1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
|
/* Collecting and displaying histograms.
*
* 1. Creating/destroying histograms and collecting data.
* 2. Declarations about the binned data before parameter fitting.
* 3. Routines for accessing data samples in a full histogram.
* 4. Setting expected counts
* 5. Output and display of binned data.
* 6. Test driver.
* 7. Examples.
*/
#include "esl_config.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include "easel.h"
#include "esl_stats.h"
#include "esl_vectorops.h"
#include "esl_histogram.h"
static int esl_histogram_sort(ESL_HISTOGRAM *h);
/*****************************************************************
* 1. Creating/destroying histograms and collecting data.
*****************************************************************/
/* Function: esl_histogram_Create()
* Synopsis: Create a new <ESL_HISTOGRAM>.
*
* Purpose: Creates and returns a new histogram object, initially
* allocated to count values $>$ <bmin> and $<=$ <bmax> into
* bins of width <w>. Thus, a total of <bmax>-<bmin>/<w> bins
* are initially created.
*
* The lower bound <bmin> and the width <w> permanently
* determine the offset and width of the binning, but not
* the range. For example, <esl_histogram_Create(-100,
* 100, 0.5)> would initialize the object to collect scores into
* 400 bins $[-100< x \leq -99.5],[-99.5 < x \leq
* -99.0]...[99.5 <x \leq 100.0]$. Aside from this, the
* range specified by the bounds <bmin> and <bmax> only
* needs to be an initial guess. The histogram object will
* reallocate itself dynamically as needed to accommodate
* scores that exceed current bounds.
*
* You can be sloppy about <bmax>; it does not have to
* exactly match a bin upper bound. The initial allocation
* is for all full-width bins with upper bounds $\leq
* bmax$.
*
* <esl_histogram_Create()> creates a simplified histogram
* object that collates only the "display" histogram. For
* a more complex object that also keeps the raw data samples,
* better suited for fitting distributions and goodness-of-fit
* testing, use <esl_histogram_CreateFull()>.
*
* There is currently no way to alter where the equals sign
* is, in setting the bin bounds: that is, you can't make bins
* that have <bmin> $\leq x$ and $x <$ <bmax>, alas.
*
* Args: bmin - caller guesses that minimum score will be > bmin
* bmax - caller guesses that max score will be <= bmax
* w - size of bins (1.0, for example)
*
* Returns: ptr to new <ESL_HISTOGRAM> object, which caller is responsible
* for free'ing with <esl_histogram_Destroy()>.
*
* Throws: <NULL> on allocation failure.
*/
ESL_HISTOGRAM *
esl_histogram_Create(double bmin, double bmax, double w)
{
ESL_HISTOGRAM *h = NULL;
int status;
int i;
ESL_ALLOC(h, sizeof(ESL_HISTOGRAM));
h->xmin = DBL_MAX; /* xmin/xmax are the observed min/max */
h->xmax = -DBL_MAX;
h->n = 0;
h->obs = NULL; /* will get allocated below... */
h->bmin = bmin; /* bmin/bmax are the allocated bounds */
h->bmax = bmax;
h->nb = (int)((bmax-bmin)/w);
h->imin = h->nb;
h->imax = -1;
h->w = w;
h->x = NULL;
h->nalloc = 0;
h->phi = 0.;
h->cmin = h->imin; /* sentinel: no observed data yet */
h->z = 0;
h->Nc = 0;
h->No = 0;
h->expect = NULL; /* 'til a Set*() call */
h->emin = -1; /* sentinel: no expected counts yet */
h->tailbase = 0.; /* unused unless is_tailfit TRUE */
h->tailmass = 1.0; /* <= 1.0 if is_tailfit TRUE */
h->is_full = FALSE;
h->is_done = FALSE;
h->is_sorted = FALSE;
h->is_tailfit = FALSE;
h->is_rounded = FALSE;
h->dataset_is = COMPLETE;
ESL_ALLOC(h->obs, sizeof(uint64_t) * h->nb);
for (i = 0; i < h->nb; i++) h->obs[i] = 0;
return h;
ERROR:
esl_histogram_Destroy(h);
return NULL;
}
/* Function: esl_histogram_CreateFull()
* Synopsis: A <ESL_HISTOGRAM> to keep all data samples.
*
* Purpose: Alternative form of <esl_histogram_Create()> that
* creates a more complex histogram that will contain not just the
* display histogram, but also keeps track of all
* the raw sample values. Having a complete vector of raw
* samples improves distribution-fitting and goodness-of-fit
* tests, but will consume more memory.
*/
ESL_HISTOGRAM *
esl_histogram_CreateFull(double bmin, double bmax, double w)
{
int status;
ESL_HISTOGRAM *h = esl_histogram_Create(bmin, bmax, w);
if (h == NULL) return NULL;
h->n = 0; /* make sure */
h->nalloc = 128; /* arbitrary initial allocation size */
ESL_ALLOC(h->x, sizeof(double) * h->nalloc);
h->is_full = TRUE;
return h;
ERROR:
esl_histogram_Destroy(h);
return NULL;
}
/* Function: esl_histogram_Destroy()
* Synopsis: Frees a <ESL_HISTOGRAM>.
*
* Purpose: Frees an <ESL_HISTOGRAM> object <h>.
*/
void
esl_histogram_Destroy(ESL_HISTOGRAM *h)
{
if (h == NULL) return;
if (h->x != NULL) free(h->x);
if (h->obs != NULL) free(h->obs);
if (h->expect != NULL) free(h->expect);
free(h);
return;
}
/* Function: esl_histogram_Score2Bin()
* Synopsis: Given a real-valued <x>; calculate integer bin <b>
*
* Purpose: For a real-valued <x>, figure out what bin it would
* go into in the histogram <h>; return this value in
* <*ret_b>.
*
* Returns: <eslOK> on success.
*
* Throws: <eslERANGE> if bin <b> would exceed the range of
* an integer; for instance, if <x> isn't finite.
*
* Xref: J5/122. Replaces earlier macro implementation;
* we needed to range check <x> better.
*/
int
esl_histogram_Score2Bin(ESL_HISTOGRAM *h, double x, int *ret_b)
{
int status;
if (! isfinite(x)) ESL_XEXCEPTION(eslERANGE, "value added to histogram is not finite");
x = ceil( ((x - h->bmin) / h->w) - 1.);
/* x is now the bin number as a double, which we will convert to
* int. Because x is a double (64-bit), we know all ints are exactly
* represented. Check for under/overflow before conversion.
*/
if (x < (double) INT_MIN || x > (double) INT_MAX)
ESL_XEXCEPTION(eslERANGE, "value %f isn't going to fit in histogram", x);
*ret_b = (int) x;
return eslOK;
ERROR:
*ret_b = 0;
return status;
}
/* Function: esl_histogram_Add()
* Synopsis: Add a sample to the histogram.
*
* Purpose: Adds score <x> to a histogram <h>.
*
* The histogram will be automatically reallocated as
* needed if the score is smaller or larger than the
* current allocated bounds.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEMEM> on reallocation failure.
*
* <eslERANGE> if <x> is beyond the reasonable range for
* the histogram to store -- either because it isn't finite,
* or because the histogram would need to allocate a number
* of bins that exceeds <INT_MAX>.
*
* Throws <eslEINVAL> for cases where something has been done
* to the histogram that requires it to be 'finished', and
* adding more data is prohibited; for example,
* if tail or censoring information has already been set.
* On either failure, initial state of <h> is preserved.
*/
int
esl_histogram_Add(ESL_HISTOGRAM *h, double x)
{
int status;
void *tmp;
int b; /* what bin we're in */
int nnew; /* # of new bins created by a reallocation */
int bi;
/* Censoring info must only be set on a finished histogram;
* don't allow caller to add data after configuration has been declared
*/
if (h->is_done)
ESL_EXCEPTION(eslEINVAL, "can't add more data to this histogram");
/* If we're a full histogram, check whether we need to reallocate
* the full data vector.
*/
if (h->is_full && h->nalloc == h->n)
{
ESL_RALLOC(h->x, tmp, sizeof(double) * h->nalloc * 2);
h->nalloc *= 2;
}
/* Which bin will we want to put x into?
*/
if ((status = esl_histogram_Score2Bin(h,x, &b)) != eslOK) return status;
/* Make sure we have that bin. Realloc as needed.
* If that reallocation succeeds, we can no longer fail;
* so we can change the state of h.
