File: esl_dirichlet.c

package info (click to toggle)
hmmer 3.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,380 kB
  • sloc: ansic: 119,305; perl: 8,791; sh: 3,266; makefile: 1,871; python: 598
file content (1656 lines) | stat: -rw-r--r-- 52,776 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
/* Functions relevant to Beta, Gamma, and Dirichlet densities,
 * including simple and mixture Dirichlet priors.
 * 
 * Contents:
 *   1. The <ESL_MIXDCHLET> object for mixture Dirichlet priors
 *   2. Dirichlet likelihood functions
 *   3. Sampling from Dirichlets              
 *   4. Reading mixture Dirichlets from files 
 *   5. Unit tests
 *   6. Test driver
 *   7. Example
 *   
 * To-do:
 *   -  Fit*() functions should return eslEINVAL on n=0, eslENORESULT
 *      on failure due to small n. Compare esl_gumbel. xref J12/93.
 *      SRE, Wed Nov 27 11:18:12 2013
 */
#include "esl_config.h"

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "easel.h"
#include "esl_fileparser.h"
#include "esl_minimizer.h"
#include "esl_random.h"
#include "esl_stats.h"
#include "esl_vectorops.h"

#include "esl_dirichlet.h"


/*****************************************************************
 *# 1. The <ESL_MIXDCHLET> object for mixture Dirichlet priors
 *****************************************************************/

/* Function:  esl_mixdchlet_Create()
 *
 * Purpose:   Create a new mixture Dirichlet prior with <N> components,
 *            each with <K> parameters.
 *
 * Returns:   initialized <ESL_MIXDCHLET *> on success.
 *
 * Throws:    NULL on allocation failure.
 */
ESL_MIXDCHLET *
esl_mixdchlet_Create(int N, int K)
{
  int status;
  ESL_MIXDCHLET *pri = NULL;
  int q;

  ESL_DASSERT1( (N > 0) );
  ESL_DASSERT1( (K > 0) );

  ESL_ALLOC(pri, sizeof(ESL_MIXDCHLET));
  pri->pq = NULL; 
  pri->alpha = NULL;

  ESL_ALLOC(pri->pq,    sizeof(double)   * N);
  ESL_ALLOC(pri->alpha, sizeof(double *) * N);
  pri->alpha[0] = NULL;

  ESL_ALLOC(pri->alpha[0], sizeof(double) * N * K);
  if (pri->alpha[0] == NULL) goto ERROR;               // to silence clang static analysis, which gets overzealous about N=0/K=0 -> NULL result
  for (q = 1; q < N; q++)
    pri->alpha[q] = pri->alpha[0] + q*K;

  pri->N = N;
  pri->K = K;
  return pri;

 ERROR:
  esl_mixdchlet_Destroy(pri);
  return NULL;
}

/* Function:  esl_mixdchlet_PerfectBipartiteMatchExists()
 * Synopsis:  Given a 2D table representing presence of edges between vertices represented by
 * 			the rows and columns, test whether a perfect matching exists.
 * 			Note 1: this doesn't find a perfect matching, just checks if one exists.
 * 			Note 2: written as a private function for use by esl_mixdchlet_Compare
 * Incept:    TW, Fri Nov  6 14:23:23 EST 2009 [janelia]
 *
 * Args:      A      - 2-dimensional square table representing presence of edges between vertices
 *            N      - size of that table
 *
 * Returns:   <eslOK> if a perfect matching exists; <eslFAIL> otherwise.
 */
int
esl_mixdchlet_PerfectBipartiteMatchExists(int **A, int N ) 
{
  /*
    Basic idea:
    -Scan through the rows, and create a matching edge any time a row has only
    one matching column (i.e. a single column with eslOK value)
    * This is conservative: if the row isn't matched with this column, no perfect matching is possible.
    -Repeat, this time scanning columns.
    -Repeat  rows then columns - until no rows or columns are found with a single eslOK value.

    -If a row or column is found with no possible matches, then no complete matching is possible.
    -If a point is reached where all rows and all columns have more than one match, I'm pretty sure a
    perfect matching is guaranteed.
    - This is unproven; the intuition is that for any imperfect matching an augmenting path
    should (I think) exist: it will contain an edge from one unmatched element to a matched
    element, followed by the existing edge from that element to it's mate, followed by a 2nd
    edge from that mate to another, and so on.

    It's a O(n^3) algorithm, though it'll typically run fast in practice
  */
  int matched_row[N], matched_col[N];
  esl_vec_ISet(matched_row, N, 0);
  esl_vec_ISet(matched_col, N, 0);

  int i,j;
  int unassigned = N;
  int do_row = 1; // otherwise, do_column
  while (unassigned > 0) {
    int changed = 0;

    for (i=0; i<N; i++) {
      int match_cnt = 0;
      int match = -1;

      if ( 1 == (do_row == 1 ? matched_row[i] : matched_col[i]) ) continue;

      for (j=0; j<N; j++) {
	if ( eslOK == (do_row == 1 ? A[i][j] : A[j][i] ) ) {
	  match_cnt++;
	  match = j;
	}
      }

      if (match_cnt == 0) return eslFAIL;  // mixtures can't possibly match
      if (match_cnt == 1) { // found a pair s.t. only this col can match this row within tol.
	changed++;
	if (do_row == 1  ) {
	  matched_row[i] = matched_col[match] = 1;
	  for (j=0; j<N; j++)
	    A[j][match] = eslFAIL; // don't allow the matched col to match other rows, too.
	} else {
	  matched_col[i] = matched_row[match] = 1;
	  for (j=0; j<N; j++)
	    A[match][j] = eslFAIL; // don't allow the matched rwo to match other cols, too.
	}
      }
      //if (match_cnt > 1), leave it for a later pass
    }
    unassigned -= changed;

    if (changed == 0) { // All had multiple hits, so (I think) we are guaranteed of being able to pick some mapping that will be legal
      return eslOK;
    }
    do_row = 1 - do_row; // flip value

  }
  //got here, all mapping must've been done
  return eslOK;
}

/* Function:  esl_mixdchlet_Compare()
 * Synopsis:  Compare two mixture Dirichlets for equality.
 *
 * Purpose:   Compare mixture Dirichlet objects <d1> and <d2>
 *            for equality. For real numbered values, equality
 *            is defined by <esl_DCompare()> with a fractional
 *            tolerance <tol>.
 *
 * Returns:   <eslOK> on equality; <eslFAIL> otherwise.
 */
int
esl_mixdchlet_Compare(ESL_MIXDCHLET *d1, ESL_MIXDCHLET *d2, double tol)
{
  int   i,j;
  int **A = NULL;
  int   status;

  if (d1->N != d2->N) return eslFAIL;
  if (d1->K != d2->K) return eslFAIL;

  //set up a 2-D matrix, to store the pairs of components that meet tolerance requirements
  ESL_ALLOC(A, d1->N * sizeof(int*));
  for (i = 0; i < d1->N; i++) A[i] = NULL;
  for (i = 0; i < d1->N; i++) ESL_ALLOC(A[i], d1->N * sizeof(int) );

  // Fill in matrix - OK if component i from d1 is a viable match with component q from d2
  for (i=0; i<d1->N; i++)
    {
      for (j=0; j<d1->N; j++)
	{
	  A[i][j] = esl_DCompare( d1->pq[i], d2->pq[j], tol);
	  if (A[i][j] == eslOK)
	    A[i][j] = esl_vec_DCompare(d1->alpha[i], d2->alpha[j], d1->K, tol) ;
	}
    }

  /* In most cases, there should be only a one-to-one mapping (if
   * any), which is easy to test.  But in the unlikely case of a
   * many-to-one mapping, we need to do a little more.  The problem
   * amounts to asking whether there exists a perfect bipartite
   * matching (aka the marriage problem)
   */
  status = esl_mixdchlet_PerfectBipartiteMatchExists( A, d1->N);
  
