1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
\name{transace}
\alias{transace}
\alias{ggplot.transace}
\alias{print.transace}
\alias{areg.boot}
\alias{print.areg.boot}
\alias{plot.areg.boot}
\alias{predict.areg.boot}
\alias{summary.areg.boot}
\alias{print.summary.areg.boot}
\alias{Function.areg.boot}
\alias{Mean}
\alias{Mean.areg.boot}
\alias{Quantile}
\alias{Quantile.areg.boot}
\alias{monotone}
\alias{smearingEst}
\title{
Additive Regression and Transformations using ace or avas
}
\description{
\code{transace} is \code{\link[acepack]{ace}} packaged for easily automatically
transforming all variables in a formula without a left-hand side.
\code{transace} is a fast
one-iteration version of \code{\link{transcan}} without imputation of
\code{NA}s. The \code{ggplot} method makes nice transformation plots
using \code{ggplot2}. Binary variables are automatically kept linear,
and character or factor variables are automatically treated as categorical.
\code{areg.boot} uses \code{\link{areg}} or
\code{\link[acepack]{avas}} to fit additive regression models allowing
all variables in the model (including the left-hand-side) to be
transformed, with transformations chosen so as to optimize certain
criteria. The default method uses \code{\link{areg}} whose goal it is
to maximize \eqn{R^2}. \code{method="avas"} explicity tries to
transform the response variable so as to stabilize the variance of the
residuals. All-variables-transformed models tend to inflate \code{R^2}
and it can be difficult to get confidence limits for each
transformation. \code{areg.boot} solves both of these problems using
the bootstrap. As with the \code{\link[rms]{validate}} function in the
\pkg{rms} library, the Efron bootstrap is used to estimate the
optimism in the apparent \eqn{R^2}, and this optimism is subtracted
from the apparent \eqn{R^2} to optain a bias-corrected \eqn{R^2}.
This is done however on the transformed response variable scale.
Tests with 3 predictors show that the \code{\link[acepack]{avas}} and
\code{\link[acepack]{ace}} estimates are unstable unless the sample size
exceeds 350. Apparent \eqn{R^2} with low sample sizes can be very
inflated, and bootstrap estimates of \eqn{R^2} can be even more
unstable in such cases, resulting in optimism-corrected \eqn{R^2} that
are much lower even than the actual \eqn{R^2}. The situation can be
improved a little by restricting predictor transformations to be
monotonic. On the other hand, the \code{areg} approach allows one to
control overfitting by specifying the number of knots to use for each
continuous variable in a restricted cubic spline function.
For \code{method="avas"} the response transformation is restricted to
be monotonic. You can specify restrictions for transformations of
predictors (and linearity for the response). When the first argument
is a formula, the function automatically determines which variables
are categorical (i.e., \code{factor}, \code{category}, or character
vectors). Specify linear transformations by enclosing variables by
the identify function (\code{I()}), and specify monotonicity by using
\code{monotone(variable)}. Monotonicity restrictions are not
allowed with \code{method="areg"}.
The \code{\link{summary}} method for \code{areg.boot} computes
bootstrap estimates of standard errors of differences in predicted
responses (usually on the original scale) for selected levels of each
predictor against the lowest level of the predictor. The smearing
estimator (see below) can be used here to estimate differences in
predicted means, medians, or many other statistics. By default,
quartiles are used for continuous predictors and all levels are used
for categorical ones. See \cite{Details} below. There is also a
\code{\link{plot}} method for plotting transformation estimates,
transformations for individual bootstrap re-samples, and pointwise
confidence limits for transformations. Unless you already have a
\code{par(mfrow=)} in effect with more than one row or column,
\code{plot} will try to fit the plots on one page. A
\code{\link{predict}} method computes predicted values on the original
or transformed response scale, or a matrix of transformed
predictors. There is a \code{\link{Function}} method for producing a
list of \R functions that perform the final fitted transformations.
There is also a \code{\link{print}} method for \code{areg.boot}
objects.