*/
if (b < 0) /* Reallocate below? */
{
nnew = -b*2; /* overallocate by 2x */
if (nnew > INT_MAX - h->nb)
ESL_EXCEPTION(eslERANGE, "value %f requires unreasonable histogram bin number", x);
ESL_RALLOC(h->obs, tmp, sizeof(uint64_t) * (nnew+ h->nb));
memmove(h->obs+nnew, h->obs, sizeof(uint64_t) * h->nb);
h->nb += nnew;
b += nnew;
h->bmin -= nnew*h->w;
h->imin += nnew;
h->cmin += nnew;
if (h->imax > -1) h->imax += nnew;
for (bi = 0; bi < nnew; bi++) h->obs[bi] = 0;
}
else if (b >= h->nb) /* Reallocate above? */
{
nnew = (b-h->nb+1) * 2; /* 2x overalloc */
if (nnew > INT_MAX - h->nb)
ESL_EXCEPTION(eslERANGE, "value %f requires unreasonable histogram bin number", x);
ESL_RALLOC(h->obs, tmp, sizeof(uint64_t) * (nnew+ h->nb));
for (bi = h->nb; bi < h->nb+nnew; bi++) h->obs[bi] = 0;
if (h->imin == h->nb) { /* boundary condition of no data yet*/
h->imin+=nnew;
h->cmin+=nnew;
}
h->bmax += nnew*h->w;
h->nb += nnew;
}
/* If we're a full histogram, then we keep the raw x value,
* reallocating as needed.
*/
if (h->is_full) h->x[h->n] = x;
h->is_sorted = FALSE; /* not any more! */
/* Bump the bin counter, and all the data sample counters.
*/
h->obs[b]++;
h->n++;
h->Nc++;
h->No++;
if (b > h->imax) h->imax = b;
if (b < h->imin) { h->imin = b; h->cmin = b; }
if (x > h->xmax) h->xmax = x;
if (x < h->xmin) h->xmin = x;
return eslOK;
ERROR:
return status;
}
/* esl_histogram_sort()
*
* Purpose: Sort the raw scores in a full histogram, from smallest to
* largest. Has no effect on a normal histogram, or on a full
* histogram that is already sorted.
*
* Returns: <eslOK> on success.
* Upon return, <h->x[h->n-1]> is the high score, <h->x[0]> is the
* low score.
*/
int
esl_histogram_sort(ESL_HISTOGRAM *h)
{
if (h->is_sorted) return eslOK; /* already sorted, don't do anything */
if (! h->is_full) return eslOK; /* nothing to sort */
esl_vec_DSortIncreasing(h->x, h->n);
h->is_sorted = TRUE;
return eslOK;
}
/*****************************************************************
* 2. Declarations about the binned data before parameter fitting
*****************************************************************/
/* Function: esl_histogram_DeclareCensoring()
* Synopsis: Collected data were left-censored.
*
* Purpose: Declare that the dataset collected in <h> is known to be a
* censored distribution, where <z> samples were unobserved because
* they had values $\leq$ some threshold <phi> ($\phi$).
*
* No more data can be added to the histogram with <_Add()>
* after censoring information has been set.
*
* This function is for "true" censored datasets, where
* the histogram truly contains no observed points
* $x \leq \phi$, and the number that were censored is known
* to be <z>.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if you try to set <phi> to a value that is
* greater than the minimum <x> stored in the histogram.
*/
int
esl_histogram_DeclareCensoring(ESL_HISTOGRAM *h, int z, double phi)
{
if (phi > h->xmin) ESL_EXCEPTION(eslEINVAL, "no uncensored x can be <= phi");
h->phi = phi;
h->cmin = h->imin;
h->z = z;
h->Nc = h->n + z;
h->No = h->n;
h->dataset_is = TRUE_CENSORED;
h->is_done = TRUE;
return eslOK;
}
/* Function: esl_histogram_DeclareRounding()
* Synopsis: Declare collected data were no more accurate than bins.
*
* Purpose: Declare that the data sample values in the histogram <h>
* are rounded off. Ideally, your bins in <h> should exactly
* match the rounding procedure. This raises a flag that
* binned parameter fitting routines will use when they set
* an origin, using the lower bound of the bin instead of
* the lowest raw value in the bin.
*/
int
esl_histogram_DeclareRounding(ESL_HISTOGRAM *h)
{
h->is_rounded = TRUE;
return eslOK;
}
/* Function: esl_histogram_SetTail()
* Synopsis: Declare only tail $>$ some threshold is considered "observed".
*
* Purpose: Suggest a threshold <phi> to split a histogram <h>
* into "unobserved" data (values $\leq \phi$) and "observed"
* data (values $> \phi$).
*
* The suggested <phi> is revised downwards to a $\phi$ at the next
* bin lower bound, because operations on binned data in <h>
* need to know unambiguously whether all the data in a given bin
* will be counted as observed or unobserved.
*
* The probability mass that is in the resulting right tail
* is optionally returned in <ret_newmass>. You need to know
* this number if you're fitting a distribution solely to the
* tail (an exponential tail, for example).
*
* Any data point $x_i \leq \phi$ is then considered to be
* in a censored (unobserved) region for purposes of parameter
* fitting, calculating expected binned counts,
* and binned goodness-of-fit tests.
*
* No more data can be added to the histogram after
* censoring information has been set.
*
* This function defines a "virtual" left-censoring: the
* histogram actually contains complete data, but appropriate
* flags are set to demarcate the "observed" data in the right
* tail.
*
* Returns: <eslOK> on success.
*
* Throws: <eslERANGE> if <phi> is an unreasonable value that
* can't be converted to an integer bin value.
*/
int
esl_histogram_SetTail(ESL_HISTOGRAM *h, double phi, double *ret_newmass)
{
int b;
int status;
/* Usually, put true phi at the next bin lower bound, but
* watch for a special case where phi is already exactly equal to a
* bin upper bound.
*/
if ((status = esl_histogram_Score2Bin(h,phi, &(h->cmin))) != eslOK) return status;
if (phi == esl_histogram_Bin2UBound(h,h->cmin)) h->phi = phi;
else h->phi = esl_histogram_Bin2LBound(h, h->cmin);
h->z = 0;
for (b = h->imin; b < h->cmin; b++)
h->z += h->obs[b];
h->Nc = h->n; /* (redundant) */
h->No = h->n - h->z;
h->dataset_is = VIRTUAL_CENSORED;
h->is_done = TRUE;
if (ret_newmass != NULL) *ret_newmass = (double) h->No / (double) h->Nc;
return eslOK;
}
/* Function: esl_histogram_SetTailByMass()
* Synopsis: Declare only right tail mass is considered "observed".
*
* Purpose: Given a histogram <h> (with or without raw data samples),
* find a cutoff score that at least fraction <pmass> of the samples
* exceed. This threshold is stored internally in the histogram
* as <h->phi>. The number of "virtually censored" samples (to the
* left, with scores $\leq \phi$) is stored internally in <h->z>.
*
* The identified cutoff score must be a lower bound for some bin
* (bins can't be partially censored). The censored mass
* will thus usually be a bit greater than <pmass>, as the
* routine will find the highest satisfactory <h->phi>. The
* narrower the bin widths, the more accurately the routine
* will be able to satisfy the requested <frac>. The actual
* probability mass in the right tail is optionally returned
* in <ret_newmass>. You need to know this number if you're
* fitting a distribution solely to the tail (an exponential tail,
* for example). It is safe for <ret_newmass> to point at
* <pmass>, in which case the suggested <pmass> will be overwritten
* with the actual mass upon return.
*
* This function defines that the binned data will be
* fitted either as a tail, or as a (virtually) left-censored dataset.
*
* Returns: <eslOK> on success.
*/
int
esl_histogram_SetTailByMass(ESL_HISTOGRAM *h, double pmass, double *ret_newmass)
{
int b;
uint64_t sum = 0;
for (b = h->imax; b >= h->imin; b--)
{
sum += h->obs[b];
if (sum >= (pmass * (double)h->n)) break;
}
h->phi = esl_histogram_Bin2LBound(h,b);
h->z = h->n - sum;
h->cmin = b;
h->Nc = h->n; /* (redundant) */
h->No = h->n - h->z;
h->dataset_is = VIRTUAL_CENSORED;
h->is_done = TRUE;
if (ret_newmass != NULL) *ret_newmass = (double) h->No / (double) h->Nc;
return eslOK;
}
/*****************************************************************
* 3. Routines for accessing data samples in a full histogram.
*****************************************************************/
/* Function: esl_histogram_GetRank()
* Synopsis: Retrieve n'th high score.
*
* Purpose: Retrieve the <rank>'th highest score from a
* full histogram <h>. <rank> is <1..n>, for
* <n> total samples in the histogram; return it through
* <ret_x>.
*
* If the raw scores aren't sorted, they are sorted
* first (an $N \log N$ operation).
*
* This can be called at any time, even during data
* collection, to see the current <rank>'th highest score.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if the histogram is display-only,
* or if <rank> isn't in the range 1..n.
*/
int
esl_histogram_GetRank(ESL_HISTOGRAM *h, int rank, double *ret_x)
{
if (! h->is_full)
ESL_EXCEPTION(eslEINVAL,
"esl_histogram_GetRank() needs a full histogram");
if (rank > h->n)
ESL_EXCEPTION(eslEINVAL,
"no such rank: not that many scores in the histogram");
if (rank < 1)
ESL_EXCEPTION(eslEINVAL, "histogram rank must be a value from 1..n");
esl_histogram_sort(h); /* make sure */
*ret_x = h->x[h->n - rank];
return eslOK;
}
/* Function: esl_histogram_GetData()
* Synopsis: Retrieve vector of all raw scores.