  /* fallthrough */
 ERROR:
  if (A) {
    for (i = 0; i < d1->N; i++)
      if (A[i]) free (A[i]);
    free (A);
  }
  return status;
}



/* Function:  esl_mixdchlet_Copy()
 * Synopsis:  Copy a mixture Dirichlet object.
 *
 * Purpose:   Copies mixture dirichlet object <d> to <d_dst>.
 *            Both objects are of size <N> and <K>.  
 *            <d> is unchanged.                    
 *
 * Returns:   <eslOK> on equality; <eslFAIL> otherwise.
 */
int
esl_mixdchlet_Copy(ESL_MIXDCHLET *d, ESL_MIXDCHLET *d_dst)
{
  int q;

  if (d->N != d_dst->N) return eslFAIL;
  if (d->K != d_dst->K) return eslFAIL;

  esl_vec_DCopy(d->pq, d->N, d_dst->pq);
  
  for (q = 0; q < d->N; q++)
    esl_vec_DCopy(d->alpha[q], d->K, d_dst->alpha[q]);

  return eslOK;
}


/* Function:  esl_mixdchlet_Destroy()
 *
 * Purpose:   Free's the mixture Dirichlet <pri>.
 */
void
esl_mixdchlet_Destroy(ESL_MIXDCHLET *pri)
{
  if (pri     == NULL)  return;
  if (pri->pq != NULL)  free(pri->pq);
  if (pri->alpha != NULL) {
    if (pri->alpha[0] != NULL) free(pri->alpha[0]); 
    free(pri->alpha);
  }
  free(pri);
}


/* Function:  esl_mixdchlet_Dump()
 *
 * Purpose:   Dump the mixture Dirichlet <d>.
 */
int
esl_mixdchlet_Dump(FILE *fp, ESL_MIXDCHLET *d)
{
  int  q;  /* counter over mixture components */
  int  i;  /* counter over params */

  fprintf(fp, "Mixture Dirichlet: N=%d K=%d\n", d->N, d->K);
  for (q = 0; q < d->N; q++) {
    fprintf(fp, "q[%d] %f\n", q, d->pq[q]);
    for (i = 0; i < d->K; i++)
      fprintf(fp, "alpha[%d][%d] %f\n", q, i, d->alpha[q][i]);
  }
  
  return eslOK;
}

/* esl_dirichlet_MixturePosterior()
 *
 * Purpose:   For a count vector <c> of cardinality <K>, and a
 *            mixture Dirichlet prior <pri>. Calculate mix[],
 *            the posterior probability P(q | c) of mixture
 *            component q given the count vector c. Caller must
 *            provide allocated space for <mix>, of length <K>.
 *
 * Returns:   <eslOK> on success, <mix> contains posterior probabilities of
 *            the Dirichlet components.
 */
static int
esl_dirichlet_MixturePosterior(double *c, int K, ESL_MIXDCHLET *pri, double *mix)
{
  int q;      /* counter over mixture components */
  double val;

  for (q = 0; q < pri->N; q++) {
    if (pri->pq[q] > 0.0) {
      esl_dirichlet_LogProbData(c, pri->alpha[q], K, &val);
      mix[q] =  val + log(pri->pq[q]);
    }
    else
    {
      mix[q] = -HUGE_VAL;
    }
  }

  esl_vec_DLogNorm(mix, pri->N); /* mix[q] is now P(q|c) */

  return eslOK;
}

/* Function:  esl_mixdchlet_MPParameters()
 *
 * Purpose:   Parameter estimation for a count vector <c> of cardinality
 *            <K>, and a mixture Dirichlet prior <pri>. Calculates
 *            mean posterior estimates for probability parameters, and
 *            returns them in <p>. Also returns the posterior probabilities
 *            of each Dirichlet mixture component, $P(q \mid c)$, in <mix>.
 *            Caller must provide allocated space for <mix> and <p>, both
 *            of length <K>.
 *
 * Returns:   <eslOK> on success; <mix> contains posterior probabilities of
 *            the Dirichlet components, and <p> contains mean posterior
 *            probability parameter estimates.
 *
 * Throws:    <esl_EINCOMPAT> if <pri> has different cardinality than <c>.
 */
int
esl_mixdchlet_MPParameters(double *c, int K, ESL_MIXDCHLET *pri, double *mix, double *p)
{
  int q;			/* counter over mixture components */
  int x;
  double totc;
  double tota;
  
  if (K != pri->K) ESL_EXCEPTION(eslEINCOMPAT, "cvec's K != mixture Dirichlet's K");

  /* Calculate mix[], the posterior probability
   * P(q | c) of mixture component q given the count vector c.
   */
  esl_dirichlet_MixturePosterior(c, K, pri, mix);


  /* Compute mean posterior estimates for probability parameters
   */
  totc = esl_vec_DSum(c, K);
  esl_vec_DSet(p, K, 0.);
  for (x = 0; x < K; x++)
    for (q = 0; q < pri->N; q++)
      {
	tota = esl_vec_DSum(pri->alpha[q], K);
	p[x] += mix[q] * (c[x] + pri->alpha[q][x]) / (totc + tota);
      }
  /* should be normalized already, but for good measure: */
  esl_vec_DNorm(p, K);
  return eslOK;
}


/* Function:  esl_mixdchlet_BILD_score()
 *
 * Purpose:   Compute the BILD score (sensu Altschul et al PLos Compbio 2010)
 *            for a given count vector <c> of cardinality (alphabet size) <K>,
 *            under a mixture Dirichlet prior <pri>, and a background
 *            character distribution <bg>, also cardinality K. The score is
 *            in bits. Also computes posterior values for (1) Dirichlet mixture
 *            coefficients ($P(q \mid c)$, performed and returned in a previously
 *            allocated array, <mix>).
 *
 *            Caller must provide allocated space for <mix> (length K), and
 *            <q> (length 1).
 *
 * Returns:   <eslOK> on success; <mix> contains posterior probabilities of
 *            the Dirichlet components, and <sc> contains the BILD score of
 *            observation under the prior and bg.
 *
 * Throws:    <esl_EINCOMPAT> if <pri> has different cardinality than <c>.
 */
int
esl_mixdchlet_BILD_score(double *c, int K, int N, ESL_MIXDCHLET *pri,
                   double *mix, double *bg, double *sc)
{
  int i;      /* counter over mixture components */
  int j;
  double tmp;
  double val;
  double totc;
  double tota;

  if (K != pri->K) ESL_EXCEPTION(eslEINCOMPAT, "cvec's K != mixture Dirichlet's K");
  if (N != pri->N) ESL_EXCEPTION(eslEINCOMPAT, "cvec's N != mixture Dirichlet's N");

  /* Calculate mix[], the posterior probability
   * P(q | c) of mixture component q given the count vector c.
   */
  esl_dirichlet_MixturePosterior(c, K, pri, mix);


  /* Compute probability of observing the given count vector
   * under the mixture Dirichlet prior, which depends on the
   * posterior.
   */
  *sc = 0.0;
  totc = esl_vec_DSum(c, K);
  for (i = 0; i < N; i++) {
    if (mix[i] > 0) {
      tota = esl_vec_DSum(pri->alpha[i], K);
      esl_stats_LogGamma(tota, &tmp);
      val = tmp;

      esl_stats_LogGamma(tota + totc, &tmp);
      val -= tmp;

      for (j = 0; j < K; j++) {
        esl_stats_LogGamma(pri->alpha[i][j] + c[j], &tmp);
        val += tmp;
        esl_stats_LogGamma(pri->alpha[i][j], &tmp);
        val -= tmp;
      }

      *sc += mix[i] * exp(val);
    }
  }

  /* At this point, sc holds the Q value from the Altschul paper.
   * Get the odds ratio by dividing by the product of background
   * probabilities for observed counts, (accounting for sequence
   * weighting).
   */
  for (j = 0; j < K; j++) {
    *sc /= pow(bg[j], c[j]);
  }
  *sc = log(*sc)*eslCONST_LOG2R;

  return eslOK;
}
/*---------------- end, ESL_MIXDCHLET ---------------------------*/


