1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
\name{summary.formula}
\alias{summary.formula}
\alias{stratify}
\alias{print.summary.formula.response}
\alias{plot.summary.formula.response}
\alias{latex.summary.formula.response}
\alias{print.summary.formula.reverse}
\alias{plot.summary.formula.reverse}
\alias{latex.summary.formula.reverse}
\alias{[.summary.formula.response}
\alias{print.summary.formula.cross}
\alias{latex.summary.formula.cross}
\alias{formula.summary.formula.cross}
\alias{na.retain}
\alias{cumcategory}
\alias{conTestkw}
\alias{catTestchisq}
\alias{ordTestpo}
\title{Summarize Data for Making Tables and Plots}
\description{
\code{summary.formula} summarizes the variables listed in an S formula,
computing descriptive statistics (including ones in a
user-specified function). The summary statistics may be passed to
\code{print} methods, \code{plot} methods for making annotated dot charts, and
\code{latex} methods for typesetting tables using LaTeX.
\code{summary.formula} has three methods for computing descriptive
statistics on univariate or multivariate responses, subsetted by
categories of other variables. The method of summarization is
specified in the parameter \code{method} (see details below). For the
\code{response} and \code{cross} methods, the statistics used to
summarize the data
may be specified in a very flexible way (e.g., the geometric mean,
33rd percentile, Kaplan-Meier 2-year survival estimate, mixtures of
several statistics). The default summary statistic for these methods
is the mean (the proportion of positive responses for a binary
response variable). The \code{cross} method is useful for creating data
frames which contain summary statistics that are passed to \code{trellis}
as raw data (to make multi-panel dot charts, for example). The
\code{print} methods use the \code{print.char.matrix} function to print boxed
tables.
The right hand side of \code{formula} may contain \code{mChoice}
(\dQuote{multiple choice}) variables. When \code{test=TRUE} each choice is
tested separately as a binary categorical response.
The \code{plot} method for \code{method="reverse"} creates a temporary
function \code{Key} in frame 0 as is done by the \code{xYplot} and
\code{Ecdf.formula} functions. After \code{plot} runs, you can type
\code{Key()} to put a legend in a default location, or
e.g. \code{Key(locator(1))} to draw a legend where you click the left
mouse button. This key is for categorical variables, so to have the
opportunity to put the key on the graph you will probably want to use
the command \code{plot(object, which="categorical")}. A second function
\code{Key2} is created if continuous variables are being plotted. It is
used the same as \code{Key}. If the \code{which} argument is not
specified to \code{plot}, two pages of plots will be produced. If you
don't define \code{par(mfrow=)} yourself,
\code{plot.summary.formula.reverse} will try to lay out a multi-panel
graph to best fit all the individual dot charts for continuous
variables.
There is a subscripting method for objects created with
\code{method="response"}.
This can be used to print or plot selected variables or summary statistics
where there would otherwise be too many on one page.
\code{cumcategory} is a utility function useful when summarizing an ordinal
response variable. It converts such a variable having \code{k} levels to a
matrix with \code{k-1} columns, where column \code{i} is a vector of zeros and
ones indicating that the categorical response is in level \code{i+1} or
greater. When the left hand side of \code{formula} is \code{cumcategory(y)},
the default \code{fun} will summarize it by computing all of the relevant
cumulative proportions.
Functions \code{conTestkw}, \code{catTestchisq}, \code{ordTestpo} are
the default statistical test functions for \code{summary.formula}.
These defaults are: Wilcoxon-Kruskal-Wallis test for continuous
variables, Pearson chi-square test for categorical variables, and the
likelihood ratio chi-square test from the proportional odds model for
ordinal variables. These three functions serve also as templates for
the user to create her own testing functions that are self-defining in
terms of how the results are printed or rendered in LaTeX, or plotted.
