1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/* Runtime detection of optional processor characteristics.
*
* Contents:
* 1. Checking for support of x86 vector code
* 2. Internal code used in those checks
* 3. Unit tests
* 4. Test driver
* 5. Example
*
* References:
* https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family
* https://software.intel.com/en-us/articles/how-to-detect-knl-instruction-support
* https://en.wikipedia.org/wiki/CPUID
*/
#include "esl_config.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#include "easel.h"
#include "esl_cpu.h"
/* declarations of static functions that come in section (2) */
#if defined(eslENABLE_SSE) || defined(eslENABLE_SSE4) || defined(eslENABLE_AVX) || defined(eslENABLE_AVX512)
static void cpu_run_id(uint32_t eax, uint32_t ecx, uint32_t *abcd);
#endif
#ifdef eslENABLE_SSE
static int cpu_has_sse(void);
#endif
#ifdef eslENABLE_SSE4
static int cpu_has_sse4(void);
#endif
#ifdef eslENABLE_AVX
static int cpu_check_xcr0_ymm(void);
static int cpu_has_avx(void);
#endif
#ifdef eslENABLE_AVX512
static int cpu_check_xcr0_zmm(void);
static int cpu_has_avx512(void);
#endif
/*****************************************************************
* 1. Checking for support of x86 vector code
*****************************************************************/
/* Function: esl_cpu_has_sse()
* Synopsis: Check if processor supports x86 SSE/SSE2
* Incept: SRE, Wed Feb 1 09:19:11 2017
*
* Purpose: Returns TRUE if our code has an available SSE vector
* implementation compiled in, and the processor we're
* running on can support it (i.e. has SSE+SSE2).
* Else returns FALSE.
*
* Note: Although these use static flags, they are thread-safe.
* They can only go in one direction, from a not-set-yet
* state to a set state. Worst that happens in a race
* condition is that we set the flag twice to the same
* thing.
*/
int
esl_cpu_has_sse(void)
{
#ifdef eslENABLE_SSE
static int sse_support = -1;
if (sse_support < 0)
sse_support = cpu_has_sse();
return sse_support;
#else
return 0;
#endif
}
/* Function: esl_cpu_has_sse4()
* Synopsis: Check if processor supports x86 <= SSE4.1
* Incept: SRE, Wed Jun 6 11:49:46 2018 [OdjBox, Otto Croy]
*
* Purpose: Returns TRUE if our code has an available SSE4 vector
* implementation compiled in, and the processor we're
* running on can support it (i.e. has SSE+SSE2+SSE4.1).
* Else returns FALSE.
*/
int
esl_cpu_has_sse4(void)
{
#ifdef eslENABLE_SSE4
static int sse4_support = -1;
if (sse4_support < 0)
sse4_support = cpu_has_sse4();
return sse4_support;
#else
return 0;
#endif
}
/* Function: esl_cpu_has_avx()
* Synopsis: Check if processor supports x86 AVX/AVX2.
* Incept: SRE, Wed Feb 1 09:46:36 2017
*
* Purpose: Returns TRUE if our code has an available AVX vector
* implementation compiled in, and the processor we're
* running on can support it (i.e. has AVX+AVX2). Else
* returns FALSE.
*/
int
esl_cpu_has_avx(void)
{
#ifdef eslENABLE_AVX
static int avx_support = -1;
if (avx_support < 0)
avx_support = cpu_has_avx();
return avx_support;
#else
return 0;
#endif
}
/* Function: esl_cpu_has_avx512()
* Synopsis: Check if processor supports x86 AVX-512.
* Incept: SRE, Wed Feb 1 09:47:24 2017
*
* Purpose: Returns TRUE if our code has an available AVX512 vector
* implementation compiled in, and the processor we're
* running on can support it (i.e. has
* AVX-512{F,PF,ER,CD,BW}). Else returns FALSE.
*/
int
esl_cpu_has_avx512(void)
{
#ifdef eslENABLE_AVX512
static int avx512_support = -1;
if (avx512_support < 0)
avx512_support = cpu_has_avx512();
return avx512_support;
#else
return 0;
#endif
}
/* Function: esl_cpu_Get()
* Synopsis: Returns a string showing which implementation our dispatchers choose.
* Incept: SRE, Tue May 23 12:30:37 2017 [Handsome Family, Winnebago Skeletons]
*
* Purpose: Return a string indicating which vector implementation is
* chosen by our dispatchers, assuming they follow our
* standard pattern.
