1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
\name{spower}
\alias{spower}
\alias{print.spower}
\alias{Quantile2}
\alias{print.Quantile2}
\alias{plot.Quantile2}
\alias{logrank}
\alias{Gompertz2}
\alias{Lognorm2}
\alias{Weibull2}
\title{
Simulate Power of 2-Sample Test for Survival under Complex Conditions
}
\description{
Given functions to generate random variables for survival times and
censoring times, \code{spower} simulates the power of a user-given
2-sample test for censored data. By default, the logrank (Cox
2-sample) test is used, and a \code{logrank} function for comparing 2
groups is provided. Optionally a Cox model is fitted for each each
simulated dataset and the log hazard ratios are saved (this requires
the \code{survival} package). A \code{print} method prints various
measures from these. For composing \R functions to generate random
survival times under complex conditions, the \code{Quantile2} function
allows the user to specify the intervention:control hazard ratio as a
function of time, the probability of a control subject actually
receiving the intervention (dropin) as a function of time, and the
probability that an intervention subject receives only the control
agent as a function of time (non-compliance, dropout).
\code{Quantile2} returns a function that generates either control or
intervention uncensored survival times subject to non-constant
treatment effect, dropin, and dropout. There is a \code{plot} method
for plotting the results of \code{Quantile2}, which will aid in
understanding the effects of the two types of non-compliance and
non-constant treatment effects. \code{Quantile2} assumes that the
hazard function for either treatment group is a mixture of the control
and intervention hazard functions, with mixing proportions defined by
the dropin and dropout probabilities. It computes hazards and
survival distributions by numerical differentiation and integration
using a grid of (by default) 7500 equally-spaced time points.
The \code{logrank} function is intended to be used with \code{spower}
but it can be used by itself. It returns the 1 degree of freedom
chi-square statistic, with the associated Pike hazard ratio estimate as an attribute.
The \code{Weibull2} function accepts as input two vectors, one
containing two times and one containing two survival probabilities, and
it solves for the scale and shape parameters of the Weibull distribution
(\eqn{S(t) = e^{-\alpha {t}^{\gamma}}}{S(t) = exp(-\alpha*t^\gamma)})
which will yield
those estimates. It creates an \R function to evaluate survival
probabilities from this Weibull distribution. \code{Weibull2} is
useful in creating functions to pass as the first argument to
\code{Quantile2}.
The \code{Lognorm2} and \code{Gompertz2} functions are similar to
\code{Weibull2} except that they produce survival functions for the
log-normal and Gompertz distributions.
When \code{cox=TRUE} is specified to \code{spower}, the analyst may wish
to extract the two margins of error by using the \code{print} method
for \code{spower} objects (see example below) and take the maximum of
the two.
}
\usage{
spower(rcontrol, rinterv, rcens, nc, ni,
test=logrank, cox=FALSE, nsim=500, alpha=0.05, pr=TRUE)
\method{print}{spower}(x, conf.int=.95, \dots)
Quantile2(scontrol, hratio,
dropin=function(times)0, dropout=function(times)0,
m=7500, tmax, qtmax=.001, mplot=200, pr=TRUE, \dots)
\method{print}{Quantile2}(x, \dots)
\method{plot}{Quantile2}(x,
what=c("survival", "hazard", "both", "drop", "hratio", "all"),
dropsep=FALSE, lty=1:4, col=1, xlim, ylim=NULL,
label.curves=NULL, \dots)
logrank(S, group)
Gompertz2(times, surv)
Lognorm2(times, surv)
Weibull2(times, surv)
}
\arguments{
\item{rcontrol}{
a function of n which returns n random uncensored
failure times for the control group. \code{spower} assumes that
non-compliance (dropin) has been taken into account by this
function.
}
\item{rinterv}{
similar to \code{rcontrol} but for the intervention group
}
\item{rcens}{
a function of n which returns n random censoring times.
It is assumed that both treatment groups have the same censoring
distribution.
}
\item{nc}{
number of subjects in the control group
}
\item{ni}{
number in the intervention group
}
\item{scontrol}{
a function of a time vector which returns the survival probabilities
for the control group at those times assuming that all patients are
compliant.
