1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
## Function like cut but left endpoints are inclusive and labels are of
## the form [lower, upper), except that last interval is [lower,upper].
## F. Harrell 3 Dec 90, modified 7 Mar 92, mod 30May95 (more efficient digits)
## Modified 2Jun95 (preserve label attribute)
## Modified 16Jun95 (categories with 1 unique value -> label=value, not interval)
## Modified 1Jul95 - if specified cuts, mindif would cause improper
## categorization if a cut was close to but not equal an actual value
## Modified 21oct18 - added formatfun
## Added cutGn 2024-12-25
cut2 <- function(x, cuts, m=150, g, levels.mean=FALSE, digits, minmax=TRUE,
oneval=TRUE, onlycuts=FALSE, formatfun = format, ...)
{
if (inherits(formatfun, "formula")) {
if (!requireNamespace("rlang"))
stop("Package 'rlang' must be installed to use formula notation")
formatfun <- getFromNamespace('as_function', 'rlang')(formatfun)
}
method <- 1 ## 20may02
x.unique <- sort(unique(c(x[!is.na(x)],if(!missing(cuts))cuts)))
min.dif <- min(diff(x.unique))/2
min.dif.factor <- 1
## Make formatted values look good
if(missing(digits))
digits <- if(levels.mean) 5 else 3
## add digits to formatfun's arguments if relevant
format.args <-
if(any(c("...","digits") %in% names(formals(args(formatfun)))))
c(digits = digits, list(...))
else list(...)
oldopt <- options('digits')
options(digits=digits)
on.exit(options(oldopt))
xlab <- attr(x, 'label')
if(missing(cuts)) {
nnm <- sum(!is.na(x))
if(missing(g)) g <- max(1,floor(nnm/m))
if(g < 1)
stop('g must be >=1, m must be positive')
options(digits=15)
n <- table(x)
xx <- as.double(names(n))
options(digits=digits)
cum <- cumsum(n)
m <- length(xx)
y <- as.integer(ifelse(is.na(x),NA,1))
labs <- character(g)
cuts <- approx(cum, xx, xout=(1:g)*(nnm/g),
method='constant', rule=2, f=1)$y
cuts[length(cuts)] <- max(xx)
lower <- xx[1]
upper <- 1e45
up <- low <- double(g)
i <- 0
for(j in 1:g) {
cj <- if(method==1 || j==1) cuts[j] else {
if(i==0)
stop('program logic error')
s <- if(is.na(lower)) FALSE else xx >= lower
cum.used <- if(all(s)) 0 else max(cum[!s])
if(j==m) max(xx) else if(sum(s)<2) max(xx) else
approx(cum[s]-cum.used, xx[s], xout=(nnm-cum.used)/(g-j+1),
method='constant', rule=2, f=1)$y
}
if(cj==upper) next
i <- i + 1
upper <- cj
y[x >= (lower-min.dif.factor*min.dif)] <- i
low[i] <- lower
lower <- if(j==g) upper else min(xx[xx > upper])
if(is.na(lower)) lower <- upper
up[i] <- lower
}
low <- low[1:i]
up <- up[1:i]
variation <- logical(i)
for(ii in 1:i) {
r <- range(x[y==ii], na.rm=TRUE)
variation[ii] <- diff(r) > 0
}
if(onlycuts) return(unique(c(low, max(xx))))
flow <- do.call(formatfun,c(list(low), format.args))
fup <- do.call(formatfun,c(list(up), format.args))
bb <- c(rep(')',i-1),']')
labs <- ifelse(low==up | (oneval & !variation), flow,
paste('[',flow,',',fup,bb,sep=''))
ss <- y==0 & !is.na(y)
if(any(ss))
stop(paste('categorization error in cut2. Values of x not appearing in any interval:\n',
paste(format(x[ss],digits=12),collapse=' '),
'\nLower endpoints:',
paste(format(low,digits=12), collapse=' '),
'\nUpper endpoints:',
paste(format(up,digits=12),collapse=' ')))
y <- structure(y, class='factor', levels=labs)
} else {
if(minmax) {
r <- range(x, na.rm=TRUE)
if(r[1]<cuts[1]) cuts <- c(r[1], cuts)
if(r[2]>max(cuts)) cuts <- c(cuts, r[2])
}
l <- length(cuts)