*
* Purpose: Retrieve the raw data values from the histogram <h>.
* Return them in the vector <ret_x>, and the number
* of values in <ret_n>. The values are indexed <[0..n-1]>,
* from smallest to largest (<x[n-1]> is the high score).
*
* <ret_x> is a pointer to internal memory in the histogram <h>.
* The histogram <h> is still responsible for that storage;
* its memory will be free'd when you call
* <esl_histogram_Destroy()>.
*
* You can only call this after you have finished collecting
* all the data. Subsequent calls to <esl_histogram_Add()>
* will fail.
*
* Internal note:
* The prohibition against adding more data (by raising
* the h->is_done flag) is because we're passing a pointer
* to internal data storage back to the caller. Subsequent
* calls to Add() will modify that memory -- in the worst case,
* if Add() has to reallocate that storage, completely invalidating
* the pointer that the caller has a copy of. We want to make
* sure that the <ret_x> pointer stays valid.
*
* Args: h - histogram to retrieve data values from
* ret_x - RETURN: pointer to the data samples, [0..n-1]
* ret_n - RETURN: number of data samples
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if the histogram <h> is not a full histogram.
*/
int
esl_histogram_GetData(ESL_HISTOGRAM *h, double **ret_x, int *ret_n)
{
if (! h->is_full) ESL_EXCEPTION(eslEINVAL, "not a full histogram");
esl_histogram_sort(h);
*ret_x = h->x;
*ret_n = h->n;
h->is_done = TRUE;
return eslOK;
}
/* Function: esl_histogram_GetTail()
* Synopsis: Retrieve all raw scores above some threshold.
*
* Purpose: Given a full histogram <h>, retrieve all data values
* above the threshold <phi> in the right (high scoring)
* tail, as a ptr <ret_x> to an array of <ret_n> values
* indexed <[0..n-1]> from lowest to highest score.
* Optionally, it also returns the number of values in
* rest of the histogram in <ret_z>;
* this number is useful if you are going to fit
* the tail as a left-censored distribution.
*
* The test is strictly greater than <phi>, not greater
* than or equal to.
*
* <ret_x> is a pointer to internal memory in the histogram <h>.
* The histogram <h> is still responsible for that storage;
* its memory will be free'd when you call
* <esl_histogram_Destroy()>.
*
* You can only call this after you have finished collecting
* all the data. Subsequent calls to <esl_histogram_Add()>
* will fail.
*
* Args: h - histogram to retrieve the tail from
* phi - threshold: tail is all scores > phi
* ret_x - optRETURN: ptr to vector of data values [0..n-1]
* ret_n - optRETURN: number of data values in tail
* ret_z - optRETURN: number of data values not in tail.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if the histogram is not a full histogram.
*/
int
esl_histogram_GetTail(ESL_HISTOGRAM *h, double phi,
double **ret_x, int *ret_n, int *ret_z)
{
int hi, lo, mid;
if (! h->is_full) ESL_EXCEPTION(eslEINVAL, "not a full histogram");
esl_histogram_sort(h);
if (h->n == 0) mid = h->n; /* we'll return NULL, 0, n */
else if (h->x[0] > phi) mid = 0; /* we'll return x, n, 0 */
else if (h->x[h->n-1] <= phi) mid = h->n; /* we'll return NULL, 0, n */
else /* binary search, faster than a brute force scan */
{
lo = 0;
hi = h->n-1; /* know hi>0, because above took care of n=0 and n=1 cases */
while (1) {
mid = (lo + hi + 1) / 2; /* +1 makes mid round up, mid=0 impossible */
if (h->x[mid] <= phi) lo = mid; /* we're too far left */
else if (h->x[mid-1] > phi) hi = mid; /* we're too far right */
else break; /* ta-da! */
}
}
if (ret_x != NULL) *ret_x = h->x + mid;
if (ret_n != NULL) *ret_n = h->n - mid;
if (ret_z != NULL) *ret_z = mid;
h->is_done = TRUE;
return eslOK;
}
/* Function: esl_histogram_GetTailByMass()
* Synopsis: Retrieve all raw scores in right tail mass.
*
* Purpose: Given a full histogram <h>, retrieve the data values in
* the right (high scoring) tail, as a pointer <ret_x>
* to an array of <ret_n> values indexed <[0..n-1]> from
* lowest to highest score. The tail is defined by a
* given mass fraction threshold <pmass>; the mass in the returned
* tail is $\leq$ this threshold. <pmass> is a probability,
* so it must be $\geq 0$ and $\leq 1$.
*
* Optionally, the number of values in the rest of the
* histogram can be returned in <ret_z>. This is useful
* if you are going to fit the tail as a left-censored
* distribution.
*
* <ret_x> is a pointer to internal memory in <h>.
* The histogram <h> remains responsible for its storage,
* which will be free'd when you call <esl_histogram_Destroy()>.
* As a consequence, you can only call
* <esl_histogram_GetTailByMass()> after you have finished
* collecting data. Subsequent calls to <esl_histogram_Add()>
* will fail.
*
* Args: h - histogram to retrieve the tail from
* pmass - fractional mass threshold; tail contains <= pmass
* ret_x - optRETURN: ptr to vector of data values [0..n-1]
* ret_n - optRETURN: number of data values in tail x
* ret_z - optRETURN: number of data values not in tail
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if the histogram is not a full histogram,
* or <pmass> is not a probability.
*/
int
esl_histogram_GetTailByMass(ESL_HISTOGRAM *h, double pmass,
double **ret_x, int *ret_n, int *ret_z)
{
uint64_t n;
if (! h->is_full)
ESL_EXCEPTION(eslEINVAL, "not a full histogram");
if (pmass < 0. || pmass > 1.)
ESL_EXCEPTION(eslEINVAL, "pmass not a probability");
esl_histogram_sort(h);
n = (uint64_t) ((double) h->n * pmass); /* rounds down, guaranteeing <= pmass */
if (ret_x != NULL) *ret_x = h->x + (h->n - n);
if (ret_n != NULL) *ret_n = n;
if (ret_z != NULL) *ret_z = h->n - n;
h->is_done = TRUE;
return eslOK;
}
/*****************************************************************
* 4. Setting expected counts
*****************************************************************/
/* Function: esl_histogram_SetExpect()
* Synopsis: Set expected counts for complete distribution.
*
* Purpose: Given a histogram <h> containing some number of empirically
* observed binned counts, and a pointer to a function <(*cdf)()>
* that describes the expected cumulative distribution function
* (CDF) for the complete data, conditional on some parameters
* <params>; calculate the expected counts in each bin of the
* histogram, and hold that information internally in the structure.
*
* The caller provides a function <(*cdf)()> that calculates
* the CDF via a generic interface, taking only two
* arguments: a quantile <x> and a void pointer to whatever
* parameters it needs, which it will cast and interpret.
* The <params> void pointer to the given parameters is
* just passed along to the generic <(*cdf)()> function. The
* caller will probably implement this <(*cdf)()> function as
* a wrapper around its real CDF function that takes
* explicit (non-void-pointer) arguments.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEMEM> on allocation failure; state of <h> is preserved.
*/
int
esl_histogram_SetExpect(ESL_HISTOGRAM *h,
double (*cdf)(double x, void *params), void *params)
{
int i;
double ai,bi; /* ai < x <= bi : lower,upper bounds in bin */
int status;
if (h->expect == NULL)
ESL_ALLOC(h->expect, sizeof(double) * h->nb);
for (i = 0; i < h->nb; i++)
{
ai = esl_histogram_Bin2LBound(h, i);
bi = esl_histogram_Bin2UBound(h, i);
h->expect[i] = h->Nc * ( (*cdf)(bi, params) - (*cdf)(ai, params) );
if (h->emin == -1 && h->expect[i] > 0.) h->emin = i;
}
h->is_done = TRUE;
return eslOK;
ERROR:
return status;
}
/* Function: esl_histogram_SetExpectedTail()
* Synopsis: Set expected counts for right tail.
*
* Purpose: Given a histogram <h>, and a pointer to a generic function
* <(*cdf)()> that describes the expected cumulative
* distribution function for the right (high-scoring) tail
* starting at <base_val> (all expected <x> $>$ <base_val>) and
* containing a fraction <pmass> of the complete data
* distribution (<pmass> $\geq 0$ and $\leq 1$);
* set the expected binned counts for all complete bins
* $\geq$ <base_val>.
*
* If <base_val> falls within a bin, that bin is considered
* to be incomplete, and the next higher bin is the starting
* point.
*
* Args: h - finished histogram
* base_val - threshold for the tail: all expected x > base_val
* pmass - fractional mass in the tail: 0 <= pmass <= 1
* cdf - generic-interface CDF function describing the tail
* params - void pointer to parameters for (*cdf)()
*
* Returns: <eslOK> on success.