}
\item{hratio}{
a function of time which specifies the intervention:control hazard
ratio (treatment effect)
}
\item{x}{
an object of class \dQuote{Quantile2} created by \code{Quantile2},
or of class \dQuote{spower} created by \code{spower}
}
\item{conf.int}{
confidence level for determining fold-change margins of error in
estimating the hazard ratio
}
\item{S}{
a \code{Surv} object or other two-column matrix for right-censored
survival times
}
\item{group}{
group indicators have length equal to the number of rows in \code{S}
argument.
}
\item{times}{
a vector of two times
}
\item{surv}{
a vector of two survival probabilities
}
\item{test}{
any function of a \code{Surv} object and a grouping variable which
computes a chi-square for a two-sample censored data test. The
default is \code{logrank}.
}
\item{cox}{
If true \code{TRUE} the two margins of error are available by using
the \code{print} method for \code{spower} objects (see example
below) and taking the maximum of the two.
}
\item{nsim}{
number of simulations to perform (default=500)
}
\item{alpha}{
type I error (default=.05)
}
\item{pr}{
If \code{FALSE} prevents \code{spower} from printing progress notes for
simulations.
If \code{FALSE} prevents \code{Quantile2} from printing \code{tmax}
when it calculates \code{tmax}.
}
\item{dropin}{
a function of time specifying the probability that a control subject
actually is treated with the new intervention at the corresponding
time
}
\item{dropout}{
a function of time specifying the probability of an intervention
subject dropping out to control conditions. As a function of time,
\code{dropout} specifies the probability that a patient is treated
with the control therapy at time t. \code{dropin} and
\code{dropout} form mixing proportions for control and intervention
hazard functions.
}
\item{m}{
number of time points used for approximating functions (default is
7500)
}
\item{tmax}{
maximum time point to use in the grid of \code{m} times. Default is
the time such that \code{scontrol(time)} is \code{qtmax}.
}
\item{qtmax}{
survival probability corresponding to the last time point used for
approximating survival and hazard functions. Default is 0.001. For
\code{qtmax} of the time for which a simulated time is needed which
corresponds to a survival probability of less than \code{qtmax}, the
simulated value will be \code{tmax}.
}
\item{mplot}{
number of points used for approximating functions for use in
plotting (default is 200 equally spaced points)
}
\item{\dots}{
optional arguments passed to the \code{scontrol} function when it's
evaluated by \code{Quantile2}. Unused for \code{print.spower}.
}
\item{what}{
a single character constant (may be abbreviated) specifying which
functions to plot. The default is \samp{"both"} meaning both
survival and hazard functions. Specify \code{what="drop"} to just
plot the dropin and dropout functions, \code{what="hratio"} to plot
the hazard ratio functions, or \samp{"all"} to make 4 separate plots
showing all functions (6 plots if \code{dropsep=TRUE}).
}
\item{dropsep}{
If \code{TRUE} makes \code{plot.Quantile2} separate pure and
contaminated functions onto separate plots
}
\item{lty}{
vector of line types
}
\item{col}{
vector of colors
}
\item{xlim}{
optional x-axis limits
}
\item{ylim}{
optional y-axis limits
}
\item{label.curves}{
optional list which is passed as the \code{opts} argument to
\code{\link{labcurve}}.
}
}
\value{
\code{spower} returns the power estimate (fraction of simulated
chi-squares greater than the alpha-critical value). If
\code{cox=TRUE}, \code{spower} returns an object of class
\dQuote{spower} containing the power and various other quantities.
\code{Quantile2} returns an \R function of class \dQuote{Quantile2}
with attributes that drive the \code{plot} method. The major
attribute is a list containing several lists. Each of these sub-lists
contains a \code{Time} vector along with one of the following:
survival probabilities for either treatment group and with or without
contamination caused by non-compliance, hazard rates in a similar way,
intervention:control hazard ratio function with and without
contamination, and dropin and dropout functions.
\code{logrank} returns a single chi-square statistic and an attribute \code{hr} which is the Pike hazard ratio estimate.