*/
char *
esl_cpu_Get(void)
{
#ifdef eslENABLE_AVX512 // Fastest first.
if (esl_cpu_has_avx512()) return "AVX512";
#endif
#ifdef eslENABLE_AVX
if (esl_cpu_has_avx()) return "AVX";
#endif
#ifdef eslENABLE_SSE4
if (esl_cpu_has_sse4()) return "SSE4";
#endif
#ifdef eslENABLE_SSE
if (esl_cpu_has_sse()) return "SSE";
#endif
#ifdef eslENABLE_NEON
return "NEON";
#endif
//#ifdef eslENABLE_VMX
// return "VMX";
//#endif
return "none";
}
/*---------- end, API for x86 vector instruction checks ---------*/
/*****************************************************************
* 2. Internal code used in x86 vector code checks
*****************************************************************/
#if defined(eslENABLE_SSE) || defined(eslENABLE_SSE4) || defined(eslENABLE_AVX) || defined(eslENABLE_AVX512)
/* cpu_run_id()
*
* Bit flags in EAX (and maybe ECX) registers specify the information
* you want to query from the x86 processor. The cpuid opcode returns
* results by setting bits in EAX, EBX, ECX, EDX registers, which we
* return in abcd[0..3], respectively.
*
* [What all the bits mean](https://en.wikipedia.org/wiki/CPUID)
*
* Adapted from run_cpuid() in:
* https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family
*/
static void
cpu_run_id(uint32_t eax, uint32_t ecx, uint32_t *abcd)
{
#if defined(_MSC_VER)
__cpuidex(abcd, eax, ecx);
#else
uint32_t ebx = 0;
uint32_t edx = 0;
#if defined( __i386__ ) && defined ( __PIC__ ) /* in case of PIC under 32-bit EBX cannot be clobbered */
__asm__ ( "movl %%ebx, %%edi \n\t cpuid \n\t xchgl %%ebx, %%edi" : "=D" (ebx), "+a" (eax), "+c" (ecx), "=d" (edx) );
#else
__asm__ ( "cpuid" : "+b" (ebx), "+a" (eax), "+c" (ecx), "=d" (edx) );
#endif
abcd[0] = eax; abcd[1] = ebx; abcd[2] = ecx; abcd[3] = edx;
#endif // ! _MSC_VER
}
#endif // eslENABLE_SSE | eslENABLE_SSE4 | eslENABLE_AVX | eslENABLE_AVX512
#ifdef eslENABLE_AVX
/* cpu_check_xcr0_ymm()
*
* Check for OS support of AVX. AVX uses the YMM registers, and the
* operating system must support saving YMM state on a context switch.
* The check depends on the `xgetbv` intrinsic on x86 processors.
*
* xgetbv's result has set:
* bits 7<<5 = zmm (AVX-512)
* bit 1<<2 = ymm (AVX)
* bit 1<<1 = xmm
*
* Some Mac OS/X assemblers do not recognize the xgetbv instruction,
* but you can still emit the raw byte codes for it. So instead of
* __asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx" );
* we have
* __asm__(".byte 0x0f, 0x01, 0xd0" : "=a" (xcr0) : "c" (0) : "%edx" );
*/
static int
cpu_check_xcr0_ymm(void)
{
uint32_t xcr0;
uint32_t ymm_xmm = (1 << 2) | (1 << 1);
#if defined(_MSC_VER)
xcr0 = (uint32_t)_xgetbv(0); /* min VS2010 SP1 compiler is required */
#else
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a" (xcr0) : "c" (0) : "%edx" );
#endif
return ((xcr0 & ymm_xmm) == ymm_xmm);
}
#endif
#ifdef eslENABLE_AVX512
/* cpu_check_xcr0_zmm()
*
* Similarly, check for OS support of AVX-512, which uses ZMM and YMM registers.
*/
static int
cpu_check_xcr0_zmm(void)
{
uint32_t xcr0;
uint32_t zmm_ymm_xmm = (7 << 5) | (1 << 2) | (1 << 1);
#if defined(_MSC_VER)
xcr0 = (uint32_t)_xgetbv(0); /* min VS2010 SP1 compiler is required */
#else
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (xcr0) : "c" (0) : "%edx" );
#endif
return ((xcr0 & zmm_ymm_xmm) == zmm_ymm_xmm);
}
#endif
#ifdef eslENABLE_SSE
/* cpu_has_sse()
*
* Test whether processor supports SSE/SSE2 instructions.
* Note that Easel's "SSE" vector code means SSE+SSE2.
*/
static int
cpu_has_sse(void)
{
uint32_t abcd[4];
uint32_t sse2_mask = (1 << 25) | // edx: SSE
(1 << 26); // SSE2
cpu_run_id( 1, 0, abcd );
if ( (abcd[3] & sse2_mask) != sse2_mask) // edx check
return 0;
return 1;
}
#endif // eslENABLE_SSE
#ifdef eslENABLE_SSE4
/* cpu_has_sse4()
*
* Test whether processor supports SSE/SSE2/SSE4.1 instructions.
* Note that Easel's "SSE4" vector code means SSE+SSE2+SSE4.1.