*
* Throws: <eslEMEM> on memory allocation failure.
* <eslERANGE> if <base_val> isn't a reasonable value within
* the histogram (it converts to a bin value outside
* integer range).
*/
int
esl_histogram_SetExpectedTail(ESL_HISTOGRAM *h, double base_val, double pmass,
double (*cdf)(double x, void *params),
void *params)
{
int status;
int b;
double ai, bi;
if (h->expect == NULL) ESL_ALLOC(h->expect, sizeof(double) * h->nb);
if ((status = esl_histogram_Score2Bin(h, base_val, &(h->emin))) != eslOK) return status;
h->emin += 1;
esl_vec_DSet(h->expect, h->emin, 0.);
for (b = h->emin; b < h->nb; b++)
{
ai = esl_histogram_Bin2LBound(h, b);
bi = esl_histogram_Bin2UBound(h, b);
h->expect[b] = pmass * (double) h->Nc *
( (*cdf)(bi, params) - (*cdf)(ai, params) );
}
h->tailbase = base_val;
h->tailmass = pmass;
h->is_tailfit = TRUE;
h->is_done = TRUE;
return eslOK;
ERROR:
return status;
}
/*****************************************************************
* 5. Output and display of binned data.
*****************************************************************/
/* Function: esl_histogram_Write()
* Synopsis: Write a "pretty" ASCII histogram to a stream.
*
* Purpose: Print a "prettified" display histogram <h> to a file
* pointer <fp>. Deliberately a look-and-feel clone of
* Bill Pearson's excellent FASTA output.
*
* Also displays expected binned counts, if they've been
* set.
*
* Display will only work well if the bin width (w) is 0.1
* or more, because the score labels are only shown to one
* decimal point.
*
* Args: fp - open file to print to (stdout works)
* h - histogram to print
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error, such as a
* filled disk.
*/
int
esl_histogram_Write(FILE *fp, ESL_HISTOGRAM *h)
{
int i;
double x;
uint64_t maxbar;
int imode;
uint64_t units;
int num;
char buffer[81]; /* output line buffer */
int pos; /* position in output line buffer */
uint64_t lowcount, highcount;
int ilowbound, ihighbound;
int nlines;
int emptybins = 3;
/* Find out how we'll scale the histogram. We have 58 characters to
* play with on a standard 80-column terminal display: leading "%6.1f
* %6d %6d|" occupies 21 chars. Save the peak position, we'll use
* it later.
*/
maxbar = 0;
imode = 0;
for (i = 0; i < h->nb; i++)
if (h->obs[i] > maxbar)
{
maxbar = h->obs[i]; /* max height */
imode = i;
}
/* Truncate histogram display on both sides, ad hoc fashion.
* Start from the peak; then move out until we see <emptybins> empty bins,
* and stop.
*/
for (num = 0, ihighbound = imode; ihighbound < h->imax; ihighbound++)
{
if (h->obs[ihighbound] > 0) { num = 0; continue; } /* reset */
if (++num == emptybins) { break; } /* stop */
}
for (num = 0, ilowbound = imode; ilowbound > h->imin; ilowbound--)
{
if (h->obs[ilowbound] > 0) { num = 0; continue; } /* reset */
if (++num == emptybins) { break; } /* stop */
}
/* collect counts outside of bounds */
for (lowcount = 0, i = h->imin; i < ilowbound; i++)
lowcount += h->obs[i];
for (highcount = 0, i = h->imax; i > ihighbound; i--)
highcount += h->obs[i];
/* maxbar might need to be raised now; then set our units */
if (lowcount > maxbar) maxbar = lowcount;
if (highcount > maxbar) maxbar = highcount;
if (maxbar > 0) units = ((maxbar-1)/ 58) + 1;
else units = 1; /* watch out for an empty histogram w/ no data points. */
/* Print the histogram header
*/
if (fprintf(fp, "%6s %6s %6s (one = represents %llu sequences)\n",
"score", "obs", "exp", (unsigned long long) units) < 0)
ESL_EXCEPTION_SYS(eslEWRITE, "histogram write failed");
if (fprintf(fp, "%6s %6s %6s\n", "-----", "---", "---") < 0)
ESL_EXCEPTION_SYS(eslEWRITE, "histogram write failed");
/* Print the histogram itself */
buffer[80] = '\0';
buffer[79] = '\n';
nlines = 0; /* Count the # of lines we print, so we know if it ends up being zero */
for (i = h->imin; i <= h->imax; i++)
{
memset(buffer, ' ', 79 * sizeof(char));
x = i*h->w + h->bmin;
/* Deal with special cases at edges
*/
if (i < ilowbound) continue;
else if (i > ihighbound) continue;
else if (i == ilowbound && i != h->imin)
{
sprintf(buffer, "<%5.1f %6llu %6s|", x+h->w, (unsigned long long) lowcount, "-");
if (lowcount > 0) {
num = 1+(lowcount-1) / units;
for (pos = 21; num > 0; num--) buffer[pos++] = '=';
}
if (fputs(buffer, fp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram write failed");
nlines++;
continue;
}
else if (i == ihighbound && i != h->imax)
{
sprintf(buffer, ">%5.1f %6llu %6s|", x, (unsigned long long) highcount, "-");
if (highcount > 0) {
num = 1+(highcount-1) / units;
for (pos = 21; num > 0; num--) buffer[pos++] = '=';
}
if (fputs(buffer, fp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram write failed");
nlines++;
continue;
}
/* Deal with most cases
*/
if (h->obs[i] < 1000000) /* displayable in 6 figures or less? */
{
if (h->expect != NULL)
sprintf(buffer, "%6.1f %6llu %6d|", x, (unsigned long long) h->obs[i], (int) h->expect[i]);
else
sprintf(buffer, "%6.1f %6llu %6s|", x, (unsigned long long) h->obs[i], "-");
}
else
{
if (h->expect != NULL)
sprintf(buffer, "%6.1f %6.2e %6.2e|", x, (double) h->obs[i], h->expect[i]);
else
sprintf(buffer, "%6.1f %6.2e %6s|", x, (double) h->obs[i], "-");
}
buffer[21] = ' '; /* sprintf writes a null char; replace it */
/* Mark the histogram bar for observed hits
*/
if (h->obs[i] > 0) {
num = 1 + (h->obs[i]-1) / units;
for (pos = 21; num > 0; num--) buffer[pos++] = '=';
}
/* Mark the theoretically expected value
* (The test > 0. also suffices to remove any censored region.)
*/
if (h->expect != NULL && h->expect[i] > 0.)
{
pos = 21 + (int)(h->expect[i]-1) / units;
if (pos >= 78) pos = 78; /* be careful of buffer bounds */
buffer[pos] = '*';
}
/* Print the line
*/
if (fputs(buffer, fp) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram write failed");
nlines++;
}
if (nlines == 0 && fprintf(fp, "[histogram contained no data points]\n") < 0)
ESL_EXCEPTION_SYS(eslEWRITE, "histogram write failed");
return eslOK;
}
/* Function: esl_histogram_Plot()
* Synopsis: Output a histogram in xmgrace XY format.
*
* Purpose: Print observed (and expected, if set) binned counts
* in a histogram <h> to open file pointer <fp>
* in xmgrace XY input file format.
*
* The number that's plotted on the X axis is the minimum
* (starting) value of the bin's interval. The Y value is
* the total number of counts in the interval (x,x+w] for bin
* width w. In xmgrace, you want to set "right stairs" as
* the line type in an XY plot.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error.
*/
int
esl_histogram_Plot(FILE *fp, ESL_HISTOGRAM *h)
{
int imin, imax;
int i;
double x;
/* First data set is the observed histogram
*/
for (i = h->imin; i <= h->imax; i++)
{
x = esl_histogram_Bin2LBound(h,i);
if (fprintf(fp, "%f %llu\n", x, (unsigned long long) h->obs[i]) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram plot write failed");
}
x = esl_histogram_Bin2LBound(h,i); /* Print a trailing y=0, needed to make xmgrace display the last bar */
if (fprintf(fp, "%f %d\n", x, 0) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram plot write failed");
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram plot write failed");
/* Second data set is the theoretical (expected) histogram
*/
if (h->expect != NULL)
{
for (imin = 0; imin < h->nb; imin++)
if (h->expect[imin] > 0.) break;
for (imax = h->nb-1; imax >= 0; imax--)
if (h->expect[imax] > 0.) break;
for (i = imin; i <= imax; i++)
{
x = esl_histogram_Bin2LBound(h,i);
if (fprintf(fp, "%f %g\n", x, h->expect[i]) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram plot write failed");
}
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram plot write failed");
}
return eslOK;
}
/* Function: esl_histogram_PlotSurvival()
* Synopsis: Output $P(X>x)$ in xmgrace XY format.