k2 <- cuts-min.dif
k2[l] <- cuts[l]
y <- cut(x, k2)
if(!levels.mean) {
brack <- rep(")",l-1)
brack[l-1] <- "]"
fmt <- do.call(formatfun,c(list(cuts), format.args))
## If any interval has only one unique value, set label for
## that interval to that value and not to an interval
labs <- paste("[",fmt[1:(l-1)],",",fmt[2:l],
brack,sep="")
if(oneval) {
nu <- table(cut(x.unique,k2))
if(length(nu)!=length(levels(y)))
stop('program logic error')
levels(y) <- ifelse(nu==1,c(fmt[1:(l-2)],fmt[l]),labs)
} else
levels(y) <- labs
}
}
if(levels.mean) {
means <- tapply(x, y, function(w)mean(w,na.rm=TRUE))
levels(y) <- do.call(formatfun,c(list(means), format.args))
}
attr(y,'class') <- "factor"
if(length(xlab)) label(y) <- xlab
y
}
cutGn <- function(x, m, what=c('mean', 'factor', 'summary', 'cuts', 'function'),
rcode=FALSE) {
what <- match.arg(what)
notna <- which(! is.na(x))
y <- x[notna]
n <- length(y)
if(n <= m) stop('number of non-NA observations must exceed m')
# Create a group for every m observations in ascending order
io <- order(y)
s <- y[io]
ie <- 0
g <- 0
G <- rep(0L, n)
if(rcode) {
while(TRUE) {
is <- ie + 1
lte <- is + m - 1 # last targeted observation in group
# Just use the insufficient group < m obs.; pool it with previous group
# by not incrementing g
if(lte > n) {
G[is : n] <- g
break
}
# If the mth observation is the nth of the non-NAs, finish with
# the current group as the final group
g <- g + 1
if(lte == n) {
G[is : n] <- g
break
}
# There are observations beyond the last of the m in the current group
# See if the values beyond the mth current group's value are tied
# with the last value in the current group. If so, pool observations
# into the current group up intil the observation that differs from
# the last of the m
lastval <- s[lte]
if(s[lte + 1] == lastval) {
# See how far the tied values go, and consume all of those tied at lastval
k <- rle(as.vector(s)[(lte + 1) : n])$lengths[1]
ie <- lte + k
G[is : ie] <- g
} else {
ie <- lte
G[is : ie] <- g
}
if(ie > n) stop('logic problem')
if(ie == n) break
}
} # end if(rcode)
else {
storage.mode(s) <- 'double'
G <- .Fortran(F_cutgn, s, n, as.integer(m), G=G)$G
}
# Put data in original x order
j <- order(io)
s <- s[j]
G <- G[j]
g <- max(G)
if(what %in% c('mean', 'function')) {
smean <- tapply(s, G, mean)
x[notna] <- smean[G]
if(what == 'mean') return(x)
}
# For each group get min and max original y
ymin <- tapply(s, G, min)
ymax <- tapply(s, G, max)
if(what == 'cuts') return(unique(c(ymin, max(ymax))))
if(what == 'summary') {
count <- tapply(s, G, length)
return(cbind(min=ymin, max=ymax, n=count))
}
# Create factor variable with character string interval labels
# When an interval is a point just use the point
lev <- ifelse(ymin == ymax, format(ymin),
paste0('[', format(ymin), ',', format(ymax), ']'))
if(what == 'factor') return(factor(G, 1 : max(G), lev))
h <- function(x, lower, upper, means, levels, what) {
what <- match.arg(what)
nint <- length(lower)
u <- unique(c(lower, max(upper)))
y <- approx(u, 1 : length(u), xout=x, method='constant')$y
# y values > # intervals are equal to last upper and need -1
y[! is.na(y) & y > nint] <- nint
if(what== 'mean') means[y] else factor(y, 1 : nint, levels)
}
formals(h) <- list(x=numeric(0), lower=unname(ymin),
upper=unname(ymax), means=unname(smean),
levels=unname(lev), what=c('mean', 'factor'))
h
}
|