1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
|
/* Huffman coding, especially for digitized alphabets.
*
* Contents:
* 1. The ESL_HUFFMAN object
* 2. Huffman encoding
* 3. Huffman decoding
* 4. Debugging, development
* 5. Internal function, components of creating huffman codes
* 6. Example driver
*
* Useful emacs gdb tricks for displaying bit field v:
* p /t v (no leading zeros, beware!)
* x &v
*/
#include "esl_config.h"
#include <stdio.h>
#include "easel.h"
#include "esl_quicksort.h"
#include "esl_huffman.h"
/* Declarations of stuff in internal functions/structures section */
struct hufftree_s {
float val; // Sum of frequencies of all leaves under this node
int depth; // Depth of node
int left; // index of left child in array of tree nodes (0..N-2; 0 is the root)
int right; // "" for right child
};
static int sort_floats_decreasing(const void *data, int e1, int e2);
static int sort_canonical (const void *data, int e1, int e2);
static int huffman_tree (ESL_HUFFMAN *hc, struct hufftree_s *htree, const float *fq);
static int huffman_codelengths (ESL_HUFFMAN *hc, struct hufftree_s *htree, const float *fq);
static int huffman_canonize (ESL_HUFFMAN *hc);
static int huffman_decoding_table(ESL_HUFFMAN *hc);
static void dump_uint32(FILE *fp, uint32_t v, int L);
static void huffman_pack(uint32_t *X, int *ip, int *ap, uint32_t code, int L);
static void huffman_unpack(const ESL_HUFFMAN *hc, uint32_t *vp, const uint32_t *X, int n, int *ip, int *ap, char *ret_x, int *ret_L);
/*****************************************************************
* 1. The ESL_HUFFMAN object
*****************************************************************/
/* Function: esl_huffman_Build()
* Synopsis: Build a new Huffman code.
* Incept: SRE, Thu Nov 12 11:08:09 2015
*
* Purpose: Build a canonical Huffman code for observed symbol
* frequencies <fq[0..K]> for <K> possible symbols.
* Frequencies can be counts, or normalized probabilities;
* all that matters is their relative magnitude (and that
* they're $\geq 0$).
*
* If you're encoding an Easel digital alphabet, you want
* <K = abc->Kp>, inclusive of ambiguity codes, gaps,
* missing data, and rare digital codes.
*
* If you're encoding 7-bit ASCII text, you want K=128, and
* the symbols codes are ASCII codes.
*
* If you're encoding MTF-encoded ASCII text, again you
* want K=128 and the "symbol" codes are 0..127 offsets in
* the move-to-front encoding.
*
* If you're encoding an arbitrary symbol table -- a table
* of gap lengths, perhaps? -- <K> can be anything.
*
* Unobserved symbols (with <fq[] = 0>) will not be encoded;
* they get a code length of 0, and a code of 0.
*
* Args: fq - symbol frequencies 0..K-1; sum to 1
* K - size of fq (encoded alphabet size)
* ret_hc - RETURN: new huffman code object
*
* Returns: <eslOK> on success, and <*ret_hc> points to the new
* <ESL_HUFFMAN> object.
*
* Throws: <eslEMEM> on allocation error.
*
* <eslERANGE> if the encoding requires a code length
* that exceeds <eslHUFFMAN_MAXCODE>, and won't fit in
* a <uint32_t>.
*/
int
esl_huffman_Build(const float *fq, int K, ESL_HUFFMAN **ret_hc)
{
ESL_HUFFMAN *hc = NULL;
struct hufftree_s *htree = NULL; // only need tree temporarily, during code construction.
int i,r;
int status;
ESL_DASSERT1(( fq ));
ESL_DASSERT1(( K > 0 ));
ESL_ALLOC(hc, sizeof(ESL_HUFFMAN));
hc->len = NULL;
hc->code = NULL;
hc->sorted_at = NULL;
hc->dt_len = NULL;
hc->dt_lcode = NULL;
hc->dt_rank = NULL;
hc->K = K;
hc->Ku = 0;
hc->D = 0;
hc->Lmax = 0;
ESL_ALLOC(hc->len, sizeof(int) * hc->K);
ESL_ALLOC(hc->code, sizeof(uint32_t) * hc->K);
ESL_ALLOC(hc->sorted_at, sizeof(int) * hc->K);
for (i = 0; i < hc->K; i++) hc->len[i] = 0;
for (i = 0; i < hc->K; i++) hc->code[i] = 0;
/* Sort the symbol frequencies, largest to smallest */
esl_quicksort(fq, hc->K, sort_floats_decreasing, hc->sorted_at);
/* Figure out how many are nonzero: that's hc->Ku */
for (r = hc->K-1; r >= 0; r--)
if (fq[hc->sorted_at[r]] > 0.) break;
hc->Ku = r+1;
ESL_ALLOC(htree, sizeof(struct hufftree_s) * (ESL_MAX(1, hc->Ku-1))); // Ku=1 is ok; avoid zero malloc.