*
* Purpose: Given a histogram <h>, output the observed (and
* expected, if available) survival function $P(X>x)$
* to file pointer <fp> in xmgrace XY input file format.
*
* One point is plotted per bin, so the narrower the
* bin width, the more smooth and accurate the resulting
* plots will be.
*
* As a special case, always plot the highest score with
* survival probability 1/N, if it occurred in a bin with
* other samples. This is to prevent a survival plot from
* looking like it was artificially truncated.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error.
*/
int
esl_histogram_PlotSurvival(FILE *fp, ESL_HISTOGRAM *h)
{
int i;
uint64_t c = 0;
double esum;
double ai;
/* The observed binned counts:
*/
if (h->obs[h->imax] > 1)
if (fprintf(fp, "%f\t%g\n", h->xmax, 1.0 / (double) h->Nc) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram survival plot write failed");
for (i = h->imax; i >= h->imin; i--)
{
if (h->obs[i] > 0) {
c += h->obs[i];
ai = esl_histogram_Bin2LBound(h, i);
if (fprintf(fp, "%f\t%g\n", ai, (double) c / (double) h->Nc) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram survival plot write failed");
}
}
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram survival plot write failed");
/* The expected binned counts:
*/
if (h->expect != NULL)
{
esum = 0.;
for (i = h->nb-1; i >= 0; i--)
{
if (h->expect[i] > 0.) {
esum += h->expect[i]; /* some worry about 1+eps=1 problem here */
ai = esl_histogram_Bin2LBound(h, i);
if (fprintf(fp, "%f\t%g\n", ai, esum / (double) h->Nc) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram survival plot write failed");
}
}
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram survival plot write failed");
}
return eslOK;
}
/* Function: esl_histogram_PlotQQ()
* Synopsis: Output a Q-Q plot in xmgrace XY format.
*
* Purpose: Given a histogram <h> containing an empirically observed
* distribution, and a pointer to a function <(*invcdf)()>
* for an expected inverse cumulative distribution
* function conditional on some parameters <params>;
* output a Q-Q plot in xmgrace XY format to file <fp>.
*
* Same domain limits as goodness-of-fit testing: output
* is restricted to overlap between observed data (excluding
* any censored data) and expected data (which may be limited
* if only a tail was fit).
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error.
*/
int
esl_histogram_PlotQQ(FILE *fp, ESL_HISTOGRAM *h,
double (*invcdf)(double x, void *params), void *params)
{
int i;
double cdf;
double bi;
int bbase;
uint64_t sum;
/* on censored data, start counting observed cdf at z, not 0
*/
if (h->dataset_is == TRUE_CENSORED || h->dataset_is == VIRTUAL_CENSORED)
sum = h->z;
else
sum = 0;
/* Determine smallest bin included in goodness of fit eval
*/
bbase = h->cmin;
if (h->is_tailfit && h->emin > bbase) bbase = h->emin;
for (i = h->cmin; i < bbase; i++) sum += h->obs[i];
/* The q-q plot:
*/
for (i = bbase; i < h->imax; i++) /* avoid last bin where upper cdf=1.0 */
{
sum += h->obs[i];
cdf = (double) sum / (double) h->Nc;
if (h->is_tailfit) cdf = (cdf + h->tailmass - 1.) / (h->tailmass);
bi = esl_histogram_Bin2UBound(h, i);
if (fprintf(fp, "%f\t%f\n", bi, (*invcdf)(cdf, params)) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram QQ plot write failed");
}
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram QQ plot write failed");
/* Plot a 45-degree expected QQ line:
*/
bi = esl_histogram_Bin2LBound(h, bbase);
if (fprintf(fp, "%f\t%f\n", bi, bi) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram QQ plot write failed");
if (fprintf(fp, "%f\t%f\n", h->xmax, h->xmax) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram QQ plot write failed");
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "histogram QQ plot write failed");
return eslOK;
}
/* Function: esl_histogram_Goodness()
* Synopsis: Evaluate fit between observed, expected.
*
* Purpose: Given a histogram <h> with observed and expected counts,
* where, for the expected counts, <nfitted> ($\geq 0$)
* parameters were fitted (and thus should be subtracted
* from the degrees of freedom);
* Perform a G-test and/or a $\chi^2$ test for goodness of
* fit between observed and expected, and optionally return
* the number of bins the data were sorted into
* (<ret_bins>), the G statistic and its probability (<ret_G> and
* <ret_Gp>), and the $\chi^2$ statistic and its probability
* (<ret_X2> and <ret_X2p>).
*
* If a goodness-of-fit probability is less than some threshold
* (usually taken to be 0.01 or 0.05), that is considered to
* be evidence that the observed data are unlikely to be consistent
* with the tested distribution.
*
* The two tests should give similar
* probabilities. However, both tests are sensitive to
* arbitrary choices in how the data are binned, and
* neither seems to be on an entirely sound theoretical
* footing.
*
* On some datasets, pathological and/or very small, it may
* be impossible to calculate goodness of fit
* statistics. In this case, <eslENORESULT> is returned.
*
* Returns: <eslOK> on success.
*
* <eslENORESULT> if the data are such that goodness-of-fit
* statistics can't be calculated, probably because there
* just aren't many data points. On this error, <*ret_G>
* and <*ret_X2> are 0.0, and <*ret_Gp> and <*ret_X2p> are
* 1.0. (Because suppose n=1: then any fit to a single data
* point is "perfect".)
*
* Throws: <eslEINVAL> if expected counts have not been set in
* the histogram; <eslERANGE> or <eslENOHALT> on different internal
* errors that can arise in calculating the probabilities;
* <eslEMEM> on internal allocation failure.
*/
int
esl_histogram_Goodness(ESL_HISTOGRAM *h,
int nfitted, int *ret_nbins,
double *ret_G, double *ret_Gp,
double *ret_X2, double *ret_X2p)
{
uint64_t *obs = NULL; /* observed in bin i, [0..nb-1] */
double *exp = NULL; /* expected in bin i, [0..nb-1] */
double *topx = NULL; /* all values in bin i <= topx[i] */
int nb; /* # of re-bins */
uint64_t minc; /* minimum target # of counts/bin */
int i,b;
double G, Gp;
double X2, X2p;
double tmp;
int status;
int bbase;
uint64_t hmax;
uint64_t nobs;
double nexp;
if (h->expect == NULL) ESL_EXCEPTION(eslEINVAL, "no expected counts in that histogram");
/* Determine the smallest histogram bin included in
* the goodness of fit evaluation.
*/
bbase = h->cmin;
if (h->is_tailfit && h->emin > bbase) bbase = h->emin;
/* How many observed total counts are in the evaluated range,
* and what is the maximum in any given histogram bin?
*/
nobs = 0;
hmax = 0;
for (i = bbase; i <= h->imax; i++)
{
nobs += h->obs[i];
if (h->obs[i] > hmax) hmax = h->obs[i];
}
if (nobs == 0) { status = eslENORESULT; goto ERROR; }
/* Figure out how many eval bins we'd like to have, then allocate
* for re-binning.
* Number of bins for goodness-of-fit tests like G and X^2
* is crucial but arbitrary, unfortunately. Some literature suggests
* using 2*n^{0.4}, which gives:
* n nbins #/bin
* ----- ------ ------
* 1000 31 32
* 10000 79 127
* 100000 200 500
* 1000000 502 1992
*
* The most important thing seems to be to get the # of counts
* in each bin to be roughly equal.
*/
nb = 2* (int) pow((double) nobs, 0.4); /* "desired" nb. */
minc = 1 + nobs / (2*nb); /* arbitrarily set min = 1/2 of the target # */
ESL_ALLOC(obs, sizeof(uint64_t) * (nb*2+1)); /* final nb must be <= 2*nb+1 */
ESL_ALLOC(exp, sizeof(double) * (nb*2+1));
ESL_ALLOC(topx, sizeof(double) * (nb*2+1));
/* Determine the observed counts in each bin: that is, partition
* the <sum> in the evaluated region.
* Sweep left to right on the histogram bins,
* collecting sum of counts, dropping the sum into the next re-bin
* whenever we have more than <minc> counts.
*/
nobs = 0;
nexp = 0.;
for (i = 0, b = bbase; b <= h->imax; b++)
{
nobs += h->obs[b];
nexp += h->expect[b];
/* if we have enough counts, drop into bin i: */
if (nobs >= minc && nexp >= minc) {
ESL_DASSERT1( (i < (nb*2+1)) );
obs[i] = nobs;
exp[i] = nexp;
topx[i] = esl_histogram_Bin2UBound(h,b);
nobs = 0;
nexp = 0.;
i++;
}
}
if (i == 0) { status = eslENORESULT; goto ERROR; }
obs[i-1] += nobs; /* add the right tail to final bin */
exp[i-1] += nexp;
topx[i-1] = esl_histogram_Bin2UBound(h, h->imax);
nb = i; /* nb is now actual # of bins, not target */
/* We have to have at least one degree of freedom, else
* goodness-of-fit testing isn't defined (and moreover, will
* fail numerically if we proceed)
*/
if (nb-nfitted-1 <= 0) { status = eslENORESULT; goto ERROR; }
/* Calculate the X^2 statistic: \sum (obs_i - exp_i)^2 / exp_i */
X2 = 0.;
for (i = 0; i < nb; i++)
{
tmp = (double) obs[i] - exp[i];
X2 += tmp*tmp / exp[i];
}
/* X^2 is distributed approximately chi^2. */
if (X2 == 0.)