/*****************************************************************
 *# 2. Dirichlet likelihood functions
 *****************************************************************/

/* Function:  esl_dirichlet_LogProbData()
 *
 * Purpose:   Given an observed count vector $c[0..K-1]$, 
 *            and a simple Dirichlet density parameterized by
 *            $\alpha[0..K-1]$;
 *            calculate $\log P(c \mid \alpha)$.
 *            
 *            This is $\int P(c \mid p) P(p \mid \alpha) dp$,
 *            an integral that can be solved analytically.
 *
 * Args:      c          - count vector, [0..K-1]
 *            alpha      - Dirichlet parameters, [0..K-1]
 *            K          - size of c, alpha vectors
 *            ret_answer - RETURN: log P(c | \alpha)
 *
 * Returns:   <eslOK> on success, and puts result $\log P(c \mid \alpha)$
 *            in <ret_answer>.
 */
int
esl_dirichlet_LogProbData(double *c, double *alpha, int K, double *ret_answer)
{
  double lnp;      
  double sum1, sum2, sum3;
  double a1, a2, a3;
  int    x;

  sum1 = sum2 = sum3 = lnp = 0.0;
  for (x = 0; x < K; x++)
    {
      sum1 += c[x] + alpha[x];
      sum2 += alpha[x];
      sum3 += c[x];
      esl_stats_LogGamma(alpha[x] + c[x], &a1); 
      esl_stats_LogGamma(c[x] + 1.,       &a2);
      esl_stats_LogGamma(alpha[x],        &a3);
      lnp  += a1 - a2 - a3;
    }
  esl_stats_LogGamma(sum1,      &a1);
  esl_stats_LogGamma(sum2,      &a2);
  esl_stats_LogGamma(sum3 + 1., &a3);
  lnp += a2 + a3 - a1;

  *ret_answer = lnp;
  return eslOK;
}

/* Function:  esl_dirichlet_LogProbData_Mixture()
 *
 * Purpose:   Given an observed count vector $c[0..K-1]$, 
 *            and a mixture Dirichlet density parameterized by
 *		$\alpha_1[0..K-1]$ ... $\alpha_N[0..K-1]$,
 *            calculate $\log \sum_i pq_i * P(c \mid \alpha_i)$.
 *            
 *
 * Args:      c          - count vector, [0..K-1]
 *            d          - Dirichlet parameters, [0..K-1]
 *            ret_answer - RETURN: log P(c | \alpha)
 *
 * Returns:   <eslOK> on success, and puts result $\log P(c \mid \alpha)$
 *            in <ret_answer>.
 *            
 * Throws:    <eslEMEM> on allocation error. Now <*ret_answer> is 
 *            <-eslINFINITY>.           
 */
int
esl_dirichlet_LogProbData_Mixture(double *c, ESL_MIXDCHLET *d, double *ret_answer)
{
  double *mixq = NULL;
  double  lnp;
  double  val;
  int     q;             /* counter over mixture components */
  int     status;

  ESL_ALLOC(mixq, sizeof(double)*d->N);

  for (q = 0; q < d->N; q++) {
    esl_dirichlet_LogProbData(c, d->alpha[q], d->K, &val);
    mixq[q] = val + log(d->pq[q]);
  }
  lnp = esl_vec_DLogSum(mixq, d->N);

  free(mixq);

  *ret_answer = lnp;
  return eslOK;

 ERROR:
  free(mixq);
  *ret_answer = -eslINFINITY;
  return status;
}


/* esl_dirichlet_LogProbDataSet_Mixture()
 *
 * Purpose:   Given an observed set of count vectors $c[0..N-1][0..K-1]$, 
 *            and a mixture Dirichlet density parameterized by
 *			  $\alpha_1[0..K-1]$ ... $\alpha_N[0..K-1]$,
 *            calculate $ \sum_n \log \sum_i pq_i * P(c[n] \mid \alpha_i)$.
 *            This is a convenience function, which simply wraps
 *            esl_dirichlet_LogProbData_Mixture
 *
 * Args:      ntrials      - number of count vectors (aka N)
 *            counts       - count vector set, [0..N-1][0..K-1]
 *            md           - Dirichlet parameters
 *            ret_answer   - RETURN: log P(c | \alpha)
 *
 * Returns:   <eslOK> on success, and puts result $\log P(c \mid \alpha)$
 *            in <ret_answer>.
 *            
 * Throws:    <eslEMEM> on allocation error. Now <*ret_answer> is            
 *            <-eslINFINITY>.
 */
static int 
esl_dirichlet_LogProbDataSet_Mixture(int ntrials, double** counts, ESL_MIXDCHLET* md, double *ret_answer) 
{
  double val;
  int    i;
  int    status;

  *ret_answer = 0;
  for (i = 0; i < ntrials; i++) 
    {
      if (( status = esl_dirichlet_LogProbData_Mixture(counts[i], md, &val)) != eslOK) goto ERROR;
      *ret_answer += val;
    }
  return eslOK;

 ERROR:
  *ret_answer = -eslINFINITY;
  return status;
}

/* Function:  esl_dirichlet_LogProbProbs()
 *
 * Purpose:   Given Dirichlet parameter vector <alpha> and a probability
 *            vector <p>, both of cardinality <K>; return
 *            $\log P(p \mid alpha)$.
 *            
 * Returns:   <eslOK> on success, and the result is in <ret_answer>.           
 *            
 * Xref:      Sjolander (1996) appendix, lemma 2.
 */
int
esl_dirichlet_LogProbProbs(double *p, double *alpha, int K, double *ret_answer)
{
  double sum;		        /* for Gammln(|alpha|) in Z     */
  double logp;			/* RETURN: log P(p|alpha)       */
  double val;
  int x;

  sum = logp = 0.0;
  for (x = 0; x < K; x++)
    if (p[x] > 0.0)		/* any param that is == 0.0 doesn't exist */
      {
	esl_stats_LogGamma(alpha[x], &val);
	logp -= val;
	logp += (alpha[x]-1.0) * log(p[x]);
	sum  += alpha[x];
      }
  esl_stats_LogGamma(sum, &val);
  logp += val;
  *ret_answer = logp;
  return eslOK;
}
/*----------- end, Dirichlet likelihood functions ---------------*/

/*****************************************************************
 * Dirichlet Maximum likelihood fit from counts
 *****************************************************************/

/* This structure is used to sneak the data into minimizer's generic
 * (void *) API for all aux data
 */
struct mixdchlet_data {
  ESL_MIXDCHLET  *d;      /* the dirichlet mixture parameters */
  double        **c;      /* count vector array [0..nc-1][0..alphabet_size(d->K)] */
  int             nc;     /* number of count samples */
};