When estimated means (or medians or other statistical parameters) are
requested for models fitted with \code{areg.boot} (by
\code{summary.areg.boot} or \code{predict.areg.boot}), the
\dQuote{smearing} estimator of \cite{Duan (1983)} is used. Here we
estimate the mean of the untransformed response by computing the
arithmetic mean of \eqn{ginverse(lp + residuals)},
where ginverse is the inverse of the nonparametric
transformation of the response (obtained by reverse linear
interpolation), lp is the linear predictor for an individual
observation on the transformed scale, and residuals is the
entire vector of residuals estimated from the fitted model, on the
transformed scales (n residuals for n original observations). The
\code{smearingEst} function computes the general smearing estimate.
For efficiency \code{smearingEst} recognizes that quantiles are
transformation-preserving, i.e., when one wishes to estimate a
quantile of the untransformed distribution one just needs to compute
the inverse transformation of the transformed estimate after the
chosen quantile of the vector of residuals is added to it. When the
median is desired, the estimate is
\eqn{ginverse(lp + \mbox{median}(residuals))}{
ginverse(lp + median(residuals))}.
See the last example for how \code{smearingEst} can be used outside of
\code{areg.boot}.
\code{Mean} is a generic function that returns an \R function to
compute the estimate of the mean of a variable. Its input is
typically some kind of model fit object. Likewise, \code{Quantile} is
a generic quantile function-producing function. \code{Mean.areg.boot}
and \code{Quantile.areg.boot} create functions of a vector of linear
predictors that transform them into the smearing estimates of the mean
or quantile of the response variable,
respectively. \code{Quantile.areg.boot} produces exactly the same
value as \code{predict.areg.boot} or \code{smearingEst}. \code{Mean}
approximates the mapping of linear predictors to means over an evenly
spaced grid of by default 200 points. Linear interpolation is used
between these points. This approximate method is much faster than the
full smearing estimator once \code{Mean} creates the function. These
functions are especially useful in \code{\link[rms]{nomogram}} (see the
example on hypothetical data).
}
\usage{
transace(formula, trim=0.01, data=environment(formula))
\method{print}{transace}(x, \dots)
\method{ggplot}{transace}(data, mapping, ..., environment, nrow=NULL)
areg.boot(x, data, weights, subset, na.action=na.delete,
B=100, method=c("areg","avas"), nk=4, evaluation=100, valrsq=TRUE,
probs=c(.25,.5,.75), tolerance=NULL)
\method{print}{areg.boot}(x, \dots)
\method{plot}{areg.boot}(x, ylim, boot=TRUE, col.boot=2, lwd.boot=.15,
conf.int=.95, \dots)
smearingEst(transEst, inverseTrans, res,
statistic=c('median','quantile','mean','fitted','lp'),
q)
\method{summary}{areg.boot}(object, conf.int=.95, values, adj.to,
statistic='median', q, \dots)
\method{print}{summary.areg.boot}(x, \dots)
\method{predict}{areg.boot}(object, newdata,
statistic=c("lp", "median",
"quantile", "mean", "fitted", "terms"),
q=NULL, \dots)
\method{Function}{areg.boot}(object, type=c('list','individual'),
ytype=c('transformed','inverse'),
prefix='.', suffix='', pos=-1, \dots)
Mean(object, \dots)
Quantile(object, \dots)
\method{Mean}{areg.boot}(object, evaluation=200, \dots)
\method{Quantile}{areg.boot}(object, q=.5, \dots)
}
\arguments{
\item{formula}{a formula without a left-hand-side variable. Variables
may be enclosed in \code{monotone(), linear(), categorical()} to
make certain assumptions about transformations. \code{categorical}
and \code{linear} need not be specified if they can be summized from
the variable values.}
\item{x}{
for \code{areg.boot} \code{x}
is a formula. For \code{print} or \code{plot}, an object created by
\code{areg.boot} or \code{transace}. For
\code{print.summary.areg.boot}, and object
created by \code{summary.areg.boot}. For \code{ggplot} is
the result of \code{transace}.
}
\item{object}{
an object created by \code{areg.boot}, or a model fit object
suitable for \code{Mean} or \code{Quantile}.