X2p = 1.0;
else if (X2 != eslINFINITY) {
if ((status = esl_stats_ChiSquaredTest(nb-nfitted, X2, &X2p)) != eslOK) goto ERROR;
}
else
X2p = 0.;
/* The G test assumes that #exp=#obs (the X^2 test didn't).
* If that's not true, renormalize to make it so.
* This normalization subtracts a degree of freedom.
*/
nobs = 0;
nexp = 0.;
for (i = 0; i < nb; i++)
{
nobs += obs[i];
nexp += exp[i];
}
for (i = 0; i < nb; i++)
exp[i] = exp[i] * (double) nobs / nexp;
/* Calculate the G statistic: 2 * LLR */
G = 0.;
for (i = 0; i < nb; i++)
G += (double) obs[i] * log ((double) obs[i] / exp[i]);
G *= 2;
/* G is distributed approximately as \chi^2.
* -1 is because total #obs=#exp
*/
if (G == 0.)
Gp = 1.0;
else if (G != eslINFINITY)
{
if ((status = esl_stats_ChiSquaredTest(nb-nfitted-1, G, &Gp)) != eslOK) goto ERROR;
}
else Gp = 0.;
if (ret_nbins) *ret_nbins = nb;
if (ret_G) *ret_G = G;
if (ret_Gp) *ret_Gp = Gp;
if (ret_X2) *ret_X2 = X2;
if (ret_X2p) *ret_X2p = X2p;
free(obs);
free(exp);
free(topx);
return eslOK;
ERROR:
if (ret_nbins) *ret_nbins = 0;
if (ret_G) *ret_G = 0.;
if (ret_Gp) *ret_Gp = 1.;
if (ret_X2) *ret_X2 = 0.;
if (ret_X2p) *ret_X2p = 1.;
if (obs) free(obs);
if (exp) free(exp);
if (topx) free(topx);
return status;
}
/*****************************************************************
* 6. Test driver.
*****************************************************************/
#ifdef eslHISTOGRAM_TESTDRIVE
/* compile:
* gcc -g -Wall -I. -L. -o test -DeslHISTOGRAM_TESTDRIVE esl_histogram.c -leasel -lm
* run:
* ./test -t1; ./test -t2; ./test -t3; ./test -t4; ./test -t5
*
* -t1 - complete data, fit to complete Gumbel\n\
* -t2 - complete data, high scores fit as censored Gumbel\n\
* -t3 - complete data, high scores fit to exponential tail\n\
* -t4 - censored data, fit as censored Gumbel\n\
* -t5 - complete data, binned, high scores fit to exponential tail\n\
*
* Some suggestions for manual testing:
* ./test -t1 -j1 -v --surv test.xy; xmgrace test.xy
* examine survivor plot fit, for -t1
* do -t2 thru -t5 too
*
* ./test -t1 --j1 -v -qq test.xy; xmgrace test.xy
* examine QQ plot fit, for -t1
* do -t2 thru -t5 too
*
* ./test -t1 -v > foo
* grep "^Estimated" foo | awk '{print $9}' | sort -g > test.xy
* Look for straight line fit to G-test p values.
* sub $9->$13 for chi-squared
* sub Estimated -> Parametric for the parametric fits
*/
#include <stdio.h>
#include <stdlib.h>
#include "easel.h"
#include "esl_stats.h"
#include "esl_gumbel.h"
#include "esl_exponential.h"
#include "esl_random.h"
#include "esl_getopts.h"
static ESL_OPTIONS options[] = {
/* name type default env_var range toggles reqs incompat */
{ "-j", eslARG_INT, "100", NULL, "n>0", NULL, NULL, NULL, "number of trials", 0 },
{ "-m", eslARG_INT, "0", NULL, "n>=0", NULL, NULL, NULL, "number of test samples", 0 },
{ "-n", eslARG_INT, "10000", NULL, "n>0", NULL, NULL, NULL, "number of training samples", 0 },
{ "-t", eslARG_INT, "1", NULL, "1<=n<=5", NULL, NULL, NULL, "test type choice, 1-5", 0 },
{ "-v", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "be verbose?", 0 },
{ "--ascii", eslARG_STRING, NULL, NULL, NULL, NULL, NULL, NULL, "output ASCII histogram to <f>", 0 },
{ "--cmass", eslARG_REAL, "0.7", NULL, "0<=x<=1", NULL, NULL, NULL, "set virtual censoring mass to <x>", 0 },
{ "--lambda", eslARG_REAL, "0.8", NULL, "x>0", NULL, NULL, NULL, "set Gumbel lambda param to <x>", 0 },
{ "--mu", eslARG_REAL, "10.0", NULL, NULL, NULL, NULL, NULL, "set Gumbel mu param to <x>", 0 },
{ "--phi", eslARG_REAL, "10.0", NULL, NULL, NULL, NULL, NULL, "set censoring threshold to <x>", 0 },
{ "--plot", eslARG_STRING, NULL, NULL, NULL, NULL, NULL, NULL, "output histogram to xmgrace file <f>", 0 },
{ "--qq", eslARG_STRING, NULL, NULL, NULL, NULL, NULL, NULL, "output Q-Q goodness of fit to xmgrace file <f>", 0 },
{ "--surv", eslARG_STRING, NULL, NULL, NULL, NULL, NULL, NULL, "output survival plot to xmgrace file <f>", 0 },
{ "--tail", eslARG_REAL, "0.1", NULL, "0<=x<=1", NULL, NULL, NULL, "set tail mass for fitting to <x>", 0 },
{ 0,0,0,0,0,0,0,0,0,0 },
};
static void
binmacro_utest(void)
{
char *msg = "esl_histogram: binmacro unit test failure";
ESL_HISTOGRAM *h = esl_histogram_Create(-100, 100, 1.0);
double trialx[3] = { -42.42, 0, 42.42 };
double x, ai, bi;
int i,b;
/* test bin<->score conversion macros.
*/
for (i = 0; i < 3; i++)
{
x = trialx[i];
esl_histogram_Score2Bin(h, x, &b);
ai = esl_histogram_Bin2LBound(h, b);
bi = esl_histogram_Bin2UBound(h, b);
if (x <= ai || x > bi) esl_fatal(msg);
}
esl_histogram_Destroy(h);
return;
}
static void
valuerange_utest(void)
{
char *msg = "esl_histogram: value range unit test failure";
ESL_HISTOGRAM *h = esl_histogram_Create(-100, 100, 1.0);
int b;
esl_exception_SetHandler(&esl_nonfatal_handler);
if (esl_histogram_Score2Bin(h, eslINFINITY, &b) != eslERANGE) esl_fatal(msg);
if (esl_histogram_Score2Bin(h, -eslINFINITY, &b) != eslERANGE) esl_fatal(msg);
if (esl_histogram_Score2Bin(h, eslNaN, &b) != eslERANGE) esl_fatal(msg);
if (esl_histogram_Score2Bin(h, 1e20, &b) != eslERANGE) esl_fatal(msg);
if (esl_histogram_Score2Bin(h, -1e20, &b) != eslERANGE) esl_fatal(msg);
esl_exception_ResetDefaultHandler();
esl_histogram_Destroy(h);
return;
}
int
main(int argc, char **argv)
{
ESL_GETOPTS *go;
ESL_RANDOMNESS *r;
ESL_HISTOGRAM *h;
ESL_HISTOGRAM *h1;
double p[2]; /* parametric mu, lambda */
double ep[2]; /* estimated mu, lambda */
double avg_ep[2]; /* average estimated mu, lambda over many trials */
int ntrials, trial;
int ntrain, ntest;
int test_type;
enum { COLLECT_COMPLETE, COLLECT_CENSORED } cstrategy;
enum { FIT_BINNED, FIT_SAMPLES } bstrategy;
enum { FIT_COMPLETE, FIT_CENSORED, FIT_TAIL} fstrategy;
double phi; /* censoring threshold */
int z;
double cmass;
double tailmass, save_tailmass;
int nfitted;
int nbins;
double G, Gp, X2, X2p, minGp, minX2p;
int verbose;
FILE *outfp;
char *ascfile, *plotfile, *survfile, *qqfile;
int i;
double x;
double *xv;
int n;
go = esl_getopts_Create(options);
esl_opt_ProcessCmdline(go, argc, argv);
test_type = esl_opt_GetInteger(go, "-t");
ntrials = esl_opt_GetInteger(go, "-j");
ntrain = esl_opt_GetInteger(go, "-n");
ntest = esl_opt_GetInteger(go, "-m");
verbose = esl_opt_GetBoolean(go, "-v");
cmass = esl_opt_GetReal (go, "--cmass");
p[1] = esl_opt_GetReal (go, "--lambda");
p[0] = esl_opt_GetReal (go, "--mu");
phi = esl_opt_GetReal (go, "--phi");
save_tailmass = esl_opt_GetReal (go, "--tail");
ascfile = esl_opt_GetString (go, "--ascii");
plotfile = esl_opt_GetString (go, "--plot");
qqfile = esl_opt_GetString (go, "--qq");
survfile = esl_opt_GetString (go, "--surv");
esl_getopts_Destroy(go);
r = esl_randomness_Create(42);
avg_ep[0] = 0.;
avg_ep[1] = 0.;
minGp = 1.;
minX2p = 1.;
tailmass = save_tailmass;
if (test_type == 1)
{
cstrategy = COLLECT_COMPLETE;
bstrategy = FIT_SAMPLES;
fstrategy = FIT_COMPLETE;
}
else if (test_type == 2)
{
cstrategy = COLLECT_COMPLETE;
bstrategy = FIT_SAMPLES;
fstrategy = FIT_CENSORED;
}
else if (test_type == 3)
{
cstrategy = COLLECT_COMPLETE;
bstrategy = FIT_SAMPLES;
fstrategy = FIT_TAIL;
}
else if (test_type == 4)
{
cstrategy = COLLECT_CENSORED;
bstrategy = FIT_SAMPLES;
fstrategy = FIT_CENSORED;
}
else if (test_type == 5)
{
cstrategy = COLLECT_COMPLETE;
bstrategy = FIT_BINNED;
fstrategy = FIT_TAIL;
}
else
esl_fatal("no such test type");
for (trial = 0; trial < ntrials; trial++)
{
/* Collection of the training data in <h>.
