1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
spss.get <- function(file, lowernames=FALSE,
datevars=NULL,
use.value.labels=TRUE,
to.data.frame=TRUE,
max.value.labels=Inf,
force.single=TRUE, allow=NULL, charfactor=FALSE,
reencode=NA) {
w <- read.spss(file, use.value.labels=use.value.labels,
to.data.frame=to.data.frame,
max.value.labels=max.value.labels,
reencode=reencode)
a <- attributes(w)
vl <- a$variable.labels
nam <- a$names
nam <- makeNames(a$names, unique=TRUE, allow=allow)
if(lowernames) nam <- casefold(nam)
names(w) <- nam
lnam <- names(vl)
if(length(vl))
for(i in 1:length(vl)) {
n <- lnam[i]
lab <- vl[i]
if(lab != '' && lab != n) label(w[[i]]) <- lab
}
attr(w, 'variable.labels') <- NULL
if(force.single || length(datevars) || charfactor)
for(v in nam) {
x <- w[[v]]
changed <- FALSE
if(v %in% datevars) {
x <- importConvertDateTime(x, 'date', 'spss')
changed <- TRUE
} else if(all(is.na(x))) {
storage.mode(x) <- 'integer'
changed <- TRUE
} else if(!(is.factor(x) || is.character(x))) {
if(all(is.na(x))) {
storage.mode(x) <- 'integer'
changed <- TRUE
} else if(max(abs(x),na.rm=TRUE) <= (2^31-1) &&
all(floor(x) == x, na.rm=TRUE)) {
storage.mode(x) <- 'integer'
changed <- TRUE
}
} else if(charfactor && is.character(x)) {
if(length(unique(x)) < .5*length(x))
{
x <- sub(' +$', '', x) # remove trailing blanks
x <- factor(x, exclude='')
changed <- TRUE
}
}
if(changed) w[[v]] <- x
}
w
}
csv.get <- function(file, lowernames=FALSE, datevars=NULL, datetimevars=NULL,
dateformat='%F', fixdates=c('none','year'),
comment.char = "", autodate=TRUE, allow=NULL,
charfactor=FALSE,
sep=',', skip=0, vnames=NULL, labels=NULL, text=NULL, ...){
fixdates <- match.arg(fixdates)
if(length(text) && ! missing(file)) stop('may not specify both file and text')
scn <- function(skip)
if(length(text)) scan(text=text, what=character(0), skip=skip,
nlines=1, sep=sep, quiet=TRUE)
else
scan(file, what=character(0), skip=skip, nlines=1, sep=sep, quiet=TRUE)
rcsv <- function(...)
if(length(text)) read.csv(text=text, check.names=FALSE,
comment.char=comment.char, sep=sep, skip=skip, ...)
else
read.csv(file, check.names=FALSE, comment.char=comment.char,
sep=sep, skip=skip,, ...)
if(length(vnames)) vnames <- scn(skip=vnames - 1)
if(length(labels)) labels <- scn(skip=labels - 1)
w <- if(length(vnames))
rcsv(header=FALSE, col.names=vnames)
else
rcsv()
n <- nam <- names(w)
m <- makeNames(n, unique=TRUE, allow=allow)
if(length(labels)) n <- labels
if(lowernames)
m <- casefold(m)
changed <- any(m != nam)
if(changed)
names(w) <- m
cleanup.import(w,
labels=if(length(labels))labels else if(changed)n else NULL,
datevars=datevars, datetimevars=datetimevars,
dateformat=dateformat, autodate=autodate,
fixdates=fixdates, charfactor=charfactor)