if ( (status = huffman_tree (hc, htree, fq)) != eslOK) goto ERROR;
if ( (status = huffman_codelengths(hc, htree, fq)) != eslOK) goto ERROR; // can fail eslERANGE on maxlen > 32
if ( (status = huffman_canonize (hc)) != eslOK) goto ERROR;
ESL_ALLOC(hc->dt_len, sizeof(int) * hc->D);
ESL_ALLOC(hc->dt_lcode, sizeof(uint32_t) * hc->D);
ESL_ALLOC(hc->dt_rank, sizeof(int) * hc->D);
if ( (status = huffman_decoding_table(hc)) != eslOK) goto ERROR;
free(htree);
*ret_hc = hc;
return eslOK;
ERROR:
free(htree);
esl_huffman_Destroy(hc);
*ret_hc = NULL;
return status;
}
/* Function: esl_huffman_Destroy()
* Synopsis: Free an <ESL_HUFFMAN> code.
* Incept: SRE, Thu Nov 12 11:07:39 2015
*/
void
esl_huffman_Destroy(ESL_HUFFMAN *hc)
{
if (hc) {
free(hc->len);
free(hc->code);
free(hc->sorted_at);
free(hc->dt_len);
free(hc->dt_lcode);
free(hc->dt_rank);
free(hc);
}
}
/*****************************************************************
* 2. Encoding
*****************************************************************/
/* Function: esl_huffman_Encode()
* Synopsis: Encode a string.
* Incept: SRE, Thu Jun 2 09:27:43 2016 [Hamilton]
*
* Purpose: Use Huffman code <hc> to encode the plaintext input <T> of
* length <n>. The encoded result <X> consists of <nb> bits,
* stored in an array of <nX> <uint32_t>'s; this result is
* returned through the pointers <*ret_X>, <*ret_nX>, and
* <*ret_nb>.
*
* The encoded array <X> is allocated here, and must be
* free'd by the caller.
*
* Args: hc - Huffman code to use for encoding
* T - plaintext input to encode, [0..n-1]; does not need to be NUL-terminated.
* n - length of T
* ret_X - RETURN: encoded bit array
* ret_nb - RETURN: length of X in bits (nX = nb / 32, rounded up)
*
* Returns: <eslOK> on success.
*
* Throws: <eslEMEM> on allocation failure. Now <*ret_X = NULL> and <*ret_nb = 0>.
*/
int
esl_huffman_Encode(const ESL_HUFFMAN *hc, const char *T, int n, uint32_t **ret_X, int *ret_nb)
{
uint32_t *X = NULL;
int xalloc = ESL_MAX(16, (n+15)/16); // current allocation for X, in uint32_t's
int pos = 0; // current position in X's uint32_t array
int nb;
int i;
int status;
ESL_DASSERT1(( hc != NULL ));
ESL_DASSERT1(( T != NULL ));
ESL_DASSERT1(( n > 0 ));
ESL_ALLOC(X, sizeof(uint32_t) * xalloc);
X[0] = 0;
nb = 0;
for (i = 0; i < n; i++)
{
huffman_pack(X, &pos, &nb, hc->code[(int) T[i]], hc->len[(int) T[i]]);
if (pos+1 == xalloc) {
xalloc *= 2;
ESL_REALLOC(X, sizeof(uint32_t) * xalloc);
}
}
*ret_X = X; // X consists of <pos+1> uint32_t's
*ret_nb = 32*pos + nb; // ... we return exact # of bits.
return eslOK;
ERROR:
*ret_X = NULL;
*ret_nb = 0;
return status;
}
/*****************************************************************
* 3. Decoding
*****************************************************************/
/* Function: esl_huffman_Decode()
* Synopsis: Decode a bit stream.
* Incept: SRE, Thu Jun 2 09:52:46 2016 [Hamilton, Act I]
*
* Purpose: Use Huffman code <hc> to decode a bit stream <X> of length
* <n> integers and <nb> bits. The result is a plaintext
* string <T> of length <nT> characters. Return this result
* through <*ret_T> and <*ret_nT>.