/*****************************************************************
 * Parameter vector packing/unpacking
 *
 * The conjugate gradient code takes a single parameter vector <p>,
 * where the values are unconstrained real numbers.
 *
 * We have a mixture Dirichlet with two kinds of parameters.
 * pq_i are mixture coefficients, constrained to be >= 0 and
 * \sum_i pq_i = 1.  alpha^i_x are the Dirichlet parameters
 * for component i, constrained to be > 0.
 *
 * Our p's are therefore not only packed into a single vector;
 * they're reparameterized to implement the constraints:
 *   for a Dirichlet parameter:
 *      alpha = exp(p)   p = log(alpha)
 *      (thus, alpha > 0 for all real p)
 *
 *   for a mixture coefficient:
 *      pq = exp(-exp(p)) / \sum_a exp(-exp(p_a))
 *      (thus, 0 < pq < 1 and \sum_a pq_a = 1, for all real p)
 *
 *   In my hands (ER), this parametrization works better that
 *      pq = exp(p) / \sum_a exp(p_a)
 *
 * Conjugate gradients optimizes the <p> parameter vector,
 * but we can convert that back out into a Dirichlet answer.
 *
 * The packing order is: the first N terms of a parameter vector are
 * the mixture coefficients pq_i. N different alpha_i vectors follow.
 *
 * [0 ... N-1] [0 ... K-1] [0 ... K-1]  ... 
 *     q's      alpha_0     alpha_1     ...
 *
 * In both functions below, p, pq, and alpha are all allocated
 * and free'd by the caller.
 *      p : length N + N*K = N*(K+1)  [0.. N*(K+1)-1]
 *     pq : length N,   [0..N-1]
 *  alpha : length NxK, [0..N-1][0..K-1].
 *
 * Special cases:
 *
 * - For (N >= 1 && K == 1) there is nothing to optimize.
 *  
 * - For (N == 1 && K >  1) the only variables to optimize are the K alphas
 *
 *              [0 ... K-1] 
 *                 alpha    
 *
 *      p : length N*K = N*K  [0.. N*K-1]
 *  alpha : length NxK, [0][0..K-1].
 *
 */
static void
mixdchlet_pack_paramvector(double *p, int np, ESL_MIXDCHLET *d)
{
  int nq;        /* number the mixture components to optimize */
  int q;	 /* counter over mixture components */
  int x;         /* counter in alphabet size */

  nq = (d->N > 1)? d->N : 0;

  /* the mixture coeficients */
  for (q = 0; q < nq; q++)
	  p[q] = log(d->pq[q]);
    //p[q] = log(-log(d->pq[q]));  TW changed to the above; this was causing fit to fail

  /* the dirichlet parameters */
  for (q = 0; q < d->N; q++)
    for (x = 0; x < d->K; x++)
      p[nq + q*d->K + x] = log(d->alpha[q][x]);
 
}

/* Same as above but in reverse: given parameter vector <p>,
 * do appropriate c.o.v. back to desired parameter space, and
 * update the mixdchlet <d>.
 */
static void
mixdchlet_unpack_paramvector(double *p, int np, ESL_MIXDCHLET *d)
{
  int nq;        /* number the mixture components to optimize */
  int q;	 /* counter over mixture components */
  int x;         /* counter in alphabet size */

  nq = (d->N > 1)? d->N : 0;

  /* the mixture coeficients */
  for (q = 0; q < nq; q++) 
	d->pq[q] = exp(p[q]);
	//d->pq[q] = exp(-exp(p[q])); TW changed to the above; this was causing fit to fail
  esl_vec_DNorm(d->pq, d->N);

  /* the dirichlet parameters */
  for (q = 0; q < d->N; q++)
    for (x = 0; x < d->K; x++) 
      d->alpha[q][x] = exp(p[nq + q*d->K + x]);      
 
  /*esl_mixdchlet_Dump(stdout, d);*/

}

/* The log likelihood function to be optimized by ML fitting:
 *   This needs to be careful of a case where a lambda = inf.
 */
static double
mixdchlet_complete_func(double *p, int np, void *dptr)
{
  struct mixdchlet_data *data = (struct mixdchlet_data *) dptr;
  ESL_MIXDCHLET         *d    = data->d;
  double  logPsample;
  double  logP = 0.;
  int     m;             /* counter over count samples */
 
  mixdchlet_unpack_paramvector(p, np, d);

  for (m = 0; m < data->nc; m++) {
    esl_dirichlet_LogProbData_Mixture(data->c[m], d, &logPsample);
    logP += logPsample;
  }

  if (isnan(logP)) esl_fatal("logP is NaN");
  return -logP;
}

/* The gradient of the NLL w.r.t. each free parameter in p.
 * Modified by ER 11/03/09 to compute derivative of log(alpha) instead of alpha
 * (committed by TW)
 */
static void
mixdchlet_complete_gradient(double *p, int np, void *dptr, double *dp)
{
  struct mixdchlet_data *data = (struct mixdchlet_data *) dptr;
  ESL_MIXDCHLET         *d    = data->d;
  double  sum_alpha;             /* \sum_x alpha[q][x]                        */
  double  sum_c;                 /* \sum_x c[m][x]                            */
  double  val;                   /* val    is         p_q * P(c_m | alpha_q)  */
  double *valsum;                /* valsum is  sum_q [p_q * P(c_m | alpha_q)] */
  double  term;                  /* term   is  q * P(alpha_q | c_m)           */
  double  psi1;                  /* Psi(sum_alpha[q])                         */
  double  psi2;                  /* Psi(sum_alpha[q] + sum_c[m])              */
  double  psi3;                  /* Psi(sum_alpha[q][x]+ c[m][x])             */
  double  psi4;                  /* Psi(sum_alpha[q][x])                      */
  int     nq;                    /* number the mixture components to optimize */
  int     m;                     /* counter over count samples                */
  int     q;                     /* counter over mixture components           */
  int     x;                     /* counter in alphabet size                  */

  nq = (d->N > 1)? d->N : 0;

  mixdchlet_unpack_paramvector(p, np, d);

  /* initialize */
  valsum = malloc(sizeof(double) * data->nc);
  esl_vec_DSet(dp, np, 0.0);

  /* Some precalculation of sums for efficiency.
   * valsum is  sum_q [p_q * P(c_m | alpha_q)]
   */
   for (m = 0; m < data->nc; m++)
    esl_dirichlet_LogProbData_Mixture(data->c[m], d, &(valsum[m]));

   for (q = 0; q < d->N; q++) {

     sum_alpha = esl_vec_DSum(d->alpha[q], d->K);
     esl_stats_Psi(sum_alpha, &psi1);  /* psi1 = Psi(sum_alpha[q]) */

     for (m = 0; m < data->nc; m++) {
       sum_c = esl_vec_DSum(data->c[m], d->K);
       esl_stats_Psi(sum_alpha+sum_c, &psi2); /* psi2 = Psi(sum_alpha[q] + sum_c[m]) */

      /* val is pq * P(c_m | alpha_q)    */
       esl_dirichlet_LogProbData(data->c[m], d->alpha[q], d->K, &val);


       /* derivative respect to the mixture coeficients */
       /* term is  pq * P(alpha_q | c_m) */
       term = exp(val - valsum[m] + log(d->pq[q]));
       if (nq > 0) dp[q] += term - d->pq[q];


       /* derivative respect to the dirichlet parameters */
       for (x = 0; x < d->K; x++) {
         esl_stats_Psi(d->alpha[q][x]+data->c[m][x], &psi3); /* psi3 = Psi(sum_alpha[q][x]+ c[m][x]) */
         esl_stats_Psi(d->alpha[q][x],               &psi4); /* psi4 = Psi(sum_alpha[q][x]+ c[m][x]) */

         dp[nq + q*d->K + x] += term * d->alpha[q][x] * (psi1 - psi2 + psi3 - psi4);


      }
     }
   }



   /* Return the negative, because we're minimizing the NLP, not maximizing.
    */
   for (q = 0; q < nq; q++) {
     if (isnan(dp[q])) esl_fatal("dp for pq[%d] is NaN", q);
     dp[q] *= -1.;
   }
   for (q = 0; q < d->N; q++)
     for (x = 0; x < d->K; x++) {
       if(isnan(dp[nq + q*d->K + x])) esl_fatal("dp for alpha[%d][%d] is NaN", q, x);
       dp[nq + q*d->K + x] *= -1.0;
     }

   free(valsum);
 }

/* Function:  esl_mixdchlet_Fit()
 *
 * Purpose:   Given a count vector <c>, and an initial guess <d> for
 *            a mixdchlet, find maximum likelihood parameters
 *            by conjugate gradient descent optimization, starting
 *            from <d> and leaving the final optimized solution in
 *            <d>.
 *            
 * Returns:   <eslOK> on success, and <d> contains the fitted 
 *            mixdchlet parameters.
 *            
 * Throws:    <eslEMEM> on allocation error, and <d> is left in
 *            in its initial state.           
 */
int
esl_mixdchlet_Fit(double **c, int nc, ESL_MIXDCHLET *d, int be_verbose)
{
  struct mixdchlet_data data;
  double *p   = NULL;
  double *u   = NULL;
  double *wrk = NULL;
  double  tol;
  double  fx;
  int     np;      /* number of parameters to optimize */
  int     nq;      /* number the mixture components to optimize */
  int     i;
  int     status;