*/
static int
cpu_has_sse4(void)
{
uint32_t abcd[4];
uint32_t sse2_mask = (1 << 25) | // edx: SSE
(1 << 26); // SSE2
uint32_t sse41_mask = (1 << 19); // ecx: SSE4.1
cpu_run_id( 1, 0, abcd );
if ( (abcd[3] & sse2_mask) != sse2_mask || // edx check
(abcd[2] & sse41_mask) != sse41_mask) // ecx check
return 0;
return 1;
}
#endif // eslENABLE_SSE4
#ifdef eslENABLE_AVX
/* cpu_has_avx
*
* Test whether processor supports AVX/AVX2 instructions.
* Easel "AVX" vector code requires AVX+AVX2.
*/
static int
cpu_has_avx(void)
{
uint32_t abcd[4];
uint32_t fma_movbe_osxsave_mask = ((1 << 12) | (1 << 22) | (1 << 27));
uint32_t avx2_bmi12_mask = (1 << 5) | (1 << 3) | (1 << 8);
/* CPUID.(EAX=01H, ECX=0H):ECX.FMA[bit 12]==1 &&
CPUID.(EAX=01H, ECX=0H):ECX.MOVBE[bit 22]==1 &&
CPUID.(EAX=01H, ECX=0H):ECX.OSXSAVE[bit 27]==1 */
cpu_run_id( 1, 0, abcd );
if ( (abcd[2] & fma_movbe_osxsave_mask) != fma_movbe_osxsave_mask )
return 0;
if ( ! cpu_check_xcr0_ymm() )
return 0;
/* CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]==1 &&
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]==1 &&
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]==1 */
cpu_run_id( 7, 0, abcd );
if ( (abcd[1] & avx2_bmi12_mask) != avx2_bmi12_mask )
return 0;
/* CPUID.(EAX=80000001H):ECX.LZCNT[bit 5]==1 */
cpu_run_id( 0x80000001, 0, abcd );
if ( (abcd[2] & (1 << 5)) == 0)
return 0;
return 1;
}
#endif // eslENABLE_AVX
#ifdef eslENABLE_AVX512
/* cpu_has_avx512()
*
* Test whether processors supports AVX-512. Our AVX-512 code
* currently can depend on Foundation, Double/Quadword, and Byte/Word
* subsets (F, DQ, BW), and requires Intel Skylake Xeon (Purley)
* processors or later.
*/
static int
cpu_has_avx512(void)
{
uint32_t abcd[4];
uint32_t osxsave_mask = (1 << 27);
uint32_t knl_mask = (1 << 16) | // AVX-512F
(1 << 17) | // AVX-512DQ
(1 << 30); // AVX-512BW
cpu_run_id( 1, 0, abcd );
if ( (abcd[2] & osxsave_mask) != osxsave_mask )
return 0;
if ( ! cpu_check_xcr0_zmm() )
return 0;
cpu_run_id( 7, 0, abcd );
if ( (abcd[1] & knl_mask) != knl_mask )
return 0;
return 1;
}
#endif // eslENABLE_AVX512
/*------------ end, x86 processor interrogation -----------------*/
/*****************************************************************
* 3. Unit tests
*****************************************************************/
#ifdef eslCPU_TESTDRIVE
/* utest_consistency()
*
* If we support AVX-512, we must support AVX; if we support AVX, we
* must support SSE. This isn't a strong test of anything, but since
* we don't know anything about the processor we're running unit
* testing on, it's hard to guarantee any stronger test.
*/
static void
utest_consistency(void)
{
char msg[] = "utest_consistency() failed";
if (esl_cpu_has_avx512() && ! esl_cpu_has_avx()) esl_fatal(msg);
if (esl_cpu_has_avx() && ! esl_cpu_has_sse4()) esl_fatal(msg);
if (esl_cpu_has_sse4() && ! esl_cpu_has_sse()) esl_fatal(msg);
}
#endif // eslCPU_TESTDRIVE
/*****************************************************************
* 4. Test driver
*****************************************************************/
#ifdef eslCPU_TESTDRIVE
int
main(int argc, char **argv)
{
fprintf(stderr, "## %s\n", argv[0]);
utest_consistency();
fprintf(stderr, "# status = ok\n");
return eslOK;
}
#endif // eslCPU_TESTDRIVE
/*****************************************************************
* 5. Example
*****************************************************************/
#ifdef eslCPU_EXAMPLE
#include "esl_config.h"
#include "easel.h"
#include "esl_cpu.h"
int
main(int argc, char **argv)
{
printf("your cpu supports our SSE code : %s\n", esl_cpu_has_sse() ? "yes" : "no");
printf(" ...our SSE4 code : %s\n", esl_cpu_has_sse4() ? "yes" : "no");
printf(" ...our AVX code : %s\n", esl_cpu_has_avx() ? "yes" : "no");
printf(" ...our AVX512 code : %s\n", esl_cpu_has_avx512() ? "yes" : "no");
printf("Our dispatchers will choose : %s\n", esl_cpu_Get());
}
#endif // eslCPU_EXAMPLE
|