*
* The decoded plaintext <T> is allocated here, and must be
* free'd by the caller.
*
* <T> is NUL-terminated, just in case that's useful --
* though the caller isn't necessarily going to treat <T>
* as a string. (It could be using "symbols" 0..127, which
* would include <\0> as a valid symbol.)
*
* Args: hc - Huffman code to use to decode <X>
* X - bit stream to decode
* nb - length of <X> in BITS (nX = nb/32, rounded up)
* ret_T - RETURN: decoded plaintext string, \0-terminated
* ret_n - RETURN: length of <T> in chars
*
* Returns: <eslOK> on success; <*ret_T> and <*ret_nT> hold the result.
*
* Throws: <eslEMEM> on allocation failure. Now <*ret_T> is <NULL> and
* <*ret_nT> is 0.
*
* Xref:
*/
int
esl_huffman_Decode(const ESL_HUFFMAN *hc, const uint32_t *X, int nb, char **ret_T, int *ret_n)
{
char *T = NULL;
int allocT; // current allocation for T
uint32_t v = X[0]; // current (full) 32 bits we're going to decode in this step
int i = 1; // index of X[i] we will first pull *new* bits from, after decoding v
int nX = (nb+31)/32; // length of X in uint32_t's: nb/32 rounded up.
int a = (nX > 1 ? 32 : 0);
int pos = 0;
int L; // length of code we just decoded, in bits
int status;
allocT = nX * 4; // an initial guess: 4 bytes per X, maybe 4x compression
ESL_ALLOC(T, sizeof(char) * allocT);
while (nb > 0)
{
huffman_unpack(hc, &v, X, nX, &i, &a, &(T[pos]), &L);
nb -= L;
if (++pos == allocT) {
allocT *= 2;
ESL_REALLOC(T, sizeof(char) * allocT);
}
}
/* We know we have space for the \0, from how we reallocated. */
T[pos] = '\0';
*ret_T = T;
*ret_n = pos;
return eslOK;
ERROR:
*ret_T = NULL;
*ret_n = 0;
return status;
}
/*****************************************************************
* 4. Debugging, development
*****************************************************************/
/* Function: esl_huffman_Dump()
* Synopsis: Dump info on a huffman code structure.
* Incept: SRE, Sat Jun 4 07:38:15 2016
*
* Purpose: Dump the internals of object <hc> to output stream <fp>.
*/
int
esl_huffman_Dump(FILE *fp, ESL_HUFFMAN *hc)
{
int r,x;
int d,L;
/* Encoding table: <letter index> <code length> <binary encoding> */
fprintf(fp, "Encoding table:\n");
for (r = 0; r < hc->Ku; r++)
{
x = hc->sorted_at[r];
fprintf(fp, "%3d %2d ", x, hc->len[x]);
dump_uint32(fp, hc->code[x], hc->len[x]);
fprintf(fp, "\n");
}
fputc('\n', fp);
/* Decoding table (if set) */
if (hc->dt_len)
{
fprintf(fp, "Decoding table:\n");
for (d = 0; d < hc->D; d++)
{
L = hc->dt_len[d];
fprintf(fp, "L=%2d r=%3d (%3d) ", L, hc->dt_rank[d], hc->sorted_at[hc->dt_rank[d]]);
dump_uint32(fp, hc->dt_lcode[d], eslHUFFMAN_MAXCODE);
fputc('\n', fp);
}
}
return eslOK;
}
/*****************************************************************
* 5. Internal functions and structures
*****************************************************************/
/* sort_floats_decreasing()
* Sorting function for esl_quicksort(), putting
* symbol frequencies in decreasing order.
*/
static int
sort_floats_decreasing(const void *data, int e1, int e2)
{
float *fq = (float *) data;
if (fq[e1] > fq[e2]) return -1;
if (fq[e1] < fq[e2]) return 1;
return 0;
}
/* sort_canonical()
* Sorting function for esl_quicksort(), putting symbols into
* canonical Huffman order: primarily by ascending code length,
* secondarily by ascending symbol code.
*/
static int
sort_canonical(const void *data, int e1, int e2)
{
ESL_HUFFMAN *hc = (ESL_HUFFMAN *) data;
int L1 = hc->len[e1];
int L2 = hc->len[e2];
if (L2 == 0) return -1; // len=0 means symbol isn't encoded at all, doesn't occur
else if (L1 == 0) return 1;
else if (L1 < L2) return -1;
else if (L1 > L2) return 1;
else if (e1 < e2) return -1;
else if (e1 > e2) return 1;
else return 0;
}
/* Build the Huffman tree, joining nodes/leaves of smallest frequency.