  /* nothing to optimize for a dirichlet of K = 1 (alphabet size = 1)*/
  if (d->K == 1) return eslOK;

  tol = 1e-6;

  /* Allocate parameters
   */
  nq = (d->N > 1)? d->N : 0;
  np = nq + d->N*d->K;
  ESL_ALLOC(p,   sizeof(double) * np);
  ESL_ALLOC(u,   sizeof(double) * np);
  ESL_ALLOC(wrk, sizeof(double) * np * 4);

  /* Copy shared info into the "data" structure
   */
  data.d  = d;
  data.c  = c;
  data.nc = nc;

  /* From d, create the parameter vector.
   */
  mixdchlet_pack_paramvector(p, np, d);

  /* Define the step size vector u.
   */
  for (i = 0; i < np; i++) u[i] = 0.1;

  /* Feed it all to the mighty optimizer.
   */
  status = esl_min_ConjugateGradientDescent(p, u, np, 
					    &mixdchlet_complete_func, 
					    &mixdchlet_complete_gradient,
					    (void *) (&data), tol, wrk, &fx);
  if (status != eslOK && status != eslENOHALT) // eslENOHALT? Then take what we've got - it's probably pretty good
    goto ERROR;

  /* Convert the final parameter vector back to a mixdchlet
   */
  mixdchlet_unpack_paramvector(p, np, d);

  free(p);
  free(u);
  free(wrk);
  return eslOK;

 ERROR:
  if (p   != NULL) free(p);
  if (u   != NULL) free(u);
  if (wrk != NULL) free(wrk);
  return status;
}


/* Function:  esl_mixdchlet_Fit_Multipass()
 *
 * Purpose:   Given a set of count vectors <c>, find maximum
 *            likelihood mixdchlet parameters. A number <reps>
 *            of initial guesses <d> for a mixdchlet are used,
 *            with conjugate gradient descent performed for
 *            each guess. The mixdchlet returned is the one
 *            among these multiple local searches with
 *            best likelihood.  This is a convenience
 *            function, which simply wraps <esl_mixdchlet_Fit()>
 *            for multiple start points.
 *
 * Args:      r  - pointer to random generator
 * 	      c  - set of count vectors, [0..M-1][0..N-1]
 * 	      nc - number of count samples
 *            reps - number of random starting points
 *            best_md  - an initialized mixdchlet, which will
 *            		contain the correct q and alpha values
 *            		at completion
 *            verbose - if >0, output is verbose
 *
 * Returns:   <eslOK> on success, and <best_md> contains the fitted
 *            mixdchlet parameters with best likelihood.
 *
 * Throws:    <eslEMEM> on allocation error, and the state of <best_md> 
 *            is undefined.
 */
int
esl_mixdchlet_Fit_Multipass(ESL_RANDOMNESS *rng, double **c, int nc, int reps, ESL_MIXDCHLET *best_md, int verbose)
{
  ESL_MIXDCHLET *md      = esl_mixdchlet_Create(best_md->N, best_md->K);
  double         best_lk = -eslINFINITY;
  int            err_cnt = 0;
  int            i, q, k;
  double         lk;
  int            status;
  
  for (i = 0; i < reps; i++) 
    {
      /* for each pass, establish a new random starting point */
      if (( status = esl_dirichlet_DSampleUniform(rng, md->N, md->pq)) != eslOK) goto ERROR;
      for (q = 0; q < md->N; q++) 
	for (k = 0; k < md->K; k++)
	  md->alpha[q][k] = 10.0 * esl_rnd_UniformPositive(rng);

      /* then use Fit to do local search */
      status = esl_mixdchlet_Fit(c, nc, md, 0);
      if (status != eslOK) {
	err_cnt++;
	if (err_cnt==2*reps) {
	  goto ERROR;
	} else {
	  i--; /* try another starting point */
	  continue;
	}
      }
      esl_dirichlet_LogProbDataSet_Mixture (nc, c, md, &lk);

      if (verbose)
	{
	  fprintf(stderr, "Repetition # %d\n------------\n", i);
	  esl_mixdchlet_Dump(stderr, md);
	  fprintf(stderr, "llk = %.3f  (vs best = %.3f)\n", lk, best_lk);
	}

      if (lk > best_lk) 
	{
	  if (verbose) fprintf(stderr, "... so copy md -> best_md\n");
	  best_lk = lk;
	  esl_mixdchlet_Copy(md, best_md);
	}
    }

  if (verbose) 
    {
      fprintf(stdout, "\n\n----------------\nbest mixture:\n");
      esl_mixdchlet_Dump(stdout, best_md);
      fprintf(stdout, "llk = %.3f", best_lk);
    }

  esl_mixdchlet_Destroy(md);
  return eslOK;

 ERROR:
  esl_mixdchlet_Destroy(md);
  return status;
}
/*----------- end, Dirichlet Maximum likelihood fit from counts ---------------*/


/*****************************************************************
 *# 3. Sampling from Dirichlets: requires <esl_random>
 *****************************************************************/

/* Function:  esl_dirichlet_DSample()
 *
 * Purpose:   Given a Dirichlet density parameterized by $\alpha[0..K-1]$,
 *            sample a probability vector $p[0..K-1]$ from
 *            $P(p \mid \alpha)$.
 *
 * Args:      r      - random number generation object
 *            alpha  - parameters of Dirichlet density [0..K-1]
 *            K      - vector size
 *            p      - RETURN: sampled probability vector
 *                     (caller allocates 0..K-1).         
 *
 * Returns:   <eslOK>, and <p> will contain the sampled vector.
 */
int
esl_dirichlet_DSample(ESL_RANDOMNESS *r, double *alpha, int K, double *p)
{
  int x;

  for (x = 0; x < K; x++) 
    p[x] = esl_rnd_Gamma(r, alpha[x]);
  esl_vec_DNorm(p, K);
  return eslOK;
}

/* Function:  esl_dirichlet_FSample()
 *
 * Purpose:   Same as <esl_dirichlet_DSample()>, except it
 *            works in single-precision floats, not doubles.
 */
int
esl_dirichlet_FSample(ESL_RANDOMNESS *r, float *alpha, int K, float *p)
{
  int x;

  for (x = 0; x < K; x++) 
    p[x] = (float) esl_rnd_Gamma(r, (double) alpha[x]);
  esl_vec_FNorm(p, K);
  return eslOK;
}

/* Function:  esl_dirichlet_DSampleUniform()
 *
 * Purpose:   Sample a probability vector $p[0..K-1]$ uniformly, by
 *            sampling from a Dirichlet of $\alpha_i = 1.0 \forall i$.
 *
 * Args:      r  - source of random numbers
 *            K  - vector size
 *            p  - RETURN: sampled prob vector, caller alloc'ed 0..K-1
 *
 * Returns:   <eslOK>, and <p> will contain the sampled vector.
 *
 * Throws:    (no abnormal error conditions)
 */
int
esl_dirichlet_DSampleUniform(ESL_RANDOMNESS *r, int K, double *p)
{
  int x;
  for (x = 0; x < K; x++) 
    p[x] = esl_rnd_Gamma(r, 1.0);
  esl_vec_DNorm(p, K);
  return eslOK;
}