}
\usage{
\method{summary}{formula}(formula, data=NULL, subset=NULL,
na.action=NULL, fun = NULL,
method = c("response", "reverse", "cross"),
overall = method == "response" | method == "cross",
continuous = 10, na.rm = TRUE, na.include = method != "reverse",
g = 4, quant = c(0.025, 0.05, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, 0.95, 0.975),
nmin = if (method == "reverse") 100
else 0,
test = FALSE, conTest = conTestkw, catTest = catTestchisq,
ordTest = ordTestpo, \dots)
\method{[}{summary.formula.response}(x, i, j, drop=FALSE)
\method{print}{summary.formula.response}(x, vnames=c('labels','names'), prUnits=TRUE,
abbreviate.dimnames=FALSE,
prefix.width, min.colwidth, formatArgs=NULL, markdown=FALSE, \dots)
\method{plot}{summary.formula.response}(x, which = 1, vnames = c('labels','names'), xlim, xlab,
pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), superposeStrata = TRUE,
dotfont = 1, add = FALSE, reset.par = TRUE, main, subtitles = TRUE,
\dots)
\method{latex}{summary.formula.response}(object, title = first.word(deparse(substitute(object))), caption,
trios, vnames = c('labels', 'names'), prn = TRUE, prUnits = TRUE,
rowlabel = '', cdec = 2, ncaption = TRUE, \dots)
\method{print}{summary.formula.reverse}(x, digits, prn = any(n != N), pctdig = 0,
what=c('\%', 'proportion'),
npct = c('numerator', 'both', 'denominator', 'none'),
exclude1 = TRUE, vnames = c('labels', 'names'), prUnits = TRUE,
sep = '/', abbreviate.dimnames = FALSE,
prefix.width = max(nchar(lab)), min.colwidth, formatArgs=NULL, round=NULL,
prtest = c('P','stat','df','name'), prmsd = FALSE, long = FALSE,
pdig = 3, eps = 0.001, \dots)
\method{plot}{summary.formula.reverse}(x, vnames = c('labels', 'names'), what = c('proportion', '\%'),
which = c('both', 'categorical', 'continuous'),
xlim = if(what == 'proportion') c(0,1)
else c(0,100),
xlab = if(what=='proportion') 'Proportion'
else 'Percentage',
pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), exclude1 = TRUE,
dotfont = 1, main,
prtest = c('P', 'stat', 'df', 'name'), pdig = 3, eps = 0.001,
conType = c('dot', 'bp', 'raw'), cex.means = 0.5, \dots)
\method{latex}{summary.formula.reverse}(object, title = first.word(deparse(substitute(object))), digits,
prn = any(n != N), pctdig = 0, what=c('\%', 'proportion'),
npct = c("numerator", "both", "denominator", "slash", "none"),
npct.size = 'scriptsize', Nsize = "scriptsize", exclude1 = TRUE,
vnames=c("labels", "names"), prUnits = TRUE, middle.bold = FALSE,
outer.size = "scriptsize", caption, rowlabel = "",
insert.bottom = TRUE, dcolumn = FALSE, formatArgs=NULL, round = NULL,
prtest = c('P', 'stat', 'df', 'name'), prmsd = FALSE,
msdsize = NULL, long = dotchart, pdig = 3, eps = 0.001,
auxCol = NULL, dotchart=FALSE, \dots)
\method{print}{summary.formula.cross}(x, twoway = nvar == 2, prnmiss = any(stats$Missing > 0), prn = TRUE,
abbreviate.dimnames = FALSE, prefix.width = max(nchar(v)),
min.colwidth, formatArgs = NULL, \dots)
\method{latex}{summary.formula.cross}(object, title = first.word(deparse(substitute(object))),
twoway = nvar == 2, prnmiss = TRUE, prn = TRUE,
caption=attr(object, "heading"), vnames=c("labels", "names"),
rowlabel="", \dots)
stratify(\dots, na.group = FALSE, shortlabel = TRUE)
\method{formula}{summary.formula.cross}(x, \dots)
cumcategory(y)
conTestkw(group, x)
catTestchisq(tab)
ordTestpo(group, x)
}
\arguments{
\item{formula}{
An \R formula with additive effects. For \code{method="response"} or
\code{"cross"}, the dependent variable has the usual connotation. For
\code{method="reverse"}, the dependent variable is what is usually thought
of as an independent variable, and it is one that is used to stratify
all of the right hand side variables. For \code{method="response"}
(only), the \code{formula} may contain one or more invocations of the
\code{stratify} function whose arguments are defined below. This causes
the entire analysis to be stratified by cross-classifications of the
combined list of stratification factors. This stratification will be
reflected as major column groupings in the resulting table, or as more
response columns for plotting. If \code{formula} has no dependent variable
\code{method="reverse"} is the only legal value and so \code{method} defaults to
\code{"reverse"} in this case.
}
\item{x}{an object created by \code{summary.formula}. For
\code{conTestkw} a numeric vector, and for \code{ordTestpo}, a numeric
or factor variable that can be considered ordered}
\item{y}{
a numeric, character, category, or factor vector for \code{cumcategory}.
Is converted to a categorical variable is needed.
}
\item{drop}{
logical. If \code{TRUE} the result is coerced to the
lowest possible dimension.
}
\item{data}{
name or number of a data frame. Default is the current frame.
}
\item{subset}{
a logical vector or integer vector of subscripts used to specify the
subset of data to use in the analysis. The default is to use all
observations in the data frame.
}
\item{na.action}{
function for handling missing data in the input data. The default is
a function defined here called \code{na.retain}, which keeps all
observations for processing, with missing variables or not.
}
\item{fun}{
function for summarizing data in each cell. Default is to take the
mean of each column of the possibly multivariate response variable.