}
\item{transEst}{
a vector of transformed values. In log-normal regression these
could be predicted log(Y) for example.
}
\item{inverseTrans}{
a function specifying the inverse transformation needed to change
\code{transEst} to the original untransformed scale.
\code{inverseTrans} may also be a 2-element list defining a mapping
from the transformed values to untransformed values. Linear
interpolation is used in this case to obtain untransform values.
}
\item{trim}{quantile to which to trim original and transformed values
for continuous variables for purposes of plotting the
transformations with \code{ggplot.transace}}
\item{nrow}{the number of rows to graph for \code{transace}
transformations, with the default chosen by \code{ggplot2}}
\item{data}{
data frame to use if \code{x} is a formula and variables are not
already in the search list. For \code{ggplot} is a \code{transace} object.
}
\item{environment,mapping}{ignored}
\item{weights}{
a numeric vector of observation weights. By default, all
observations are weighted equally.
}
\item{subset}{
an expression to subset data if \code{x} is a formula
}
\item{na.action}{
a function specifying how to handle \code{NA}s. Default is \code{\link{na.delete}}.
}
\item{B}{
number of bootstrap samples (default=100)
}
\item{method}{
\code{"areg"} (the default) or \code{"avas"}
}
\item{nk}{
number of knots for continuous variables not restricted to be
linear. Default is 4. One or two is not allowed. \code{nk=0}
forces linearity for all continuous variables.
}
\item{evaluation}{
number of equally-spaced points at which to evaluate (and save) the
nonparametric transformations derived by \code{\link[acepack]{avas}} or
\code{\link[acepack]{ace}}. Default is 100. For \code{Mean.areg.boot},
\code{evaluation} is the number of points at which to evaluate exact
smearing estimates, to approximate them using linear interpolation
(default is 200).
}
\item{valrsq}{
set to \code{TRUE} to more quickly do bootstrapping without
validating \eqn{R^2}
}
\item{probs}{
vector probabilities denoting the quantiles of continuous predictors
to use in estimating effects of those predictors
}
\item{tolerance}{
singularity criterion; list source code for the
\code{\link{lm.fit.qr.bare}} function.
}
\item{res}{
a vector of residuals from the transformed model. Not required when
\code{statistic="lp"} or \code{statistic="fitted"}.
}
\item{statistic}{
statistic to estimate with the smearing estimator. For
\code{smearingEst}, the default results in computation of the sample
median of the model residuals, then \code{smearingEst} adds the
median residual and back-transforms to get estimated median
responses on the original scale. \code{statistic="lp"} causes
predicted transformed responses to be computed. For
\code{smearingEst}, the result (for \code{statistic="lp"}) is the
input argument \code{transEst}. \code{statistic="fitted"} gives
predicted untransformed responses, i.e.,
\eqn{ginverse(lp)}, where ginverse is the inverse
of the estimated response transformation, estimated by reverse
linear interpolation on the tabulated nonparametric response
transformation or by using an explicit analytic
function. \code{statistic="quantile"} generalizes \code{"median"} to
any single quantile \code{q} which must be specified. \code{"mean"}
causes the population mean response to be estimated. For
\code{predict.areg.boot}, \code{statistic="terms"} returns a matrix
of transformed predictors. \code{statistic} can also be any \R
function that computes a single value on a vector of values, such as
\code{statistic=var}. Note that in this case the function name is
not quoted.
}
\item{q}{
a single quantile of the original response scale to estimate, when
\code{statistic="quantile"}, or for \code{Quantile.areg.boot}.
}
\item{ylim}{
2-vector of y-axis limits
}
\item{boot}{
set to \code{FALSE} to not plot any bootstrapped transformations.
Set it to an integer k to plot the first k bootstrap
estimates.
}
\item{col.boot}{
color for bootstrapped transformations
}
\item{lwd.boot}{
line width for bootstrapped transformations
}
\item{conf.int}{
confidence level (0-1) for pointwise bootstrap confidence limits and
for estimated effects of predictors in \code{summary.areg.boot}. The
latter assumes normality of the estimated effects.
