## File: binconf.Rd

package info (click to toggle)
hmisc 4.2-0-1
 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 \name{binconf} \alias{binconf} \title{ Confidence Intervals for Binomial Probabilities } \description{ Produces 1-alpha confidence intervals for binomial probabilities. } \usage{ binconf(x, n, alpha=0.05, method=c("wilson","exact","asymptotic","all"), include.x=FALSE, include.n=FALSE, return.df=FALSE) } \arguments{ \item{x}{ vector containing the number of "successes" for binomial variates } \item{n}{ vector containing the numbers of corresponding observations } \item{alpha}{ probability of a type I error, so confidence coefficient = 1-alpha } \item{method}{ character string specifing which method to use. The "all" method only works when x and n are length 1. The "exact" method uses the F distribution to compute exact (based on the binomial cdf) intervals; the "wilson" interval is score-test-based; and the "asymptotic" is the text-book, asymptotic normal interval. Following Agresti and Coull, the Wilson interval is to be preferred and so is the default. } \item{include.x}{ logical flag to indicate whether \code{x} should be included in the returned matrix or data frame } \item{include.n}{ logical flag to indicate whether \code{n} should be included in the returned matrix or data frame } \item{return.df}{ logical flag to indicate that a data frame rather than a matrix be returned }} \value{ a matrix or data.frame containing the computed intervals and, optionally, \code{x} and \code{n}. } \author{ Rollin Brant, Modified by Frank Harrell and \cr Brad Biggerstaff \cr Centers for Disease Control and Prevention \cr National Center for Infectious Diseases \cr Division of Vector-Borne Infectious Diseases \cr P.O. Box 2087, Fort Collins, CO, 80522-2087, USA \cr \email{bkb5@cdc.gov} } \references{ A. Agresti and B.A. Coull, Approximate is better than "exact" for interval estimation of binomial proportions, \emph{American Statistician,} \bold{52}:119--126, 1998. R.G. Newcombe, Logit confidence intervals and the inverse sinh transformation, \emph{American Statistician,} \bold{55}:200--202, 2001. L.D. Brown, T.T. Cai and A. DasGupta, Interval estimation for a binomial proportion (with discussion), \emph{Statistical Science,} \bold{16}:101--133, 2001. } \examples{ binconf(0:10,10,include.x=TRUE,include.n=TRUE) binconf(46,50,method="all") } \keyword{category} \keyword{htest} % Converted by Sd2Rd version 1.21.