You can specify \code{fun="\%"} to compute percentages (100 times the mean of a
series of logical or binary variables).
User--specified functions can also return a matrix. For example, you might
compute quartiles on a bivariate response. Does not apply to
\code{method="reverse"}.
}
\item{method}{
The default is \code{"response"}, in which case the response variable may
be multivariate and any number of statistics may be used to summarize
them. Here the responses are summarized separately for each of any
number of independent variables. Continuous independent variables
(see the \code{continuous} parameter below) are automatically stratified
into \code{g} (see below) quantile groups (if you want to control the
discretization for selected variables, use the \code{cut2} function on them).
Otherwise, the data are
subsetted by all levels of discrete right hand side variables. For
multivariate responses, subjects are considered to be missing if any
of the columns is missing.
The \code{method="reverse"} option is
typically used to make baseline characteristic tables, for example.
The single left hand side variable must be categorical (e.g.,
treatment), and the right hand side variables are broken down one at a
time by the "dependent" variable. Continuous variables are described
by three quantiles (quartiles by default) along with
outer quantiles (used only for scaling x-axes when plotting quartiles;
all are used when plotting box-percentile plots), and
categorical ones are
described by counts and percentages. If there is no left hand side
variable, \code{summary} assumes that there is only one group in the data,
so that only one column of summaries will appear.
If there is no dependent variable in \code{formula}, \code{method} defaults to
\code{"reverse"} automatically.
The \code{method="cross"} option allows for a multivariate dependent
variable and for up to three independents. Continuous independent
variables (those with at least \code{continuous} unique values) are
automatically divided into \code{g} quantile groups.
The independents are cross-classified, and marginal statistics may optionally be computed.
The output of \code{summary.formula} in this case is a data frame
containing the independent variable combinations (with levels of
\code{"All"} corresponding to marginals) and the corresponding summary
statistics in the matrix \code{S}. The output data frame is suitable for
direct use in \code{trellis}. The \code{print} and \code{latex} typesetting methods for this
method allows for a special two-way format if there are two right
hand variables.
}
\item{overall}{
For \code{method="reverse"}, setting \code{overall=TRUE} makes a new column with
overall statistics for the whole sample. For \code{method="cross"},
\code{overall=TRUE} (the default) results in all marginal statistics being
computed. For \code{trellis} displays (usually multi-panel dot plots),
these marginals just form other categories. For \code{"response"}, the
default is \code{overall=TRUE}, causing a final row of global summary
statistics to appear in tables and dot charts. If \code{test=TRUE} these
marginal statistics are ignored in doing statistical tests.
}
\item{continuous}{
specifies the threshold for when a variable is considered to be
continuous (when there are at least \code{continuous} unique values).
\code{factor} variables are always considered to be categorical no matter
how many levels they have.
}
\item{na.rm}{
\code{TRUE} (the default) to exclude \code{NA}s before passing data to
\code{fun} to compute statistics, \code{FALSE} otherwise.
\code{na.rm=FALSE} is useful if the response variable is a matrix and
you do not wish to exclude a row of the matrix if any of the columns
in that row are \code{NA}. \code{na.rm} also applies to summary
statistic functions such as \code{smean.cl.normal}. For these \code{na.rm}
defaults to \code{TRUE} unlike built-in functions.
}
\item{na.include}{
for \code{method="response"}, set \code{na.include=FALSE} to exclude missing values from
being counted as their own category when subsetting the response(s)
by levels of a categorical variable. For \code{method="reverse"} set
\code{na.include=TRUE} to keep missing values of categorical variables from
being excluded from the table.
}
\item{g}{
number of quantile groups to use when variables are automatically
categorized with \code{method="response"} or \code{"cross"} using \code{cut2}
}
\item{nmin}{
if fewer than \code{nmin} observations exist in a category for \code{"response"}
(over all strata combined), that category will be ignored. For
\code{"reverse"}, for categories of the response variable in which there
are less than or equal to \code{nmin} non-missing observations, the raw
data are retained for later plotting in place of box plots.
}
\item{test}{
applies if \code{method="reverse"}. Set to \code{TRUE} to compute test
statistics using tests specified in \code{conTest} and \code{catTest}.
}
\item{conTest}{
a function of two arguments (grouping variable and a continuous
variable) that returns a list with components \code{P} (the computed
P-value), \code{stat} (the test statistic, either chi-square or F),
\code{df} (degrees of freedom), \code{testname} (test name), \code{statname}
(statistic name), \code{namefun} (\code{"chisq", "fstat"}), an
optional component \code{latexstat} (LaTeX
representation of \code{statname}), an optional component
\code{plotmathstat} (for R - the \code{plotmath} representation of
\code{statname}, as a character string), and an
optional component \code{note}
that contains a character string note about the test (e.g.,
\code{"test not done because n < 5"}). \code{conTest} is applied to continuous variables
on the right-hand-side of the formula when \code{method="reverse"}. The
default uses the \code{spearman2} function to run the Wilcoxon or
Kruskal-Wallis test using the F distribution.