\code{Weibull2}, \code{Lognorm2} and \code{Gompertz2} return an \R
function with three arguments, only the first of which (the vector of
\code{times}) is intended to be specified by the user.
}
\section{Side Effects}{
\code{spower} prints the interation number every 10 iterations if
\code{pr=TRUE}.
}
\author{
Frank Harrell
\cr
Department of Biostatistics
\cr
Vanderbilt University School of Medicine
\cr
\email{fh@fharrell.com}
}
\references{
Lakatos E (1988): Sample sizes based on the log-rank statistic in complex
clinical trials. Biometrics 44:229--241 (Correction 44:923).
Cuzick J, Edwards R, Segnan N (1997): Adjusting for non-compliance and
contamination in randomized clinical trials. Stat in Med 16:1017--1029.
Cook, T (2003): Methods for mid-course corrections in clinical trials
with survival outcomes. Stat in Med 22:3431--3447.
Barthel FMS, Babiker A et al (2006): Evaluation of sample size and power
for multi-arm survival trials allowing for non-uniform accrual,
non-proportional hazards, loss to follow-up and cross-over. Stat in Med
25:2521--2542.
}
\seealso{
\code{\link{cpower}}, \code{\link{ciapower}}, \code{\link{bpower}},
\code{\link[rms]{cph}}, \code{\link[survival]{coxph}},
\code{\link{labcurve}}
}
\examples{
# Simulate a simple 2-arm clinical trial with exponential survival so
# we can compare power simulations of logrank-Cox test with cpower()
# Hazard ratio is constant and patients enter the study uniformly
# with follow-up ranging from 1 to 3 years
# Drop-in probability is constant at .1 and drop-out probability is
# constant at .175. Two-year survival of control patients in absence
# of drop-in is .8 (mortality=.2). Note that hazard rate is -log(.8)/2
# Total sample size (both groups combined) is 1000
# \% mortality reduction by intervention (if no dropin or dropout) is 25
# This corresponds to a hazard ratio of 0.7283 (computed by cpower)
cpower(2, 1000, .2, 25, accrual=2, tmin=1,
noncomp.c=10, noncomp.i=17.5)
ranfun <- Quantile2(function(x)exp(log(.8)/2*x),
hratio=function(x)0.7283156,
dropin=function(x).1,
dropout=function(x).175)
rcontrol <- function(n) ranfun(n, what='control')
rinterv <- function(n) ranfun(n, what='int')
rcens <- function(n) runif(n, 1, 3)
set.seed(11) # So can reproduce results
spower(rcontrol, rinterv, rcens, nc=500, ni=500,
test=logrank, nsim=50) # normally use nsim=500 or 1000
\dontrun{
# Run the same simulation but fit the Cox model for each one to
# get log hazard ratios for the purpose of assessing the tightness
# confidence intervals that are likely to result
set.seed(11)
u <- spower(rcontrol, rinterv, rcens, nc=500, ni=500,
test=logrank, nsim=50, cox=TRUE)
u
v <- print(u)
v[c('MOElower','MOEupper','SE')]
}
# Simulate a 2-arm 5-year follow-up study for which the control group's
# survival distribution is Weibull with 1-year survival of .95 and
# 3-year survival of .7. All subjects are followed at least one year,
# and patients enter the study with linearly increasing probability after that
# Assume there is no chance of dropin for the first 6 months, then the
# probability increases linearly up to .15 at 5 years
# Assume there is a linearly increasing chance of dropout up to .3 at 5 years
# Assume that the treatment has no effect for the first 9 months, then
# it has a constant effect (hazard ratio of .75)
# First find the right Weibull distribution for compliant control patients
sc <- Weibull2(c(1,3), c(.95,.7))
sc
# Inverse cumulative distribution for case where all subjects are followed
# at least a years and then between a and b years the density rises
# as (time - a) ^ d is a + (b-a) * u ^ (1/(d+1))
rcens <- function(n) 1 + (5-1) * (runif(n) ^ .5)
# To check this, type hist(rcens(10000), nclass=50)
# Put it all together
f <- Quantile2(sc,
hratio=function(x)ifelse(x<=.75, 1, .75),
dropin=function(x)ifelse(x<=.5, 0, .15*(x-.5)/(5-.5)),
dropout=function(x).3*x/5)
par(mfrow=c(2,2))
# par(mfrow=c(1,1)) to make legends fit
plot(f, 'all', label.curves=list(keys='lines'))
rcontrol <- function(n) f(n, 'control')
rinterv <- function(n) f(n, 'intervention')
set.seed(211)
spower(rcontrol, rinterv, rcens, nc=350, ni=350,
test=logrank, nsim=50) # normally nsim=500 or more
par(mfrow=c(1,1))