* This takes advantage of having the fq[] array sorted, and the fact
* that the internal node values also come out sorted... i.e. we don't
* have to re-sort, we can always find the smallest leaves/nodes by
* looking at the last ones.
*
* For the Ku=1 edge case, there's no tree, and this no-ops.
*
* Input:
* hc->sorted_at[] lists symbol indices from largest to smallest freq.
* hc->Ku is the number of syms w/ nonzero freq; tree has Ku-1 nodes
* htree blank, allocated for at least Ku-1 nodes
*
* Output:
* htree's left, right, val fields are filled.
*
* Returns:
* <eslOK> on success.
*/
static int
huffman_tree(ESL_HUFFMAN *hc, struct hufftree_s *htree, const float *fq)
{
int r = hc->Ku-1; // r = smallest leaf symbol that hasn't been included in tree yet; r+1 = # of leaves left
int k = hc->Ku-2; // k = smallest internal node not used as a child yet; k-j = # nodes not used as child yet
int j;
for (j = hc->Ku-2; j >= 0; j--) // j = index of next node we add; we add one per iteration
{
/* Should we join two leaves?
* If we have no internal nodes yet (because we're just starting),
* or the two smallest frequencies are <= the smallest unjoined node's value
*/
if ( (j == hc->Ku-2) || (r >= 1 && fq[hc->sorted_at[r]] <= htree[k].val))
{
htree[j].right = -hc->sorted_at[r]; // leaves are signified by negative indices in tree
htree[j].left = -hc->sorted_at[r-1];
htree[j].val = fq[hc->sorted_at[r]] + fq[hc->sorted_at[r-1]];
r -= 2;
}
/* Or should we join two nodes?
* If we have no leaves left,
* or (we do have two nodes) and both are smaller than smallest unjoined leaf's value
*/
else if (r == -1 || (k-j >= 2 && htree[k-1].val < fq[hc->sorted_at[r]]))
{
htree[j].right = k;
htree[j].left = k-1;
htree[j].val = htree[k].val + htree[k-1].val;
k -= 2;
}
/* Otherwise, we join smallest node and smallest leaf. */
else
{
htree[j].right = -hc->sorted_at[r];
htree[j].left = k;
htree[j].val = fq[hc->sorted_at[r]] + htree[k].val;
r--;
k--;
}
}
return eslOK;
}
/* Calculate code lengths, equal to the depth of each node.
* Traverse the tree, calculating depth of each node, starting with
* depth 0 for root 0. We don't need a stack for this traversal,
* tree is already indexed in traversal order.
*
* For the Ku=1 edge case, there's no tree; for a single encoded
* symbol we set hc->len[0] = 1, hc->Lmax = 1
*
* Input:
* hc->Ku is the number of syms w/ nonzero freqs; tree has Ku-1 nodes.
* htree[0..Ku-2] is the constructed Huffman tree, with right/left/val set.
* htree[].len has been initialized to 0 for all symbols 0..K
*
* Output:
* htree's depth field is set.
* hc->len is set for all encoded symbols (left at 0 for unused symbols)
* hc->Lmax is set
*
* Return:
* <eslOK> on success
* <eslERANGE> if max code length > eslHUFFMAN_MAXCODE and won't fit in uint32_t
*/
static int
huffman_codelengths(ESL_HUFFMAN *hc, struct hufftree_s *htree, const float *fq)
{
int i;
if (hc->Ku == 1)
{
hc->len[ hc->sorted_at[0] ] = 1;
hc->Lmax = 1;
return eslOK;
}
htree[0].depth = 0;
for (i = 0; i < hc->Ku-1; i++)
{
if (htree[i].right <= 0) hc->len[-htree[i].right] = htree[i].depth + 1;
else htree[htree[i].right].depth = htree[i].depth + 1;
if (htree[i].left <= 0) hc->len[-htree[i].left] = htree[i].depth + 1;
else htree[htree[i].left].depth = htree[i].depth + 1;
}
hc->Lmax = 0;
for (i = 0; i < hc->K; i++)
hc->Lmax = ESL_MAX(hc->len[i], hc->Lmax);
return (hc->Lmax > eslHUFFMAN_MAXCODE ? eslERANGE : eslOK);
}
/* huffman_canonize()
* Given code lengths, now we calculate the canonical Huffman encoding.