}
\item{catTest}{
a function of a frequency table (an integer matrix) that returns a
list with the same components as created by \code{conTest}. By default,
the Pearson chi-square test is done, without continuity correction
(the continuity correction would make the test conservative like the
Fisher exact test).
}
\item{ordTest}{
a function of a frequency table (an integer matrix) that returns a
list with the same components as created by \code{conTest}. By default,
the Proportional odds likelihood ratio test is done.
}
\item{...}{
for \code{summary.formula} these are optional
arguments for \code{cut2} when variables are automatically categorized.
For \code{plot} methods these arguments are passed to \code{dotchart2}.
For \code{Key} and \code{Key2} these arguments are passed to \code{key},
\code{text}, or \code{mtitle}. For \code{print} methods these are
optional arguments to \code{print.char.matrix}. For \code{latex} methods
these are passed to \code{latex.default}. One of the most important of
these is \code{file}. Specifying \code{file=""} will cause LaTeX code
to just be printed to standard output rather than be stored in a
permanent file.
}
\item{object}{an object created by \code{summary.formula}}
\item{quant}{
vector of quantiles to use for summarizing data with
\code{method="reverse"}. This must be numbers between 0 and 1
inclusive and must include the numbers 0.5, 0.25, and 0.75 which are
used for printing and for plotting
quantile intervals. The outer quantiles are used for scaling the x-axes
for such plots. Specify outer quantiles as \code{0} and \code{1} to
scale the x-axes using the whole observed data ranges instead of the
default (a 0.95 quantile interval). Box-percentile plots are drawn
using all but the outer quantiles.
}
\item{vnames}{
By default, tables and plots are usually labeled with variable labels
(see the \code{label} and \code{sas.get} functions). To use the shorter
variable names, specify \code{vnames="name"}.
}
\item{pch}{
vector of plotting characters to represent different groups, in order
of group levels. For \code{method="response"} the characters
correspond to levels of the \code{stratify} variable if
\code{superposeStrata=TRUE}, and if no
\code{strata} are used or if \code{superposeStrata=FALSE}, the
\code{pch} vector corresponds to the \code{which} argument for
\code{method="response"}.
}
\item{superposeStrata}{
If \code{stratify} was used, set \code{superposeStrata=FALSE} to make
separate dot charts for each level of the \code{stratification}
variable, for \code{method='response'}. The default is to
superposition all strata on one dot chart.
}
\item{dotfont}{font for plotting points}
\item{reset.par}{set to \code{FALSE} to suppress the restoring of the
old par values in \code{plot.summary.formula.response}
}
\item{abbreviate.dimnames}{see \code{print.char.matrix}}
\item{prefix.width}{see \code{print.char.matrix}}
\item{min.colwidth}{
minimum column width to use for boxes printed with \code{print.char.matrix}.
The default is the maximum of the minimum column label length and the minimum
length of entries in the data cells.
}
\item{formatArgs}{
a list containing other arguments to pass to \code{format.default} such as
\code{scientific}, e.g., \code{formatArgs=list(scientific=c(-5,5))}. For
\code{print.summary.formula.reverse} and
\code{format.summary.formula.reverse}, \code{formatArgs} applies only to
statistics computed on continuous variables, not to percents,
numerators, and denominators. The \code{round} argument may be preferred.
}
\item{markdown}{for \code{print.summary.formula.response} set to
\code{TRUE} to use \code{knitr::kable} to produce the table in
markdown format rather than using raw text output created by \code{print.char.matrix}}
\item{digits}{
number of significant digits to print. Default is to use the current
value of the \code{digits} system option.
}
\item{prn}{
set to \code{TRUE} to print the number of non-missing observations on the
current (row) variable. The default is to print these only if any of
the counts of non-missing values differs from the total number of
non-missing values of the left-hand-side variable.
For \code{method="cross"} the default is to always print \code{N}.
}
\item{prnmiss}{
set to \code{FALSE} to suppress printing counts of missing values for \code{"cross"}
}
\item{what}{
for \code{method="reverse"} specifies whether proportions or percentages
are to be plotted
}
\item{pctdig}{
number of digits to the right of the decimal place for printing
percentages. The default is zero, so percents will be rounded to the
nearest percent.
}
\item{npct}{
specifies which counts are to be printed to the right of percentages.
The default is to print the frequency (numerator of the percent) in
parentheses. You can specify \code{"both"} to print both numerator and
denominator, \code{"denominator"}, \code{"slash"} to
typeset horizontally using a forward slash, or \code{"none"}.
