers ) != firstIndexSet )
    {
      throw MismatchedIndexesException( );
    }
    if( i->bitrateVector.size( ) != targetVector.size( ) )
    {
      throw MismatchedIndexesException( );
    }
  }

  // Initialize simplifiedMetaLogEntryList
  std::list< MetaLogEntry< std::vector< double > > > simplifiedMetaLogEntryList;
  for( std::list< MetaLogEntry< std::map< unsigned char, double > > >::const_iterator i( metaLogEntryList.begin( ) );
      i != metaLogEntryList.end( );
      ++i )
  {
    simplifiedMetaLogEntryList.push_back( MetaLogEntry< std::vector< double > >( ) );
    for( std::map< unsigned char, double >::const_iterator j( i->lambdaModifiers.begin( ) ); j != i->lambdaModifiers.end( ); ++j )
    {
      simplifiedMetaLogEntryList.back( ).lambdaModifiers.push_back( j->second );
    }
    simplifiedMetaLogEntryList.back( ).bitrateVector = i->bitrateVector;
  }

  // Run the calculations
  std::vector< double > resultVector( guessLambdaModifiers( initialAdjustmentParameter, targetVector, simplifiedMetaLogEntryList ) );

  // Output the results
  std::set< unsigned char >::const_iterator indexIter( firstIndexSet.begin( ) );
  std::vector< double >::const_iterator resultIter( resultVector.begin( ) );
  do
  {
    if( indexIter != firstIndexSet.begin( ) )
    {
      o << " ";
    }
    o << "-LM" << ( long )( *indexIter ) << " ";
    o.setf( std::ostream::fixed, std::ostream::floatfield );
    o.precision( 7 );
    o << ( *resultIter );

    ++indexIter;
    ++resultIter;
  } while( indexIter != firstIndexSet.end( ) );
  assert( resultIter == resultVector.end( ) );  // The index set and the result vector should be the same size
}