# Compose a censoring time generator function such that at 1 year
# 5\% of subjects are accrued, at 3 years 70\% are accured, and at 10
# years 100\% are accrued. The trial proceeds two years past the last
# accrual for a total of 12 years of follow-up for the first subject.
# Use linear interporation between these 3 points
rcens <- function(n)
{
times <- c(0,1,3,10)
accrued <- c(0,.05,.7,1)
# Compute inverse of accrued function at U(0,1) random variables
accrual.times <- approx(accrued, times, xout=runif(n))$y
censor.times <- 12 - accrual.times
censor.times
}
censor.times <- rcens(500)
# hist(censor.times, nclass=20)
accrual.times <- 12 - censor.times
# Ecdf(accrual.times)
# lines(c(0,1,3,10), c(0,.05,.7,1), col='red')
# spower(..., rcens=rcens, ...)
\dontrun{
# To define a control survival curve from a fitted survival curve
# with coordinates (tt, surv) with tt[1]=0, surv[1]=1:
Scontrol <- function(times, tt, surv) approx(tt, surv, xout=times)$y
tt <- 0:6
surv <- c(1, .9, .8, .75, .7, .65, .64)
formals(Scontrol) <- list(times=NULL, tt=tt, surv=surv)
# To use a mixture of two survival curves, with e.g. mixing proportions
# of .2 and .8, use the following as a guide:
#
# Scontrol <- function(times, t1, s1, t2, s2)
# .2*approx(t1, s1, xout=times)$y + .8*approx(t2, s2, xout=times)$y
# t1 <- ...; s1 <- ...; t2 <- ...; s2 <- ...;
# formals(Scontrol) <- list(times=NULL, t1=t1, s1=s1, t2=t2, s2=s2)
# Check that spower can detect a situation where generated censoring times
# are later than all failure times
rcens <- function(n) runif(n, 0, 7)
f <- Quantile2(scontrol=Scontrol, hratio=function(x).8, tmax=6)
cont <- function(n) f(n, what='control')
int <- function(n) f(n, what='intervention')
spower(rcontrol=cont, rinterv=int, rcens=rcens, nc=300, ni=300, nsim=20)
# Do an unstratified logrank test
library(survival)
# From SAS/STAT PROC LIFETEST manual, p. 1801
days <- c(179,256,262,256,255,224,225,287,319,264,237,156,270,257,242,
157,249,180,226,268,378,355,319,256,171,325,325,217,255,256,
291,323,253,206,206,237,211,229,234,209)
status <- c(1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,0,
0,rep(1,19))
treatment <- c(rep(1,10), rep(2,10), rep(1,10), rep(2,10))
sex <- Cs(F,F,M,F,M,F,F,M,M,M,F,F,M,M,M,F,M,F,F,M,
M,M,M,M,F,M,M,F,F,F,M,M,M,F,F,M,F,F,F,F)
data.frame(days, status, treatment, sex)
table(treatment, status)
logrank(Surv(days, status), treatment) # agrees with p. 1807
# For stratified tests the picture is puzzling.
# survdiff(Surv(days,status) ~ treatment + strata(sex))$chisq
# is 7.246562, which does not agree with SAS (7.1609)
# But summary(coxph(Surv(days,status) ~ treatment + strata(sex)))
# yields 7.16 whereas summary(coxph(Surv(days,status) ~ treatment))
# yields 5.21 as the score test, not agreeing with SAS or logrank() (5.6485)
}
}
\keyword{htest}
\keyword{survival}
\concept{power}
\concept{study design}
|