}
\item{npct.size}{
the size for typesetting \code{npct} information which appears after percents.
The default is \code{"scriptsize"}.
}
\item{Nsize}{
When a second row of column headings is added showing sample sizes,
\code{Nsize} specifies the LaTeX size for these subheadings. Default
is \code{"scriptsize"}.
}
\item{exclude1}{
by default, \code{method="reverse"} objects will be printed, plotted, or typeset by
removing redundant entries from percentage tables for categorical
variables. For example, if you print the percent of females, you
don't need to print the percent of males. To override this, set \code{exclude1=FALSE}.
}
\item{prUnits}{
set to \code{FALSE} to suppress printing or latexing \code{units}
attributes of variables, when \code{method='reverse'} or \code{'response'}
}
\item{sep}{
character to use to separate quantiles when printing
\code{method="reverse"} tables
}
\item{prtest}{
a vector of test statistic components to print if \code{test=TRUE} was in
effect when \code{summary.formula} was called. Defaults to printing all
components. Specify \code{prtest=FALSE} or \code{prtest="none"} to not
print any tests. This applies to \code{print}, \code{latex}, and
\code{plot} methods for \code{method='reverse'}.
}
\item{round}{
for \code{print.summary.formula.reverse} and
\code{latex.summary.formula.reverse} specify \code{round} to round
the quantiles and optional mean and standard deviation to
\code{round} digits after the decimal point
}
\item{prmsd}{
set to \code{TRUE} to print mean and SD after the three quantiles, for
continuous variables with \code{method="reverse"}
}
\item{msdsize}{
defaults to \code{NULL} to use the current font size for the mean and
standard deviation if \code{prmsd} is \code{TRUE}. Set to a character
string to specify an alternate LaTeX font size.
}
\item{long}{
set to \code{TRUE} to print the results for the first category on its own
line, not on the same line with the variable label (for
\code{method="reverse"} with \code{print} and \code{latex} methods)
}
\item{pdig}{
number of digits to the right of the decimal place for printing
P-values. Default is \code{3}. This is passed to \code{format.pval}.
}
\item{eps}{
P-values less than \code{eps} will be printed as \code{< eps}. See
\code{format.pval}.
}
\item{auxCol}{
an optional auxiliary column of information, right justified, to add
in front of statistics typeset by
\code{latex.summary.formula.reverse}. This argument is a list with a
single element that has a name specifying the column heading. If this
name includes a newline character, the portions of the string before
and after the newline form respectively the main heading and the
subheading (typically set in smaller font), respectively. See the
\code{extracolheads} argument to \code{latex.default}. \code{auxCol}
is filled with blanks when a variable being summarized takes up more
than one row in the output. This happens with categorical variables.
}
\item{twoway}{
for \code{method="cross"} with two right hand side variables, \code{twoway}
controls whether the resulting table will be printed in enumeration
format or as a two-way table (the default)
}
\item{which}{
For \code{method="response"} specifies the sequential number or a vector of
subscripts of statistics to plot. If you had any \code{stratify}
variables, these are counted as if more statistics were computed.
For \code{method="reverse"} specifies whether to plot results
for categorical variables, continuous variables, or both (the default).
}
\item{conType}{
For plotting \code{method="reverse"} plots for continuous variables,
dot plots showing quartiles are drawn by default. Specify
\code{conType='bp'} to draw box-percentile plots using all the
quantiles in \code{quant} except the outermost ones. Means are drawn
with a solid dot and vertical reference lines are placed at the three
quartiles. Specify \code{conType='raw'} to make a strip chart showing
the raw data. This can only be used if the sample size for each
left-hand-side group is less than or equal to \code{nmin}.}
\item{cex.means}{
character size for means in box-percentile plots; default is .5}
\item{xlim}{
vector of length two specifying x-axis limits. For
\code{method="reverse"}, this is only used for plotting categorical
variables. Limits for continuous variables are determined by the
outer quantiles specified in \code{quant}.
}
\item{xlab}{
x-axis label
}
\item{add}{
set to \code{TRUE} to add to an existing plot
}
\item{main}{
a main title. For \code{method="reverse"} this applies only to the plot
for categorical variables.
}
\item{subtitles}{
set to \code{FALSE} to suppress automatic subtitles
}
\item{caption}{
character string containing LaTeX table captions.
}
\item{title}{
name of resulting LaTeX file omitting the \code{.tex} suffix. Default
is the name of the \code{summary} object. If \code{caption} is specied,
\code{title} is also used for the table's symbolic reference label.