* Data set can either be complete, true censored, or virtual censored.
*/
h = esl_histogram_CreateFull(-100, 100, 0.1);
z = 0;
for (i = 0; i < ntrain; i++) {
x = esl_gumbel_Sample(r, p[0], p[1]);
if (cstrategy != COLLECT_CENSORED || x > phi)
esl_histogram_Add(h, x);
else
z++;
}
if (cstrategy == COLLECT_CENSORED)
esl_histogram_DeclareCensoring(h, z, phi);
/* Parameter fitting.
* We test for four of twelve possible combinations of
* collection strategy, binned vs. raw data, and complete,
* censored, vs. tail fitting.
* 1. complete Gumbel data, raw, fit to a Gumbel.
* 2. complete Gumbel data, raw, tail fit as a censored Gumbel
* 3. complete Gumbel data, raw, tail fit to an exponential tail
* 4. censored Gumbel data, raw, censored fit to a Gumbel
* 5 complete Gumbel data, binned, fit to an exponential tail.
*/
if (cstrategy == COLLECT_COMPLETE &&
bstrategy == FIT_SAMPLES &&
fstrategy == FIT_COMPLETE)
{
esl_histogram_GetData(h, &xv, &n);
if (esl_gumbel_FitComplete(xv, n, &(ep[0]), &ep[1]) != eslOK) esl_fatal("gumbel complete fit failed");
}
else if (cstrategy == COLLECT_COMPLETE &&
bstrategy == FIT_SAMPLES &&
fstrategy == FIT_CENSORED)
{
esl_histogram_GetTailByMass(h, cmass, &xv, &n, &z);
if (esl_gumbel_FitCensored(xv, n, z, xv[0], &(ep[0]), &ep[1]) != eslOK) esl_fatal("gumbel censored fit failed");
}
else if (cstrategy == COLLECT_COMPLETE &&
bstrategy == FIT_SAMPLES &&
fstrategy == FIT_TAIL)
{
esl_histogram_GetTailByMass(h, tailmass, &xv, &n, &z);
if (esl_exp_FitComplete(xv, n, &(ep[0]), &ep[1]) != eslOK) esl_fatal("exponential complete fit failed");
}
else if (cstrategy == COLLECT_CENSORED &&
bstrategy == FIT_SAMPLES &&
fstrategy == FIT_CENSORED)
{
esl_histogram_GetData(h, &xv, &n);
if (esl_gumbel_FitCensored(xv, n, h->z, h->phi, &(ep[0]), &ep[1]) != eslOK) esl_fatal("gumbel censored fit failed");
}
else if (cstrategy == COLLECT_COMPLETE &&
bstrategy == FIT_BINNED &&
fstrategy == FIT_TAIL)
{
tailmass = save_tailmass; /* reset to original for each trial. */
esl_histogram_SetTailByMass(h, tailmass, &tailmass);
if (esl_exp_FitCompleteBinned(h, &(ep[0]), &ep[1]) != eslOK) esl_fatal("exponential binned complete fit failed");
}
else
ESL_EXCEPTION(eslEINVAL, "not a scenario we currently test");
/* Keep track of average estimated mu, lambda
* for automated testing purposes.
*/
avg_ep[0] += ep[0] / (double) ntrials;
avg_ep[1] += ep[1] / (double) ntrials;
/* Test data can either be the same as the training data,
* or a new test set.
*/
if (ntest > 0)
{
h1 = esl_histogram_CreateFull(-100.05, 100.05, 0.2);
z = 0;
for (i = 0; i < ntest; i++) {
x = esl_gumbel_Sample(r, p[0], p[1]);
if (cstrategy != COLLECT_CENSORED || x > phi)
esl_histogram_Add(h1, x);
else
z++;
}
if (cstrategy == COLLECT_CENSORED)
esl_histogram_DeclareCensoring(h, z, phi);
}
else h1 = h;
/* Set expected binned counts in the test data, h1:
*/
if (fstrategy == FIT_TAIL)
esl_histogram_SetExpectedTail(h1, ep[0], tailmass,
&esl_exp_generic_cdf, ep);
else
esl_histogram_SetExpect(h1, &esl_gumbel_generic_cdf, ep);
/* Evaluate goodness-of-fit
*/
nfitted = (ntest == 0)? 2 : 0;
if (esl_histogram_Goodness(h1, nfitted, &nbins, &G, &Gp, &X2, &X2p) != eslOK)
esl_fatal("esl_histogram unit testing: goodness-of-fit failed");
/* Track minimum goodness of fit probs, for automated testing
*/
if (Gp < minGp) minGp = Gp;
if (X2p < minX2p) minX2p = X2p;
if (verbose)
printf("Estimated: %6.2f %6.4f nb %4d G %g\tGp %g\tX2 %g\tX2p %g\n",
ep[0], ep[1], nbins, G, Gp, X2, X2p);
/* Output files, if requested.
* (Best if ntrials=1. Will overwrite previous trials.)
*/
if (ascfile != NULL)
{
outfp = fopen(ascfile, "w");
esl_histogram_Write(outfp, h1);
fclose(outfp);
}
if (plotfile != NULL)
{
outfp = fopen(plotfile, "w");
esl_histogram_Plot(outfp, h1);
fclose(outfp);
}
if (survfile != NULL)
{
outfp = fopen(survfile, "w");
esl_histogram_PlotSurvival(outfp, h1);
fclose(outfp);
}
if (qqfile != NULL)
{
outfp = fopen(qqfile, "w");
if (fstrategy == FIT_TAIL)
esl_histogram_PlotQQ(outfp, h1, &esl_exp_generic_invcdf, ep);
else
esl_histogram_PlotQQ(outfp, h1, &esl_gumbel_generic_invcdf, ep);
fclose(outfp);
}
esl_histogram_Destroy(h);
if (ntest > 0) esl_histogram_Destroy(h1);
}
/* Trap badness in an automated test.
*/
if (fstrategy != FIT_TAIL && fabs(avg_ep[0] - p[0]) > 0.1)
ESL_EXCEPTION(eslFAIL, "Something awry with Gumbel mu fit");
if (fabs(avg_ep[1] - p[1]) > 0.1)
ESL_EXCEPTION(eslFAIL, "Something awry with lambda fit");
if (minGp < 1. / (1000. * ntrials))
ESL_EXCEPTION(eslFAIL, "Something awry with G-test");
if (minX2p < 1. / (1000. * ntrials))
ESL_EXCEPTION(eslFAIL, "Something awry with chi squared test");
/* Smaller final tests
*/
binmacro_utest();
valuerange_utest();
esl_randomness_Destroy(r);
return 0;
}
#endif /*eslHISTOGRAM_TESTDRIVE*/
/*****************************************************************
* 7. Examples
*****************************************************************/
/*****************************************************************
* Five example main()'s for five use cases:
* - complete data, fit to complete Gumbel
* - complete data, high scores fit as censored Gumbel
* - complete data, high scores fit to exponential tail
* - censored data, fit as censored Gumbel
* - complete data, binned, high scores fit to exponential tail
*
* (These same five cases are tested by ./test -t1 through ./test -t5.)