}
\item{values}{
a list of vectors of settings of the predictors, for predictors for
which you want to overide settings determined from \code{probs}.
The list must have named components, with names corresponding to the
predictors. Example:
\code{values=list(x1=c(2,4,6,8), x2=c(-1,0,1))} specifies that
\code{summary} is to estimate the effect on \code{y} of changing
\code{x1} from 2 to 4, 2 to 6, 2 to 8, and separately, of changing
\code{x2} from -1 to 0 and -1 to 1.
}
\item{adj.to}{
a named vector of adjustment constants, for setting all other
predictors when examining the effect of a single predictor in
\code{summary}. The more nonlinear is the transformation of
\code{y} the more the adjustment settings will matter. Default
values are the medians of the values defined by \code{values} or
\code{probs}. You only need to name the predictors for which you
are overriding the default settings. Example:
\code{adj.to=c(x2=0,x5=10)} will set \code{x2} to 0 and \code{x5} to
10 when assessing the impact of variation in the other predictors.
}
\item{newdata}{
a data frame or list containing the same number of values of all of
the predictors used in the fit. For \code{\link{factor}} predictors
the \samp{levels} attribute do not need to be in the same order as
those used in the original fit, and not all levels need to be
represented. If \code{newdata} is omitted, you can still obtain
linear predictors (on the transformed response scale) and fitted
values (on the original response scale), but not \code{"terms"}.
}
\item{type}{
specifies how \code{\link{Function}} is to return the series of
functions that define the transformations of all variables. By
default a list is created, with the names of the list elements being
the names of the variables. Specify \code{type="individual"} to
have separate functions created in the current environment
(\code{pos=-1}, the default) or in location defined by \code{pos}
if \code{where} is specified. For the latter method, the names of
the objects created are the names of the corresponding variables,
prefixed by \code{prefix} and with \code{suffix} appended to the
end. If any of \code{pos}, \code{prefix}, or
\code{suffix} is specified, \code{type} is automatically set to
\code{"individual"}.
}
\item{ytype}{
By default the first function created by \code{Function} is the
y-transformation. Specify \code{ytype="inverse"} to instead create
the inverse of the transformation, to be able to obtain originally
scaled y-values.
}
\item{prefix}{
character string defining the prefix for function names created when
\code{type="individual"}. By default, the function specifying the
transformation for variable \code{x} will be named \code{.x}.
}
\item{suffix}{
character string defining the suffix for the function names
}
\item{pos}{
See \code{\link{assign}}.
}
\item{\dots}{
arguments passed to other functions. Ignored for
\code{print.transace} and \code{ggplot.transace}.
}
}
\value{
\code{transace} returns a list of class \code{transace} containing
these elements: \code{n} (number of non-missing observations used), \code{transformed} (a matrix containing transformed values), \code{rsq} (vector of \eqn{R^2} with which each
variable can be predicted from the others), \code{omitted} (row
numbers of data that were deleted due to \code{NA}s),
\code{trantab} (compact transformation lookups), \code{levels}
(original levels of character and factor varibles if the input was a
data frame), \code{trim} (value of \code{trim} passed to
\code{transace}), \code{limits} (the limits for plotting raw and
transformed variables, computed from \code{trim}), and \code{type} (a
vector of transformation types used for the variables).
\code{areg.boot} returns a list of class \samp{areg.boot} containing
many elements, including (if \code{valrsq} is \code{TRUE})
\code{rsquare.app} and \code{rsquare.val}. \code{summary.areg.boot}
returns a list of class \samp{summary.areg.boot} containing a matrix
of results for each predictor and a vector of adjust-to settings. It
also contains the call and a \samp{label} for the statistic that was
computed. A \code{print} method for these objects handles the
printing. \code{predict.areg.boot} returns a vector unless
\code{statistic="terms"}, in which case it returns a
matrix. \code{Function.areg.boot} returns by default a list of
functions whose argument is one of the variables (on the original
scale) and whose returned values are the corresponding transformed
values. The names of the list of functions correspond to the names of
the original variables. When \code{type="individual"},
\code{Function.areg.boot} invisibly returns the vector of names of the
created function objects. \code{Mean.areg.boot} and
\code{Quantile.areg.boot} also return functions.