/* Function:  esl_dirichlet_FSampleUniform()
 *
 * Purpose:   Same as <esl_dirichlet_DSampleUniform()>, except it
 *            works in single-precision floats, not doubles.
 */
int
esl_dirichlet_FSampleUniform(ESL_RANDOMNESS *r, int K, float *p)
{
  int x;
  for (x = 0; x < K; x++) 
    p[x] = (float) esl_rnd_Gamma(r, 1.0);
  esl_vec_FNorm(p, K);
  return eslOK;
}


/* Function:  esl_dirichlet_SampleBeta()
 *
 * Purpose:   Samples from a Beta(theta1, theta2) density, leaves answer
 *            in <ret_answer>. (Special case of sampling Dirichlet.)
 *            
 * Returns:   <eslOK>.           
 */
int
esl_dirichlet_SampleBeta(ESL_RANDOMNESS *r, double theta1, double theta2, double *ret_answer)
{
  double p, q;

  p = esl_rnd_Gamma(r, theta1);
  q = esl_rnd_Gamma(r, theta2);
  *ret_answer = p / (p+q);
  return eslOK;
}
/*---------------- end, Dirichlet sampling ----------------------*/


/*****************************************************************
 *# 4. Reading mixture Dirichlets from files [requires esl_fileparser]
 *****************************************************************/

/* Function:  esl_mixdchlet_Read()
 *
 * Purpose:   Reads a mixture Dirichlet from an open stream <efp>, using the 
 *            <ESL_FILEPARSER> token-based parser. 
 *            
 *            The first two tokens are <K>, the length of the Dirichlet parameter
 *            vector(s), and <N>, the number of mixture components. Then for
 *            each of the <N> mixture components <i>, it reads a mixture coefficient
 *            <pq[i]> followed by <K> Dirichlet parameters <alpha[i][0..K-1]>.
 *            
 *            This function may be called more than once on the same open file,
 *            to read multiple different mixture Dirichlets from it (transitions,
 *            match emissions, insert emissions, for example).
 *            
 * Note:      One reason this function takes an ESL_FILEPARSER instead of 
 *            a filename or an open FILE pointer is that file format errors
 *            in Easel are non-fatal "normal" errors, and we want to record
 *            an informative error message. The ESL_FILEPARSER has an error
 *            buffer for this purpose. 
 *
 * Returns:   <eslOK> on success, and <ret_pri> contains a new <ESL_MIXDCHLET> object 
 *            that the caller is responsible for free'ing.
 *
 *            <eslEFORMAT> on 'normal' parse failure, in which case <efp->errbuf>
 *            contains an informative diagnostic message, and <efp->linenumber>
 *            contains the linenumber at which the parse failed.
 */
int
esl_mixdchlet_Read(ESL_FILEPARSER *efp,  ESL_MIXDCHLET **ret_pri)
{
  ESL_MIXDCHLET *pri;
  int   K;			/* Dirichlet param vector size */
  int   N;			/* number of mixture components */
  char *tok;			/* ptr to a whitespace-delim, noncomment token */
  int   toklen;			/* length of a parsed token */
  int   status;			/* return status of an Easel call */
  int   q;			/* counter over mixture components (0..N-1) */
  int   i;			/* counter over params (0..K-1) */
  
  *ret_pri = pri = NULL;

  if ((status = esl_fileparser_GetToken(efp, &tok, &toklen)) != eslOK) goto ERROR;
  K = atoi(tok);
  if (K < 1) { sprintf(efp->errbuf, "Bad vector size %.32s", tok); goto ERROR; }
  
  if ((status = esl_fileparser_GetToken(efp, &tok, &toklen)) != eslOK) goto ERROR;
  N = atoi(tok);
  if (N < 1) { sprintf(efp->errbuf, "Bad mixture number %.32s", tok); goto ERROR; }

  pri = esl_mixdchlet_Create(N, K);
  if (pri == NULL) { sprintf(efp->errbuf, "mxdchlet alloc failed"); goto ERROR; }
 
  for (q = 0; q < N; q++)
    {
      if ((status = esl_fileparser_GetToken(efp, &tok, &toklen)) != eslOK) goto ERROR;
      pri->pq[q] = atof(tok);
      if (pri->pq[q] < 0.0 || pri->pq[q] > 1.0) 
	{ sprintf(efp->errbuf, "bad mixture coefficient %.32s", tok); goto ERROR; }      

      for (i = 0; i < K; i++)
	{
	  if ((status = esl_fileparser_GetToken(efp, &tok, &toklen)) != eslOK) goto ERROR;
	  pri->alpha[q][i] = atof(tok);
	  if (pri->alpha[q][i] <= 0.0)
	    { sprintf(efp->errbuf, "Dirichlet params must be positive, got %.32s", tok); goto ERROR; } 
	}
    }
  esl_vec_DNorm(pri->pq, N);
  *ret_pri = pri;
  return eslOK;

 ERROR:
  esl_mixdchlet_Destroy(pri);
  return eslEFORMAT;
}

/* Function:  esl_mixdchlet_Write()
 * Synopsis:  Write a mixture Dirichlet to an open output stream.
 *
 * Purpose:   Write mixture Dirichlet <d> to open output stream <d>.
 *
 * Args:      fp   - open output stream
 *            d    - mixture Dirichlet to write
 * 
 * Returns:   <eslOK> on success.
 * 
 * Throws:    <eslEWRITE> on any write error, such as filled disk.
 */
int
esl_mixdchlet_Write(FILE *fp, ESL_MIXDCHLET *d)
{
  int q,i;

  if (fprintf(fp, "%d %d\n", d->K, d->N)         < 0) ESL_EXCEPTION_SYS(eslEWRITE, "mixture dirichlet write failed");
  for (q = 0; q < d->N; q++)
    {
      if (fprintf(fp, "%.3f ", d->pq[q])         < 0) ESL_EXCEPTION_SYS(eslEWRITE, "mixture dirichlet write failed");
      for (i = 0; i < d->K; i++)
	if (fprintf(fp, "%.3f ", d->alpha[q][i]) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "mixture dirichlet write failed");
      if (fprintf(fp, "\n")                      < 0) ESL_EXCEPTION_SYS(eslEWRITE, "mixture dirichlet write failed");
    }
  return eslOK;
}
/*-------------- end, reading mixture Dirichlets ----------------*/



/*****************************************************************
 * 5. Unit tests
 *****************************************************************/
#ifdef eslDIRICHLET_TESTDRIVE

static void
utest_io(ESL_MIXDCHLET *d, double tol)
{
  char           *msg         = "esl_dirichlet: io unit test failed";
  ESL_MIXDCHLET  *d2          = NULL;
  ESL_FILEPARSER *efp         = NULL;
  FILE           *fp          = NULL;
  char            tmpfile[16] = "esltmpXXXXXX";

  /* Create a mixture Dirichlet file, as a named tmpfile.  */
  if (esl_tmpfile_named(tmpfile, &fp) != eslOK) esl_fatal(msg);
  if (esl_mixdchlet_Write(fp, d)      != eslOK) esl_fatal(msg);
  fclose(fp);

  /* Read it back in */
  if ((fp = fopen(tmpfile, "r")) == NULL)        esl_fatal(msg);
  if ((efp = esl_fileparser_Create(fp)) == NULL) esl_fatal(msg);
  if (esl_mixdchlet_Read(efp, &d2) != eslOK)     esl_fatal(msg);
  esl_fileparser_Destroy(efp);
  fclose(fp);

  if (esl_mixdchlet_Compare(d, d2, tol) != eslOK) esl_fatal(msg);

  esl_mixdchlet_Destroy(d2);
  remove(tmpfile);
  return;
}

static void
utest_bild()
{
  char           *msg         = "esl_dirichlet: BILD unit test failed";
  ESL_MIXDCHLET  *d           = NULL;
  int             K           = 4;
  int             N           = 2;
  double         *counts;
  double         *mix;
  double         *bg;
  double          sc;


