1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
\name{summarize}
\alias{summarize}
\alias{asNumericMatrix}
\alias{matrix2dataFrame}
\title{Summarize Scalars or Matrices by Cross-Classification}
\description{
\code{summarize} is a fast version of \code{summary.formula(formula,
method="cross",overall=FALSE)} for producing stratified summary statistics
and storing them in a data frame for plotting (especially with trellis
\code{xyplot} and \code{dotplot} and Hmisc \code{xYplot}). Unlike
\code{aggregate}, \code{summarize} accepts a matrix as its first
argument and a multi-valued \code{FUN}
argument and \code{summarize} also labels the variables in the new data
frame using their original names. Unlike methods based on
\code{tapply}, \code{summarize} stores the values of the stratification
variables using their original types, e.g., a numeric \code{by} variable
will remain a numeric variable in the collapsed data frame.
\code{summarize} also retains \code{"label"} attributes for variables.
\code{summarize} works especially well with the Hmisc \code{xYplot}
function for displaying multiple summaries of a single variable on each
panel, such as means and upper and lower confidence limits.
\code{asNumericMatrix} converts a data frame into a numeric matrix,
saving attributes to reverse the process by \code{matrix2dataframe}.
It saves attributes that are commonly preserved across row
subsetting (i.e., it does not save \code{dim}, \code{dimnames}, or
\code{names} attributes).
\code{matrix2dataFrame} converts a numeric matrix back into a data
frame if it was created by \code{asNumericMatrix}.
}
\usage{
summarize(X, by, FUN, \dots,
stat.name=deparse(substitute(X)),
type=c('variables','matrix'), subset=TRUE,
keepcolnames=FALSE)
asNumericMatrix(x)
matrix2dataFrame(x, at=attr(x, 'origAttributes'), restoreAll=TRUE)
}
\arguments{
\item{X}{
a vector or matrix capable of being operated on by the
function specified as the \code{FUN} argument
}
\item{by}{
one or more stratification variables. If a single
variable, \code{by} may be a vector, otherwise it should be a list.
Using the Hmisc \code{llist} function instead of \code{list} will result
in individual variable names being accessible to \code{summarize}. For
example, you can specify \code{llist(age.group,sex)} or
\code{llist(Age=age.group,sex)}. The latter gives \code{age.group} a
new temporary name, \code{Age}.
}
\item{FUN}{
a function of a single vector argument, used to create the statistical
summaries for \code{summarize}. \code{FUN} may compute any number of
statistics.
}
\item{...}{extra arguments are passed to \code{FUN}}
\item{stat.name}{
the name to use when creating the main summary variable. By default,
the name of the \code{X} argument is used. Set \code{stat.name} to
\code{NULL} to suppress this name replacement.
}
\item{type}{
Specify \code{type="matrix"} to store the summary variables (if there are
more than one) in a matrix.
}
\item{subset}{
a logical vector or integer vector of subscripts used to specify the
subset of data to use in the analysis. The default is to use all
observations in the data frame.
}
\item{keepcolnames}{by default when \code{type="matrix"}, the first
column of the computed matrix is the name of the first argument to
\code{summarize}. Set \code{keepcolnames=TRUE} to retain the name of
the first column created by \code{FUN}}
\item{x}{
a data frame (for \code{asNumericMatrix}) or a numeric matrix (for
\code{matrix2dataFrame}).
}
\item{at}{List containing attributes of original data frame that survive
subsetting. Defaults to attribute \code{"origAttributes"} of the
object \code{x}, created by the call to \code{asNumericMatrix}}
\item{restoreAll}{
set to \code{FALSE} to only restore attributes \code{label},
\code{units}, and \code{levels} instead of all attributes
}
}
\value{
For \code{summarize}, a data frame containing the \code{by} variables and the
statistical summaries (the first of which is named the same as the \code{X}
variable unless \code{stat.name} is given). If \code{type="matrix"}, the
summaries are stored in a single variable in the data frame, and this
variable is a matrix.
\code{asNumericMatrix} returns a numeric matrix and stores an object
\code{origAttributes} as an attribute of the returned object, with original
attributes of component variables, the \code{storage.mode}.
\code{matrix2dataFrame} returns a data frame.