*****************************************************************/
/* Case 1. Complete data fit to complete Gumbel.
* compile: gcc -I. -L. -o example -DeslHISTOGRAM_EXAMPLE esl_histogram.c -leasel -lm
* run: ./example
*/
#ifdef eslHISTOGRAM_EXAMPLE
/*::cexcerpt::histogram_example::begin::*/
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_gumbel.h"
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *r = esl_randomness_Create(0);
ESL_HISTOGRAM *h = esl_histogram_CreateFull(-100, 100, 0.2);
int nsamples = 10000;
double mu = 10.0;
double lambda = 0.8;
double params[2];
int i;
double x;
double *xv;
int n;
double G, Gp, X2, X2p;
for (i = 0; i < nsamples; i++) {
x = esl_gumbel_Sample(r, mu, lambda);
esl_histogram_Add(h, x);
}
esl_histogram_GetData(h, &xv, &n);
if (esl_gumbel_FitComplete(xv, n, &mu, &lambda) != eslOK)
esl_fatal("gumbel complete data fit failed");
params[0] = mu;
params[1] = lambda;
esl_histogram_SetExpect(h, &esl_gumbel_generic_cdf, ¶ms);
esl_histogram_Write(stdout, h);
if (esl_histogram_Goodness(h, 0, NULL, &G, &Gp, &X2, &X2p) != eslOK)
esl_fatal("goodness of fit testing failed");
printf("G = %f p = %f\n", G, Gp);
printf("X^2 = %f p = %f\n", X2, X2p);
esl_histogram_Destroy(h);
esl_randomness_Destroy(r);
return 0;
}
/*::cexcerpt::histogram_example::end::*/
#endif /*eslHISTOGRAM_EXAMPLE*/
/* Case 2. complete data, high scores fit as censored Gumbel
* compile: gcc -I. -L. -o example -DeslHISTOGRAM_EXAMPLE2 esl_histogram.c -leasel -lm
* run: ./example
*/
#ifdef eslHISTOGRAM_EXAMPLE2
/*::cexcerpt::histogram_example2::begin::*/
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_gumbel.h"
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *r = esl_randomness_Create(0);
ESL_HISTOGRAM *h = esl_histogram_CreateFull(-100, 100, 0.2);
int nsamples = 10000;
double mu = 10.0;
double lambda = 0.8;
double params[2];
int i;
double x;
double *xv;
int n, z;
double G, Gp, X2, X2p;
for (i = 0; i < nsamples; i++) {
x = esl_gumbel_Sample(r, mu, lambda);
esl_histogram_Add(h, x);
}
esl_histogram_GetTailByMass(h, 0.5, &xv, &n, &z); /* fit to right 50% */
if (esl_gumbel_FitCensored(xv, n, z, xv[0], &mu, &lambda) != eslOK)
esl_fatal("gumbel censored fit failed");
params[0] = mu;
params[1] = lambda;
esl_histogram_SetExpect(h, &esl_gumbel_generic_cdf, ¶ms);
esl_histogram_Write(stdout, h);
if (esl_histogram_Goodness(h, 0, NULL, &G, &Gp, &X2, &X2p) != eslOK)
esl_fatal("goodness of fit testing failed");
printf("G = %f p = %f\n", G, Gp);
printf("X^2 = %f p = %f\n", X2, X2p);
esl_histogram_Destroy(h);
esl_randomness_Destroy(r);
return 0;
}
/*::cexcerpt::histogram_example2::end::*/
#endif /*eslHISTOGRAM_EXAMPLE2*/
/* Case 3. complete data, high scores fit to exponential tail
* compile: gcc -I. -L. -o example -DeslHISTOGRAM_EXAMPLE3 esl_histogram.c -leasel -lm
* run: ./example
*/
#ifdef eslHISTOGRAM_EXAMPLE3
/*::cexcerpt::histogram_example3::begin::*/
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_gumbel.h"
#include "esl_exponential.h"
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *r = esl_randomness_Create(0);
ESL_HISTOGRAM *h = esl_histogram_CreateFull(-100, 100, 0.2);
int nsamples = 10000;
double mu = 10.0;
double lambda = 0.8;
double params[2];
int i;
double x;
double *xv;
int n;
double G, Gp, X2, X2p;
for (i = 0; i < nsamples; i++) {
x = esl_gumbel_Sample(r, mu, lambda);
esl_histogram_Add(h, x);
}
esl_histogram_GetTailByMass(h, 0.1, &xv, &n, NULL); /* fit to 10% tail */
esl_exp_FitComplete(xv, n, &mu, &lambda);
params[0] = mu;
params[1] = lambda;
esl_histogram_SetExpectedTail(h, mu, 0.1, &esl_exp_generic_cdf, ¶ms);
esl_histogram_Write(stdout, h);
if (esl_histogram_Goodness(h, 0, NULL, &G, &Gp, &X2, &X2p) != eslOK)
esl_fatal("goodness of fit testing failed");
printf("G = %f p = %f\n", G, Gp);
printf("X^2 = %f p = %f\n", X2, X2p);
esl_histogram_Destroy(h);
esl_randomness_Destroy(r);
return 0;
}
/*::cexcerpt::histogram_example3::end::*/
#endif /*eslHISTOGRAM_EXAMPLE3*/
/* Case 4. censored data, high scores fit as a censored Gumbel tail
* compile:
gcc -I. -L. -o example -DeslHISTOGRAM_EXAMPLE4 esl_histogram.c -leasel -lm
* run: ./example
*/
#ifdef eslHISTOGRAM_EXAMPLE4
/*::cexcerpt::histogram_example4::begin::*/
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_gumbel.h"
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *r = esl_randomness_Create(0);
ESL_HISTOGRAM *h = esl_histogram_CreateFull(-100, 100, 0.2);
int nsamples = 10000;
double mu = 10.0;
double lambda = 0.8;
double phi = 9.0;
double params[2];
int i;
double x;
double *xv;
int n, z;
double G, Gp, X2, X2p;
z = 0;
for (i = 0; i < nsamples; i++) {
x = esl_gumbel_Sample(r, mu, lambda);
if (x > phi) esl_histogram_Add(h, x);
else z++;
}
esl_histogram_GetData(h, &xv, &n);
if (esl_gumbel_FitCensored(xv, n, z, phi, &mu, &lambda) != eslOK)
esl_fatal("gumbel censored fit failed");
params[0] = mu;
params[1] = lambda;
esl_histogram_SetExpect(h, &esl_gumbel_generic_cdf, ¶ms);
esl_histogram_Write(stdout, h);
if (esl_histogram_Goodness(h, 0, NULL, &G, &Gp, &X2, &X2p) != eslOK)
esl_fatal("goodness of fit testing failed");
printf("G = %f p = %f\n", G, Gp);
printf("X^2 = %f p = %f\n", X2, X2p);
esl_histogram_Destroy(h);
esl_randomness_Destroy(r);
return 0;
}
/*::cexcerpt::histogram_example4::end::*/
#endif /*eslHISTOGRAM_EXAMPLE4*/
/* Case 5. complete data, binned high scores fit to exponential tail
* compile:
gcc -I. -L. -o example -DeslHISTOGRAM_EXAMPLE5 esl_histogram.c -leasel -lm
* run: ./example
*/
#ifdef eslHISTOGRAM_EXAMPLE5
/*::cexcerpt::histogram_example5::begin::*/
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_gumbel.h"
#include "esl_exponential.h"
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *r = esl_randomness_Create(0);
ESL_HISTOGRAM *h = esl_histogram_Create(-100, 100, 1.0);
int nsamples = 10000;
double mu = 10.0;
double lambda = 0.8;
double params[2];
int i;
double x;
double actual_mass;
double G, Gp, X2, X2p;
for (i = 0; i < nsamples; i++) {
x = esl_gumbel_Sample(r, mu, lambda);
x = ceil(x); /* crudely simulate an x of limited precision */
esl_histogram_Add(h, x);
}
esl_histogram_SetTailByMass(h, 0.1, &actual_mass);
esl_histogram_DeclareRounding(h);
if (esl_exp_FitCompleteBinned(h, &mu, &lambda) != eslOK)
esl_fatal("exponential ML fitting failed");
params[0] = mu;
params[1] = lambda;
esl_histogram_SetExpectedTail(h, mu, actual_mass, &esl_exp_generic_cdf, ¶ms);
esl_histogram_Write(stdout, h);
if (esl_histogram_Goodness(h, 0, NULL, &G, &Gp, &X2, &X2p) != eslOK)
esl_fatal("goodness of fit testing failed");
printf("G = %f p = %f\n", G, Gp);
printf("X^2 = %f p = %f\n", X2, X2p);
esl_histogram_Destroy(h);
esl_randomness_Destroy(r);
return 0;
}
/*::cexcerpt::histogram_example5::end::*/
#endif /*eslHISTOGRAM_EXAMPLE5*/
|