}
\item{trios}{
If for \code{method="response"} you summarized the response(s) by using
three quantiles, specify \code{trios=TRUE} or \code{trios=v} to group each set of
three statistics into one column for \code{latex} output, using the format
a B c, where the outer quantiles are in smaller font
(\code{scriptsize}). For \code{trios=TRUE}, the overall column names are taken
from the column names of the original data matrix. To give new
column names, specify \code{trios=v}, where \code{v} is a vector of column
names, of length \code{m/3}, where \code{m} is the original number of columns
of summary statistics.
}
\item{rowlabel}{
see \code{latex.default} (under the help file \code{latex})
}
\item{cdec}{
number of decimal places to the right of the decimal point for
\code{latex}. This value should be a scalar (which will be properly
replicated), or a vector with length equal to the number of columns
in the table. For \code{"response"} tables, this length does not count
the column for \code{N}.
}
\item{ncaption}{
set to \code{FALSE} to not have \code{latex.summary.formula.response}
put sample sizes in captions
}
\item{i}{
a vector of integers, or character strings containing variable names
to subset on. Note that each row subsetted on in an \code{summary.formula.reverse}
object subsets on all the levels that make up the corresponding variable
(automatically).
}
\item{j}{
a vector of integers representing column numbers
}
\item{middle.bold}{
set to \code{TRUE} to have LaTeX use bold face for the middle quantile for
\code{method="reverse"}
}
\item{outer.size}{
the font size for outer quantiles for \code{"reverse"} tables
}
\item{insert.bottom}{
set to \code{FALSE} to suppress inclusion of definitions placed at the
bottom of LaTeX tables for \code{method="reverse"}
}
\item{dcolumn}{
see \code{latex}
}
\item{na.group}{
set to \code{TRUE} to have missing stratification variables given their own
category (\code{NA})
}
\item{shortlabel}{
set to \code{FALSE} to include stratification variable names and equal signs
in labels for strata levels
}
\item{dotchart}{
set to \code{TRUE} to output a dotchart in the latex table being
generated.
}
\item{group}{for \code{conTest} and \code{ordTest}, a numeric or
factor variable with length the same as \code{x}
}
\item{tab}{for \code{catTest}, a frequency table such as that created
by \code{table()}
}
}
\value{
\code{summary.formula} returns a data frame or list depending on
\code{method}. \code{plot.summary.formula.reverse} returns the number
of pages of plots that were made.
}
\section{Side Effects}{
\code{plot.summary.formula.reverse} creates a function \code{Key} and
\code{Key2} in frame 0 that will draw legends.
}
\author{
Frank Harrell\cr
Department of Biostatistics\cr
Vanderbilt University\cr
\email{fh@fharrell.com}
}
\references{
Harrell FE (2007): Statistical tables and plots using S and LaTeX.
Document available from \url{https://hbiostat.org/R/Hmisc/summary.pdf}.
}
\seealso{
\code{\link{mChoice}}, \code{\link{smean.sd}}, \code{\link{summarize}},
\code{\link{label}}, \code{\link[survival]{strata}}, \code{\link{dotchart2}},
\code{\link{print.char.matrix}}, \code{\link{update}},
\code{\link{formula}}, \code{\link{cut2}}, \code{\link{llist}},
\code{\link{format.default}}, \code{\link{latex}},
\code{\link{latexTranslate}} \code{\link{bpplt}},
\code{\link{summaryM}}, \code{\link{summary}}
}
\examples{
options(digits=3)
set.seed(173)
sex <- factor(sample(c("m","f"), 500, rep=TRUE))
age <- rnorm(500, 50, 5)
treatment <- factor(sample(c("Drug","Placebo"), 500, rep=TRUE))
# Generate a 3-choice variable; each of 3 variables has 5 possible levels
symp <- c('Headache','Stomach Ache','Hangnail',
'Muscle Ache','Depressed')
symptom1 <- sample(symp, 500,TRUE)
symptom2 <- sample(symp, 500,TRUE)
symptom3 <- sample(symp, 500,TRUE)
Symptoms <- mChoice(symptom1, symptom2, symptom3, label='Primary Symptoms')
table(Symptoms)
# Note: In this example, some subjects have the same symptom checked
# multiple times; in practice these redundant selections would be NAs
# mChoice will ignore these redundant selections
#Frequency table sex*treatment, sex*Symptoms
summary(sex ~ treatment + Symptoms, fun=table)
# could also do summary(sex ~ treatment +
# mChoice(symptom1,symptom2,symptom3), fun=table)
#Compute mean age, separately by 3 variables