\code{smearingEst} returns a vector of estimates of distribution
parameters of class \samp{labelled} so that \code{print.labelled} wil
print a label documenting the estimate that was used (see
\code{\link{label}}). This label can be retrieved for other purposes
by using e.g. \code{label(obj)}, where obj was the vector
returned by \code{smearingEst}.
}
\details{
As \code{transace} only does one iteration over the predictors, it may
not find optimal transformations and it will be dependent on the order
of the predictors in \code{x}.
\code{\link[acepack]{ace}} and \code{\link[acepack]{avas}} standardize transformed variables to have
mean zero and variance one for each bootstrap sample, so if a
predictor is not important it will still consistently have a positive
regression coefficient. Therefore using the bootstrap to estimate
standard errors of the additive least squares regression coefficients
would not help in drawing inferences about the importance of the
predictors. To do this, \code{summary.areg.boot} computes estimates
of, e.g., the inter-quartile range effects of predictors in predicting
the response variable (after untransforming it). As an example, at
each bootstrap repetition the estimated transformed value of one of
the predictors is computed at the lower quartile, median, and upper
quartile of the raw value of the predictor. These transformed x
values are then multipled by the least squares estimate of the partial
regression coefficient for that transformed predictor in predicting
transformed y. Then these weighted transformed x values have the
weighted transformed x value corresponding to the lower quartile
subtracted from them, to estimate an x effect accounting for
nonlinearity. The last difference computed is then the standardized
effect of raising x from its lowest to its highest quartile. Before
computing differences, predicted values are back-transformed to be on
the original y scale in a way depending on \code{statistic} and
\code{q}. The sample standard deviation of these effects (differences)
is taken over the bootstrap samples, and this is used to compute
approximate confidence intervals for effects andapproximate P-values,
both assuming normality.
\code{predict} does not re-insert \code{NA}s corresponding to
observations that were dropped before the fit, when \code{newdata} is
omitted.
\code{statistic="fitted"} estimates the same quantity as
\code{statistic="median"} if the residuals on the transformed response
have a symmetric distribution. The two provide identical estimates
when the sample median of the residuals is exactly zero. The sample
mean of the residuals is constrained to be exactly zero although this
does not simplify anything.
}
\author{
Frank Harrell
\cr
Department of Biostatistics
\cr
Vanderbilt University School of Medicine
\cr
\email{fh@fharrell.com}
}
\seealso{
\code{\link[acepack]{avas}}, \code{\link[acepack]{ace}},
\code{\link[rms]{ols}}, \code{\link[rms]{validate}},
\code{\link[rms]{predab.resample}}, \code{\link{label}},
\code{\link[rms]{nomogram}}
}
\references{
Harrell FE, Lee KL, Mark DB (1996): Stat in Med 15:361--387.
Duan N (1983): Smearing estimate: A nonparametric retransformation
method. JASA 78:605--610.
Wang N, Ruppert D (1995): Nonparametric estimation of the
transformation in the transform-both-sides regression model. JASA
90:522--534.
See \code{\link[acepack]{avas}}, \code{\link[acepack]{ace}} for primary references.