*
* Input:
* hc->len[] code lengths are set for all K (0 for unused symbols)
* hc->code[] have been initialized to 0 for all K
*
* Output:
* hc->code[] have been set for all used symbols.
* hc->D number of different code lengths is set
*
* Returns:
* <eslOK> on success.
*/
static int
huffman_canonize(ESL_HUFFMAN *hc)
{
int r;
/* Sort symbols according to 1) code length; 2) order in digital alphabet (i.e. symbol code itself)
* Reuse/reset <sorted_at>.
* You can't just sort the encoded Ku; you have to sort all K, because
* quicksort expects indices to be contiguous (0..K-1).
*/
esl_quicksort(hc, hc->K, sort_canonical, hc->sorted_at);
/* Assign codes. (All K have been initialized to zero already.) */
for (r = 1; r < hc->Ku; r++)
hc->code[hc->sorted_at[r]] =
(hc->code[hc->sorted_at[r-1]] + 1) << (hc->len[hc->sorted_at[r]] - hc->len[hc->sorted_at[r-1]]);
/* Set D, the number of different code lengths */
hc->D = 1;
for (r = 1; r < hc->Ku; r++)
if (hc->len[hc->sorted_at[r]] > hc->len[hc->sorted_at[r-1]]) hc->D++;
return eslOK;
}
/* huffman_decoding_table()
* Given a canonical Huffman code; build the table that lets us
* efficiently decode it.
*
* Input:
* hc->K is set: total # of symbols (inclusive of unused ones)
* hc->Ku is set: total # of encoded/used symbols
* hc->code is set: canonical Huffman codes for symbols 0..K-1
* hc->len is set: code lengths for symbols 0..K-1
* hc->sorted_at is set: canonical Huffman sort order
* hc->Lmax is set: maximum code length
* hc->D is set: # of different code lengths
*
* hc->dt_len is allocated for hc->D, but otherwise uninitialized
* hc->dt_lcode is allocated for hc->D, but otherwise uninitialized
* hc->dt_rank is allocated for hc->D, but otherwise uninitialized
*
* Output:
* hc->dt_len is set: lengths of each used code length 0..D-1
* hc->dt_lcode is set: left-flushed first code for each code length [d]
* hc->dt_rank is set: rank r for 1st code for each used code length [d]
*/
static int
huffman_decoding_table(ESL_HUFFMAN *hc)
{
int r;
int D = 0;
hc->dt_len[0] = hc->len[hc->sorted_at[0]];
hc->dt_lcode[0] = hc->code[hc->sorted_at[0]] << (eslHUFFMAN_MAXCODE - hc->len[hc->sorted_at[0]]);
hc->dt_rank[0] = 0;
for (r = 1; r < hc->Ku; r++)
if (hc->len[hc->sorted_at[r]] > hc->len[hc->sorted_at[r-1]])
{
D++;
hc->dt_len[D] = hc->len[hc->sorted_at[r]];
hc->dt_lcode[D] = hc->code[hc->sorted_at[r]] << (eslHUFFMAN_MAXCODE - hc->len[hc->sorted_at[r]]);
hc->dt_rank[D] = r;
}
ESL_DASSERT1(( hc->D == D+1 ));
return eslOK;
}
static void
dump_uint32(FILE *fp, uint32_t v, int L)
{
uint32_t mask;
int i;
for (mask = 1 << (L-1), i = L; i >= 1; i--, mask = mask >> 1)
putc( ((v & mask) ? '1' : '0'), fp);
}
/* huffman_pack()
*
* <X[i]> is the current uint32_t unit in the encoded buffer <X>. It
* has <a> bits in it so far, maximally left-shifted; therefore (32-a)
* bits are available.
*
* <code> is the next Huffman code to pack into the buffer, of length
* <L>, and it's right flush.
*
* a=10 used (32-a)=20 free
* |xxxxxxxxxx|......................| X[i]
* |........................|yyyyyyyy| code, L=8
* |----- w -----|
* w = 32-(a+L)
*
* If L < 32-a, then we just shift by w and pack it into X[i]. Else,
* we shift the other way (by -w), pack what we can into X[i], and
* leave the remainder in X[i+1].
*
* We update <i> and <a> for <X> accordingly... so we pass them by
* reference in <ip> and <ap>.
*/
static void
huffman_pack(uint32_t *X, int *ip, int *ap, uint32_t code, int L)
{
int w = 32 - (*ap+L);
if (w > 0) // code can pack into X[i]'s available space.