summary(age ~ sex + treatment + Symptoms)
f <- summary(treatment ~ age + sex + Symptoms, method="reverse", test=TRUE)
f
# trio of numbers represent 25th, 50th, 75th percentile
print(f, long=TRUE)
plot(f)
plot(f, conType='bp', prtest='P')
bpplt() # annotated example showing layout of bp plot
#Compute predicted probability from a logistic regression model
#For different stratifications compute receiver operating
#characteristic curve areas (C-indexes)
predicted <- plogis(.4*(sex=="m")+.15*(age-50))
positive.diagnosis <- ifelse(runif(500)<=predicted, 1, 0)
roc <- function(z) {
x <- z[,1];
y <- z[,2];
n <- length(x);
if(n<2)return(c(ROC=NA));
n1 <- sum(y==1);
c(ROC= (mean(rank(x)[y==1])-(n1+1)/2)/(n-n1) );
}
y <- cbind(predicted, positive.diagnosis)
options(digits=2)
summary(y ~ age + sex, fun=roc)
options(digits=3)
summary(y ~ age + sex, fun=roc, method="cross")
#Use stratify() to produce a table in which time intervals go down the
#page and going across 3 continuous variables are summarized using
#quartiles, and are stratified by two treatments
set.seed(1)
d <- expand.grid(visit=1:5, treat=c('A','B'), reps=1:100)
d$sysbp <- rnorm(100*5*2, 120, 10)
label(d$sysbp) <- 'Systolic BP'
d$diasbp <- rnorm(100*5*2, 80, 7)
d$diasbp[1] <- NA
d$age <- rnorm(100*5*2, 50, 12)
g <- function(y) {
N <- apply(y, 2, function(w) sum(!is.na(w)))
h <- function(x) {
qu <- quantile(x, c(.25,.5,.75), na.rm=TRUE)
names(qu) <- c('Q1','Q2','Q3')
c(N=sum(!is.na(x)), qu)
}
w <- as.vector(apply(y, 2, h))
names(w) <- as.vector( outer(c('N','Q1','Q2','Q3'), dimnames(y)[[2]],
function(x,y) paste(y,x)))
w
}
#Use na.rm=FALSE to count NAs separately by column
s <- summary(cbind(age,sysbp,diasbp) ~ visit + stratify(treat),
na.rm=FALSE, fun=g, data=d)
#The result is very wide. Re-do, putting treatment vertically
x <- with(d, factor(paste('Visit', visit, treat)))
summary(cbind(age,sysbp,diasbp) ~ x, na.rm=FALSE, fun=g, data=d)
#Compose LaTeX code directly
g <- function(y) {
h <- function(x) {
qu <- format(round(quantile(x, c(.25,.5,.75), na.rm=TRUE),1),nsmall=1)
paste('{\\\\scriptsize(',sum(!is.na(x)),
')} \\\\hfill{\\\\scriptsize ', qu[1], '} \\\\textbf{', qu[2],
'} {\\\\scriptsize ', qu[3],'}', sep='')
}
apply(y, 2, h)
}
s <- summary(cbind(age,sysbp,diasbp) ~ visit + stratify(treat),
na.rm=FALSE, fun=g, data=d)
# latex(s, prn=FALSE)
## need option in latex to not print n
#Put treatment vertically
s <- summary(cbind(age,sysbp,diasbp) ~ x, fun=g, data=d, na.rm=FALSE)
# latex(s, prn=FALSE)
#Plot estimated mean life length (assuming an exponential distribution)
#separately by levels of 4 other variables. Repeat the analysis
#by levels of a stratification variable, drug. Automatically break
#continuous variables into tertiles.
#We are using the default, method='response'
\dontrun{
life.expect <- function(y) c(Years=sum(y[,1])/sum(y[,2]))
attach(pbc)
require(survival)
S <- Surv(follow.up.time, death)
s2 <- summary(S ~ age + albumin + ascites + edema + stratify(drug),
fun=life.expect, g=3)
#Note: You can summarize other response variables using the same
#independent variables using e.g. update(s2, response~.), or you
#can change the list of independent variables using e.g.
#update(s2, response ~.- ascites) or update(s2, .~.-ascites)
#You can also print, typeset, or plot subsets of s2, e.g.
#plot(s2[c('age','albumin'),]) or plot(s2[1:2,])
s2 # invokes print.summary.formula.response
#Plot results as a separate dot chart for each of the 3 strata levels
par(mfrow=c(2,2))
plot(s2, cex.labels=.6, xlim=c(0,40), superposeStrata=FALSE)
#Typeset table, creating s2.tex
w <- latex(s2, cdec=1)
#Typeset table but just print LaTeX code
latex(s2, file="") # useful for Sweave
#Take control of groups used for age. Compute 3 quartiles for
#both cholesterol and bilirubin (excluding observations that are missing
#on EITHER ONE)
age.groups <- cut2(age, c(45,60))
g <- function(y) apply(y, 2, quantile, c(.25,.5,.75))
y <- cbind(Chol=chol,Bili=bili)
label(y) <- 'Cholesterol and Bilirubin'
#You can give new column names that are not legal S names
#by enclosing them in quotes, e.g. 'Chol (mg/dl)'=chol
s <- summary(y ~ age.groups + ascites, fun=g)
par(mfrow=c(1,2), oma=c(3,0,3,0)) # allow outer margins for overall
for(ivar in 1:2) { # title
isub <- (1:3)+(ivar-1)*3 # *3=number of quantiles/var.