}
\examples{
# xtrans <- transace(~ monotone(age) + sex + blood.pressure + categorical(race.code))
# print(xtrans) # show R^2s and a few other things
# ggplot(xtrans) # show transformations
# Generate random data from the model y = exp(x1 + epsilon/3) where
# x1 and epsilon are Gaussian(0,1)
set.seed(171) # to be able to reproduce example
x1 <- rnorm(200)
x2 <- runif(200) # a variable that is really unrelated to y]
x3 <- factor(sample(c('cat','dog','cow'), 200,TRUE)) # also unrelated to y
y <- exp(x1 + rnorm(200)/3)
f <- areg.boot(y ~ x1 + x2 + x3, B=40)
f
plot(f)
# Note that the fitted transformation of y is very nearly log(y)
# (the appropriate one), the transformation of x1 is nearly linear,
# and the transformations of x2 and x3 are essentially flat
# (specifying monotone(x2) if method='avas' would have resulted
# in a smaller confidence band for x2)
summary(f)
# use summary(f, values=list(x2=c(.2,.5,.8))) for example if you
# want to use nice round values for judging effects
# Plot Y hat vs. Y (this doesn't work if there were NAs)
plot(fitted(f), y) # or: plot(predict(f,statistic='fitted'), y)
# Show fit of model by varying x1 on the x-axis and creating separate
# panels for x2 and x3. For x2 using only a few discrete values
newdat <- expand.grid(x1=seq(-2,2,length=100),x2=c(.25,.75),
x3=c('cat','dog','cow'))
yhat <- predict(f, newdat, statistic='fitted')
# statistic='mean' to get estimated mean rather than simple inverse trans.
xYplot(yhat ~ x1 | x2, groups=x3, type='l', data=newdat)
\dontrun{
# Another example, on hypothetical data
f <- areg.boot(response ~ I(age) + monotone(blood.pressure) + race)
# use I(response) to not transform the response variable
plot(f, conf.int=.9)
# Check distribution of residuals
plot(fitted(f), resid(f))
qqnorm(resid(f))
# Refit this model using ols so that we can draw a nomogram of it.
# The nomogram will show the linear predictor, median, mean.
# The last two are smearing estimators.
Function(f, type='individual') # create transformation functions
f.ols <- ols(.response(response) ~ age +
.blood.pressure(blood.pressure) + .race(race))
# Note: This model is almost exactly the same as f but there
# will be very small differences due to interpolation of
# transformations
meanr <- Mean(f) # create function of lp computing mean response
medr <- Quantile(f) # default quantile is .5
nomogram(f.ols, fun=list(Mean=meanr,Median=medr))
# Create S functions that will do the transformations
# This is a table look-up with linear interpolation
g <- Function(f)
plot(blood.pressure, g$blood.pressure(blood.pressure))
# produces the central curve in the last plot done by plot(f)
}
# Another simulated example, where y has a log-normal distribution
# with mean x and variance 1. Untransformed y thus has median
# exp(x) and mean exp(x + .5sigma^2) = exp(x + .5)
# First generate data from the model y = exp(x + epsilon),
# epsilon ~ Gaussian(0, 1)
set.seed(139)
n <- 1000
x <- rnorm(n)
y <- exp(x + rnorm(n))
f <- areg.boot(y ~ x, B=20)
plot(f) # note log shape for y, linear for x. Good!
xs <- c(-2, 0, 2)
d <- data.frame(x=xs)
predict(f, d, 'fitted')
predict(f, d, 'median') # almost same; median residual=-.001
exp(xs) # population medians
predict(f, d, 'mean')
exp(xs + .5) # population means
# Show how smearingEst works
res <- c(-1,0,1) # define residuals
y <- 1:5
ytrans <- log(y)
ys <- seq(.1,15,length=50)
trans.approx <- list(x=log(ys), y=ys)
options(digits=4)
smearingEst(ytrans, exp, res, 'fitted') # ignores res
smearingEst(ytrans, trans.approx, res, 'fitted') # ignores res
smearingEst(ytrans, exp, res, 'median') # median res=0
smearingEst(ytrans, exp, res+.1, 'median') # median res=.1
smearingEst(ytrans, trans.approx, res, 'median')
smearingEst(ytrans, exp, res, 'mean')
mean(exp(ytrans[2] + res)) # should equal 2nd # above
smearingEst(ytrans, trans.approx, res, 'mean')
smearingEst(ytrans, trans.approx, res, mean)
# Last argument can be any statistical function operating
# on a vector that returns a single value
}
\keyword{nonparametric}
\keyword{smooth}
\keyword{multivariate}
\keyword{nonlinear}
\keyword{regression}
\concept{bootstrap}
\concept{model validation}
|