}
stata.get <- function(file, lowernames=FALSE,
convert.dates=TRUE, convert.factors=TRUE,
missing.type=FALSE, convert.underscore=TRUE,
warn.missing.labels=TRUE, force.single=TRUE,
allow=NULL, charfactor=FALSE, ...) {
## depends on the read.dta function from foreign
## Function to convert the elements of w into more compact
## data storage types.
convertObjs <- function(x, charfactor, force.single) {
## Date is not nessarely a integer but it ignores any
## fraction it might have
if((inherits(x, 'Date') || is.factor(x))
&& storage.mode(x) != 'integer') {
storage.mode(x) <- 'integer'
} else if(charfactor && is.character(x)) {
## If x is a character and arg charfactor is TRUE then
## convert x to a factor if the number of unique values of x is less
## than half the total number of values in x
if(length(unique(x)) < length(x) / 2)
{
x <- sub(' +$', '', x) # remove trailing blanks
x <- factor(x, exclude='')
}
} else if(is.numeric(x)) {
if(all(is.na(x))) {
## if all values are NA then convert to integer because
## it is 4 bytes instead of 8
storage.mode(x) <- 'integer'
}
else if(force.single && max(abs(x), na.rm=TRUE) <= (2^31-1) &&
all(floor(x) == x, na.rm=TRUE)) {
## convert x to integer if arg force.single is TRUE and the maximum
## absolute value of x is less then maximum value that an integer
## can store.
storage.mode(x) <- 'integer'
}
}
return(x)
}
## A function to create additional attributes to add to the elements of
## w
create.attribs <- function(var.label, val.label, format, label.table) {
attribs <- list()
if(format != '') {
attribs$format <- format
}
## Translate var labels into Hmisc var lables
if(var.label != '') {
attribs$label <- var.label
}
## The label.table values are found by looking a the checking to see
## if there is a non-empty value in val.labels. That value corrasponds
## a named element in label.table.
## Check to see if val.label is not empty and it is one of the
## names in label.table and that its value is not NULL
if(val.label != '' && val.label %in% names(label.table) &&
!is.null(label.table[[val.label]])) {
attribs$value.label.table <- label.table[[val.label]]
}
return(attribs)
}
## Read the stata file into w
w <- read.dta(file, convert.dates=convert.dates,
convert.factors=convert.factors,
missing.type=missing.type,
convert.underscore=convert.underscore,
warn.missing.labels=warn.missing.labels, ...)
## extract attributes from w
a <- attributes(w)
num.vars <- length(w)
## Do translate attributes names into R names
nam <- makeNames(a$names, unique=TRUE, allow=allow)
if(lowernames) nam <- casefold(nam, upper=FALSE)
a$names <- nam
## If var.labels is empty then create a empty char vector.
if(!length(a$var.labels)) {
a$var.labels <- character(num.vars)
}
## If val.labels is empty then create an empty char vector.
if(length(a$val.labels)) {
val.labels <- a$val.labels
} else {
val.labels <- character(num.vars)
}
## create list of attributes for the elements in w. An mapply is faster
## then a for loop in large data sets.
attribs <- mapply(FUN=create.attribs, var.label=a$var.labels,
val.label=val.labels, format=a$formats,
MoreArgs=list(label.table=a$label.table),
SIMPLIFY=FALSE)
## clear var.labels attribute
attr(w, 'var.labels') <- NULL
## Convert the elements of w as needed
w <- lapply(w, FUN=convertObjs, force.single=force.single,
charfactor=charfactor)
## strip off the naming info for w
w <- unname(w)
## add the new attributes to the current attributes of
## the elements of w
for(i in seq(along.with=w)) {
## Set the label for the element
if('label' %in% names(attribs[[i]])) {
label(w[[i]]) <- attribs[[i]]$label
## clear the label value from attribs[[i]]
attribs[[i]]$label <- NULL
}
## combine the new attribs with the current attributes
consolidate(attributes(w[[i]])) <- attribs[[i]]
}
## add the names, rownames, class variables, and some extra stata
## info back to w
stata.info <- a[c('datalabel','version','time.stamp','val.labels','label.table')]
attributes(w) <- c(a[c('names','row.names','class')],
stata.info=list(stata.info))
return(w)
}
|