  /* Create a mixture Dirichlet */
  if ((d = esl_mixdchlet_Create(N, K)) == NULL) esl_fatal(msg);
  //esl_vec_DSet(d->pq,       N, 1.0/N);
  d->pq[0]       = 0.4;
  d->pq[1]       = 0.6;

  d->alpha[0][0] = 0.1;
  d->alpha[0][1] = 0.2;
  d->alpha[0][2] = 0.3;
  d->alpha[0][3] = 0.4;
  esl_vec_DSet(d->alpha[1], K, 1.0);


  //simulate count vector
  counts = malloc(K*sizeof(double));
  counts[0] = 3.0; //2.2;
  counts[1] = 1.0; //0.9;
  counts[2] = 0.0; //4.5;
  counts[3] = 0.0; //3.0;

  //simulate background probabilities
  bg = malloc(K*sizeof(double));
  esl_vec_DSet(bg, K, 1.0/K);

  //allocate working space
  mix = malloc(K*sizeof(double));

  esl_mixdchlet_BILD_score(counts, K, N, d, mix, bg, &sc);

  if (esl_DCompare(sc, 0.701, 0.001) != eslOK)
    esl_fatal(msg);

//  fprintf(stderr, "Score is %.3f\n", sc);

  esl_mixdchlet_Destroy(d);
  free(bg);
  free(counts);
  free(mix);

  return;
}


/*
 * For any given sampling effort, there is always a possibility that the resulting
 * count vector will have a higher likelihood under the wrong component than under the
 * correct component. This unit test runs multiple inferences and only fail if
 * more of the inferences fail than is expected
 */
static void
utest_inference(ESL_RANDOMNESS *r, ESL_MIXDCHLET *d, int ntrials, int ncounts, int be_verbose)
{
  char   *msg    = "esl_dirichlet: inference unit test failed";
  double *counts = malloc(sizeof(double) * d->K);
  double *probs  = malloc(sizeof(double) * d->K);
  double *iq     = malloc(sizeof(double) * d->N);
  double *ip     = malloc(sizeof(double) * d->K);
  int     qused, qguess;
  int     c, i, q, j;
  double  maxdeviation;

  int fail_cnt_1 = 0;
  int fail_cnt_2 = 0;
  int fail_cnt_3 = 0;

  for (j=0; j<ntrials; j++) {
	  /* Sample component, p vector, c vector from mixture Dirichlet */
	  qused = esl_rnd_DChoose(r, d->pq, d->N);
	  //printf("qused=%1d\n", qused);
	  esl_dirichlet_DSample(r, d->alpha[qused], d->K, probs);
	  esl_vec_DSet(counts, d->K, 0.);
	  for (c = 0; c < ncounts; c++)
		{
		  i = esl_rnd_DChoose(r, probs, d->K);
		  counts[i] += 1.;
		}

	  /* First inference test:
	   * classify by posterior inference on the sampled probability vector.
	   */
	  for (q = 0; q < d->N; q++)
		{
		  esl_dirichlet_LogProbProbs(probs, d->alpha[q], d->K, &(iq[q]));
		  iq[q] += log(d->pq[q]);
		}
	  qguess = esl_vec_DArgMax(iq, d->N); /* the MP guess from the probs */
	  //printf("qguess: %1d\n", qguess);
	  if (qused != qguess) {
		  fail_cnt_1++;
	  }

	  /* Second inference test:
	   * classify by posterior inference on the sampled count vector;
	   * then attempt to estimate the probability vector.
	   */
	  esl_mixdchlet_MPParameters(counts, d->K, d, iq, ip);
	  qguess = esl_vec_DArgMax(iq, d->N); /* the MP guess from the counts */
	  //printf("%1d\n", qguess);
	  if (qused != qguess) {
		  fail_cnt_2++;
	  }

	  for (i = 0; i < d->K; i++)
		ip[i] = fabs(ip[i] - probs[i]); /* ip[] is now the differences rel to probs */

	  maxdeviation = esl_vec_DMax(ip, d->K);
	  //  printf("maxdev=%.3f\n", maxdeviation);
	  if (maxdeviation > 0.05) {
		  fail_cnt_3++;
	  }

  }

  if (fail_cnt_1 > 2 || fail_cnt_2 > 2 || fail_cnt_3 > 0) { 
    char m1[100], m2[100], m3[100], m4[100], final_msg[500];
    sprintf(m1, "Out of %d total trials:", ntrials);
    sprintf(m2, "* classification sampled probability vector, failed %d times", fail_cnt_1);
    sprintf(m3, "* classification sampled count vector, failed %d times", fail_cnt_2);
    sprintf(m4, "* gross error in posterior probs estimated from counts, %d times", fail_cnt_3);

    sprintf(final_msg, "%s\n%s\n%s\n%s\n%s\n", m1, m2, m3, m4, msg );
    
    esl_fatal(final_msg);
  }

  free(counts);
  free(probs);
  free(iq);
  free(ip);
  return;
}


/*
 * Performs two tests:
 * (1) Check to see if the inferred mixdchlt is similar to true one;
 * (2) Check if the likelihood under the inferred mixdchlt is at least as good as under the true mixdchlt.
 *
 * Also, now calls the Fit routine multiple times (via esl_mixdchlet_Fit_Multipass),
 * since any single random starting point might lead to a terrible locally optimal mixdchlet
 */
static void
utest_fit(ESL_RANDOMNESS *r, ESL_MIXDCHLET *d, int ntrials, int ncounts, double tol, int reps, int be_verbose)
{
  char           *msg ; //   = "esl_dirichlet: fit unit test failed";
  ESL_MIXDCHLET  *id = NULL;
  double        **counts;
  double         *probs = malloc(sizeof(double) * d->K);
  int             qused;
  int             m;
  int             c;
  int             i;			/* counter over params (0..K-1) */

  counts = malloc(sizeof(double *) * ntrials);
  for (m = 0; m < ntrials; m ++)
    counts[m] = malloc(sizeof(double) * d->K);

  for (m = 0; m < ntrials; m ++) {
    /* Sample component, p vector, c vector from mixture Dirichlet */
    qused = esl_rnd_DChoose(r, d->pq, d->N); 
    esl_dirichlet_DSample(r, d->alpha[qused], d->K, probs);
    esl_vec_DSet(counts[m], d->K, 0.);

    for (c = 0; c < ncounts; c++)
      {
    	i = esl_rnd_DChoose(r, probs, d->K);
    	counts[m][i] += 1.;
      }


#ifdef eslDIRICHLET_TESTDRIVE_PRINTCOUNTS
    printf ("%d  ", m);
    for (i=0; i<d->K; i++)
    	printf ("%.2f  ", counts[m][i]);
    printf("\n");
#endif /*eslDIRICHLET_TESTDRIVE_PRINTCOUNTS*/

  }
  
  /* Start with a random id, use the counts to infer d by 
   * maximum likelihood gradient descent.
   * Generate a random starting point, alphas range from 0..10. 
   */
  id = esl_mixdchlet_Create(d->N, d->K);

  /* optimize id */
//  esl_mixdchlet_Fit(counts, ntrials, id, be_verbose);
  esl_mixdchlet_Fit_Multipass(r, counts, ntrials, reps, id, 0);

  double lp_true;
  esl_dirichlet_LogProbDataSet_Mixture (ntrials, counts, d, &lp_true);

  double lp_inf;
  esl_dirichlet_LogProbDataSet_Mixture (ntrials, counts, id, &lp_inf);

  //Test if the likelihood under the inferred model is at least as good as the
  //likelihood under the true model
  int lk_ok = eslOK;
  if (lp_true > lp_inf +.00001)
	  lk_ok = eslFAIL;