plot(s3, which=isub, main='',
xlab=c('Cholesterol','Bilirubin')[ivar],
pch=c(91,16,93)) # [, closed circle, ]
}
mtext(paste('Quartiles of', label(y)), adj=.5, outer=TRUE, cex=1.75)
#Overall (outer) title
prlatex(latex(s3, trios=TRUE))
# trios -> collapse 3 quartiles
#Summarize only bilirubin, but do it with two statistics:
#the mean and the median. Make separate tables for the two randomized
#groups and make plots for the active arm.
g <- function(y) c(Mean=mean(y), Median=median(y))
for(sub in c("D-penicillamine", "placebo")) {
ss <- summary(bili ~ age.groups + ascites + chol, fun=g,
subset=drug==sub)
cat('\n',sub,'\n\n')
print(ss)
if(sub=='D-penicillamine') {
par(mfrow=c(1,1))
plot(s4, which=1:2, dotfont=c(1,-1), subtitles=FALSE, main='')
#1=mean, 2=median -1 font = open circle
title(sub='Closed circle: mean; Open circle: median', adj=0)
title(sub=sub, adj=1)
}
w <- latex(ss, append=TRUE, fi='my.tex',
label=if(sub=='placebo') 's4b' else 's4a',
caption=paste(label(bili),' {\\\\em (',sub,')}', sep=''))
#Note symbolic labels for tables for two subsets: s4a, s4b
prlatex(w)
}
#Now consider examples in 'reverse' format, where the lone dependent
#variable tells the summary function how to stratify all the
#'independent' variables. This is typically used to make tables
#comparing baseline variables by treatment group, for example.
s5 <- summary(drug ~ bili + albumin + stage + protime + sex +
age + spiders,
method='reverse')
#To summarize all variables, use summary(drug ~., data=pbc)
#To summarize all variables with no stratification, use
#summary(~a+b+c) or summary(~.,data=\dots)
options(digits=1)
print(s5, npct='both')
#npct='both' : print both numerators and denominators
plot(s5, which='categorical')
Key(locator(1)) # draw legend at mouse click
par(oma=c(3,0,0,0)) # leave outer margin at bottom
plot(s5, which='continuous')
Key2() # draw legend at lower left corner of plot
# oma= above makes this default key fit the page better
options(digits=3)
w <- latex(s5, npct='both', here=TRUE)
# creates s5.tex
#Turn to a different dataset and do cross-classifications on possibly
#more than one independent variable. The summary function with
#method='cross' produces a data frame containing the cross-
#classifications. This data frame is suitable for multi-panel
#trellis displays, although `summarize' works better for that.
attach(prostate)
size.quartile <- cut2(sz, g=4)
bone <- factor(bm,labels=c("no mets","bone mets"))
s7 <- summary(ap>1 ~ size.quartile + bone, method='cross')
#In this case, quartiles are the default so could have said sz + bone
options(digits=3)
print(s7, twoway=FALSE)
s7 # same as print(s7)
w <- latex(s7, here=TRUE) # Make s7.tex
library(trellis,TRUE)
invisible(ps.options(reset=TRUE))
trellis.device(postscript, file='demo2.ps')
dotplot(S ~ size.quartile|bone, data=s7, #s7 is name of summary stats
xlab="Fraction ap>1", ylab="Quartile of Tumor Size")
#Can do this more quickly with summarize:
# s7 <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,
# stat.name='Proportion')
# dotplot(Proportion ~ size | bone, data=s7)
summary(age ~ stage, method='cross')
summary(age ~ stage, fun=quantile, method='cross')
summary(age ~ stage, fun=smean.sd, method='cross')
summary(age ~ stage, fun=smedian.hilow, method='cross')
summary(age ~ stage, fun=function(x) c(Mean=mean(x), Median=median(x)),
method='cross')
#The next statements print real two-way tables
summary(cbind(age,ap) ~ stage + bone,
fun=function(y) apply(y, 2, quantile, c(.25,.75)),
method='cross')
options(digits=2)
summary(log(ap) ~ sz + bone,
fun=function(y) c(Mean=mean(y), quantile(y)),
method='cross')
#Summarize an ordered categorical response by all of the needed
#cumulative proportions
summary(cumcategory(disease.severity) ~ age + sex)
}
}
\keyword{category}
\keyword{interface}
\keyword{hplot}
\keyword{manip}
\concept{grouping}
\concept{stratification}
\concept{aggregation}
\concept{cross-classification}
|