}
\author{
Frank Harrell
\cr
Department of Biostatistics
\cr
Vanderbilt University
\cr
\email{fh@fharrell.com}
}
\seealso{
\code{\link{label}}, \code{\link{cut2}}, \code{\link{llist}}, \code{\link{by}}
}
\examples{
\dontrun{
s <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,
stat.name='Proportion')
dotplot(Proportion ~ size | bone, data=s7)
}
set.seed(1)
temperature <- rnorm(300, 70, 10)
month <- sample(1:12, 300, TRUE)
year <- sample(2000:2001, 300, TRUE)
g <- function(x)c(Mean=mean(x,na.rm=TRUE),Median=median(x,na.rm=TRUE))
summarize(temperature, month, g)
mApply(temperature, month, g)
mApply(temperature, month, mean, na.rm=TRUE)
w <- summarize(temperature, month, mean, na.rm=TRUE)
library(lattice)
xyplot(temperature ~ month, data=w) # plot mean temperature by month
w <- summarize(temperature, llist(year,month),
quantile, probs=c(.5,.25,.75), na.rm=TRUE, type='matrix')
xYplot(Cbind(temperature[,1],temperature[,-1]) ~ month | year, data=w)
mApply(temperature, llist(year,month),
quantile, probs=c(.5,.25,.75), na.rm=TRUE)
# Compute the median and outer quartiles. The outer quartiles are
# displayed using "error bars"
set.seed(111)
dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)
attach(dfr)
y <- abs(month-6.5) + 2*runif(length(month)) + year-1997
s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)
s
mApply(y, llist(month,year), smedian.hilow, conf.int=.5)
xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,
keys='lines', method='alt')
# Can also do:
s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),
stat.name=c('y','Q1','Q3'))
xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s, keys='lines')
# To display means and bootstrapped nonparametric confidence intervals
# use for example:
s <- summarize(y, llist(month,year), smean.cl.boot)
xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s)
# For each subject use the trapezoidal rule to compute the area under
# the (time,response) curve using the Hmisc trap.rule function
x <- cbind(time=c(1,2,4,7, 1,3,5,10),response=c(1,3,2,4, 1,3,2,4))
subject <- c(rep(1,4),rep(2,4))
trap.rule(x[1:4,1],x[1:4,2])
summarize(x, subject, function(y) trap.rule(y[,1],y[,2]))
\dontrun{
# Another approach would be to properly re-shape the mm array below
# This assumes no missing cells. There are many other approaches.
# mApply will do this well while allowing for missing cells.
m <- tapply(y, list(year,month), quantile, probs=c(.25,.5,.75))
mm <- array(unlist(m), dim=c(3,2,12),
dimnames=list(c('lower','median','upper'),c('1997','1998'),
as.character(1:12)))
# aggregate will help but it only allows you to compute one quantile
# at a time; see also the Hmisc mApply function
dframe <- aggregate(y, list(Year=year,Month=month), quantile, probs=.5)
# Compute expected life length by race assuming an exponential
# distribution - can also use summarize
g <- function(y) { # computations for one race group
futime <- y[,1]; event <- y[,2]
sum(futime)/sum(event) # assume event=1 for death, 0=alive
}
mApply(cbind(followup.time, death), race, g)
# To run mApply on a data frame:
xn <- asNumericMatrix(x)
m <- mApply(xn, race, h)
# Here assume h is a function that returns a matrix similar to x
matrix2dataFrame(m)
# Get stratified weighted means
g <- function(y) wtd.mean(y[,1],y[,2])
summarize(cbind(y, wts), llist(sex,race), g, stat.name='y')
mApply(cbind(y,wts), llist(sex,race), g)
# Compare speed of mApply vs. by for computing
d <- data.frame(sex=sample(c('female','male'),100000,TRUE),
country=sample(letters,100000,TRUE),
y1=runif(100000), y2=runif(100000))
g <- function(x) {
y <- c(median(x[,'y1']-x[,'y2']),
med.sum =median(x[,'y1']+x[,'y2']))
names(y) <- c('med.diff','med.sum')
y
}
system.time(by(d, llist(sex=d$sex,country=d$country), g))
system.time({
x <- asNumericMatrix(d)
a <- subsAttr(d)
m <- mApply(x, llist(sex=d$sex,country=d$country), g)
})
system.time({
x <- asNumericMatrix(d)
summarize(x, llist(sex=d$sex, country=d$country), g)
})
# An example where each subject has one record per diagnosis but sex of
# subject is duplicated for all the rows a subject has. Get the cross-
# classified frequencies of diagnosis (dx) by sex and plot the results
# with a dot plot
count <- rep(1,length(dx))
d <- summarize(count, llist(dx,sex), sum)
Dotplot(dx ~ count | sex, data=d)
}
d <- list(x=1:10, a=factor(rep(c('a','b'), 5)),
b=structure(letters[1:10], label='label for b'),
d=c(rep(TRUE,9), FALSE), f=pi*(1 : 10))
x <- asNumericMatrix(d)
attr(x, 'origAttributes')
matrix2dataFrame(x)
detach('dfr')
# Run summarize on a matrix to get column means
x <- c(1:19,NA)
y <- 101:120
z <- cbind(x, y)
g <- c(rep(1, 10), rep(2, 10))
summarize(z, g, colMeans, na.rm=TRUE, stat.name='x')
# Also works on an all numeric data frame
summarize(as.data.frame(z), g, colMeans, na.rm=TRUE, stat.name='x')
}
\keyword{category}
\keyword{manip}
\keyword{multivariate}
\concept{grouping}
\concept{stratification}
\concept{aggregation}
\concept{cross-classification}
|