  //Test if the inferred q and alpha values are close
  // (note: "close" is relative - under the default conditions, they're all
  //   within 35% of the true value)
  int alphas_ok =  esl_mixdchlet_Compare(d, id, tol);


  if (lk_ok== eslFAIL || alphas_ok==eslFAIL) {
	  fprintf(stderr, "\nGiven dirichlet\n");
	  esl_mixdchlet_Dump(stderr, d);
	  fprintf (stderr, "logP = %.5f\n\n", lp_true);

	  fprintf(stderr, "\nInferred dirichlet\n");
	  esl_mixdchlet_Dump(stderr, id);
	  fprintf (stderr, "logP = %.5f\n\n", lp_inf);


	  if (lk_ok==eslFAIL)
		  msg    = "esl_dirichlet: fit unit test failed (likelihood)";
	  else
		  msg    = "esl_dirichlet: fit unit test failed (similarity tolerance exceeded)";

	  esl_fatal(msg);
  }
  
  for (m = 0; m < ntrials; m ++)
    free(counts[m]);
  free(counts);
  free(probs);
  esl_mixdchlet_Destroy(id);

  return;
}

#endif /*eslDIRICHLET_TESTDRIVE*/
/*--------------------- end, unit tests -------------------------*/



/*****************************************************************
 * 6. Test driver
 *****************************************************************/
#ifdef eslDIRICHLET_TESTDRIVE
/*
 * gcc -g -Wall -I. -L. -o esl_dirichlet_utest -DeslDIRICHLET_TESTDRIVE esl_dirichlet.c -leasel -lm
 * ./esl_dirichlet_utest
 */
#include "easel.h"
#include "esl_fileparser.h"
#include "esl_getopts.h"
#include "esl_random.h"
#include "esl_dirichlet.h"
/* Note that the RNG seed of 10 is carefully chosen to make the stochastic 
 * tests work reproducibly. Other choices will tend to fail.
 */
static ESL_OPTIONS options[] = {
  /* name           type      default  env  range toggles reqs incomp  help                                       docgroup*/
  { "-h",        eslARG_NONE,   FALSE,  NULL, NULL,  NULL,  NULL, NULL, "show brief help on version and usage",             0 },
  { "-s",        eslARG_INT,     "10",  NULL, NULL,  NULL,  NULL, NULL, "set random number seed to <n>",                    0 },
  { "-t",        eslARG_REAL,   ".35",  NULL, NULL,  NULL,  NULL, NULL, "tolerance for real-value equality comparisons",    0 },
  { "-C",        eslARG_INT,      "2",  NULL, NULL,  NULL,  NULL, NULL, "number of components in test mixture D'chlets",    0 },
  { "-K",        eslARG_INT,      "6",  NULL, NULL,  NULL,  NULL, NULL, "alphabet size in test mixture D'chlets",           0 },
  { "-N",        eslARG_INT,   "1000",  NULL, NULL,  NULL,  NULL, NULL, "number of sample counts in mixture D'chlet tests", 0 },
  { "-T",        eslARG_INT,    "100",  NULL, NULL,  NULL,  NULL, NULL, "number of trials of mixture D'chlet tests",        0 },
  { "-R",        eslARG_INT,    "5",    NULL, NULL,  NULL,  NULL, NULL, "number of repetitions of the D'chlet fitting procedure",        0 },
  { "-v",        eslARG_NONE,    NULL,  NULL, NULL,  NULL,  NULL, NULL, "show verbose output",                              0 },
  {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static char usage[]  = "[-options]";
static char banner[] = "test driver for dirichlet module";

int
main(int argc, char **argv)
{
  char           *msg          = "esl_dirichlet unit test failed";
  ESL_GETOPTS    *go           = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
  ESL_RANDOMNESS *r            = esl_randomness_Create(esl_opt_GetInteger(go, "-s"));
  ESL_MIXDCHLET  *d            = NULL;
  int             K            = esl_opt_GetInteger(go, "-K");
  int             ncounts      = esl_opt_GetInteger(go, "-N");
  int             ntrials      = esl_opt_GetInteger(go, "-T");
  int             nfit_reps    = esl_opt_GetInteger(go, "-R");
  double          tol          = esl_opt_GetReal   (go, "-t");
  int             be_verbose   = esl_opt_GetBoolean(go, "-v");

  if (be_verbose) printf("rng seed = %" PRIu32 "\n", esl_randomness_GetSeed(r));

  /* Create a two-component mixture Dirichlet for testing */
  if ((d = esl_mixdchlet_Create(2, K)) == NULL) esl_fatal(msg);
  esl_vec_DSet(d->pq,       2, 0.5);
  esl_vec_DSet(d->alpha[0], K, 1.0);
  esl_vec_DSet(d->alpha[1], K, 0.1);

  utest_io(d, tol);
  utest_fit(r, d, ntrials, ncounts, tol, nfit_reps, be_verbose);
  utest_inference(r, d, ntrials, ncounts, be_verbose);
  utest_bild();


  esl_randomness_Destroy(r);
  esl_mixdchlet_Destroy(d);
  esl_getopts_Destroy(go);
  return 0;
}
#endif /*eslDIRICHLET_TESTDRIVE*/
/*--------------------- end, test driver ------------------------*/



/*****************************************************************
 * 7. Example 
 *****************************************************************/
#ifdef eslDIRICHLET_EXAMPLE
/*::cexcerpt::dirichlet_example::begin::*/
#include <stdlib.h>
#include <stdio.h>
#include "easel.h"
#include "esl_random.h"
#include "esl_fileparser.h"
#include "esl_vectorops.h"
#include "esl_dirichlet.h"

int
main(int argc, char **argv)
{
  FILE           *fp;
  ESL_FILEPARSER *efp;
  ESL_RANDOMNESS *r;
  ESL_MIXDCHLET  *pri;
  int             c,i,q,qused;
  double         *counts, *probs, *iq, *ip;

  /* Read in a mixture Dirichlet from a file. */
  fp  = fopen(argv[1], "r");
  efp = esl_fileparser_Create(fp);
  if (esl_mixdchlet_Read(efp, &pri) != eslOK) {
    fprintf(stderr, "%s;\ndirichlet file %s parse failed at line %d\n",
	    efp->errbuf, argv[1], efp->linenumber);
    exit(1);
  }
  esl_fileparser_Destroy(efp);
  fclose(fp);  

  /* Allocate some working spaces */
  probs  = malloc(sizeof(double) * pri->K);
  counts = malloc(sizeof(double) * pri->K);
  iq     = malloc(sizeof(double) * pri->N);
  ip     = malloc(sizeof(double) * pri->K);

  /* Sample a probability vector from it. */
  r = esl_randomness_Create(0);            /* init the random generator */
  qused = esl_rnd_DChoose(r, pri->pq, pri->N); /* sample a component */
  esl_dirichlet_DSample(r, pri->alpha[qused], pri->K, probs);

  printf("Component %2d: p[] = ", qused);
  for (i = 0; i < pri->K; i++) printf("%.3f ", probs[i]);
  printf("\n");

  /* Sample a count vector from that prob vector. */
  esl_vec_DSet(counts, pri->K, 0.);
  for (c = 0; c < 20; c++)
    counts[esl_rnd_DChoose(r, probs, pri->K)] += 1.;

  printf("              c[] = ");
  for (i = 0; i < pri->K; i++) printf("%5.0f ", counts[i]);
  printf("\n");

  /* Estimate a probability vector (ip) from those counts, and
   * also get back the posterior prob P(q|c) of each component (iq). */
  esl_mixdchlet_MPParameters(counts, pri->K, pri, iq, ip);

  printf("  reestimated p[] = ");
  for (i = 0; i < pri->K; i++) printf("%.3f ", ip[i]);
  printf("\n");

  q = esl_vec_DArgMax(iq, pri->N);
  printf("probably generated by component %d; P(q%d | c) = %.3f\n",
	 q, q, iq[q]);

  esl_mixdchlet_Destroy(pri);
  esl_randomness_Destroy(r);
  free(probs); free(counts); free(iq); free(ip);
  return 0;
}
/*::cexcerpt::dirichlet_example::end::*/
#endif /*eslDIRICHLET_EXAMPLE*/