{
X[*ip] = X[*ip] | (code << w);
*ap += L;
}
else if (w < 0) // code packs partly in X[i], remainder in X[i+1].
{
X[*ip] = X[*ip] | (code >> (-w));
(*ip)++;
X[*ip] = code << (32+w);
(*ap) = -w;
}
else // code packs exactly; w=0, no leftshift needed, OR it as is.
{
X[*ip] = X[*ip] | code;
*ip += 1;
*ap = 0;
X[*ip] = 0; // don't forget to initialize X[i+1]!
}
}
/* huffman_unpack()
* *vp : ptr to v; v = next 32 bits
* *X : encoded input
* n : length of input (in uint32_t)
* *ip : current position in <X>
* *ap : number of bits left in X[*ip]
*
* If we have to buffer X (say, if we're reading it from
* a long input) we'll have to redesign. Right now we assume
* it's just an array.
*/
static void
huffman_unpack(const ESL_HUFFMAN *hc, uint32_t *vp, const uint32_t *X, int n, int *ip, int *ap, char *ret_x, int *ret_L)
{
int L,D;
int idx;
uint32_t w;
for (D = 0; D < hc->D-1; D++)
if ((*vp) < hc->dt_lcode[D+1]) break;
L = hc->dt_len[D];
/* L is now the next code's length (prefix of v) */
/* Decode, by taking advantage of lexicographic sort/numerical order of canonical code, within each L */
idx = hc->dt_rank[D] + ( ((*vp) - hc->dt_lcode[D]) >> (eslHUFFMAN_MAXCODE-L) );
/* Now refill v, as much as we can, from bits in X[i] and X[i+1], and update i, a */
*vp = ( (*vp) << L); // Remove L bits from *vp by leftshifting it.
if (*ip < n) { // Take either L or all *ap bits from X[i], if it exists.
w = X[*ip] << (32-(*ap)); // Shift off the bits we already used in X[i]. w is now X[i], left-flushed.
*vp |= (w >> (32-L)); // Right-shift w into position, leaving it with leading 0's where *vp already has bits.
*ap -= L; // We used up to L bits from X[i]
// if *ap is still >0, we have bits left to use in X[i]. Otherwise:
if (*ap == 0) // If we exactly finished off X[i]:
{
(*ip)++; // then advance in X[].
*ap = 32;
}
else if (*ap < 0) // If we finished off X[i] but still need some bits
{
(*ip)++; // then go on to X[i+1] and 32 fresh bits.
if (*ip < n) // If it exists...
{ // (...no, I don't like all these branches either...)
*ap += 32; // then we're going to leave it w/ <*ap> bits
*vp |= (X[*ip] >> *ap); // after taking the bits we need to fill v
}
else
{
*ap = 0; // If X[i+1] doesn't exist, leave *ip = n and *ap = 0; out of data in X (though not necessarily in v)
}
}
}
*ret_x = (char) hc->sorted_at[idx];
*ret_L = L;
}
/*****************************************************************
* 6. Unit tests
*****************************************************************/
#ifdef eslHUFFMAN_TESTDRIVE
#include "esl_random.h"
#include "esl_randomseq.h"
#include "esl_vectorops.h"
#include <string.h>
static void
utest_kryptos(ESL_RANDOMNESS *rng)
{
char msg[] = "kryptos utest failed";
ESL_HUFFMAN *hc = NULL;
char T[] = "BETWEEN SUBTLE SHADING AND THE ABSENCE OF LIGHT LIES THE NUANCE OF IQLUSION";
int n = strlen(T);
uint32_t *X = NULL;
int nb;
char *T2 = NULL;
int n2;
float fq[128];
int K = 128;
int i;
int status;
/* Any half-assed frequency distribution will do for this, over [ A-Z] */
for (i = 0; i < 128; i++) fq[i] = 0.;
for (i = 'A'; i <= 'Z'; i++) fq[i] = esl_random(rng);
fq[' '] = esl_random(rng);
esl_vec_FNorm(fq, 128);
if (( status = esl_huffman_Build (fq, K, &hc) ) != eslOK) esl_fatal(msg);
if (( status = esl_huffman_Encode(hc, T, n, &X, &nb)) != eslOK) esl_fatal(msg);
if (( status = esl_huffman_Decode(hc, X, nb, &T2, &n2)) != eslOK) esl_fatal(msg);
//esl_huffman_Dump(stdout, hc);
//printf("%s\n", T);
//printf("%s\n", T2);
if (n2 != n) esl_fatal(msg);
if (strcmp(T, T2) != 0) esl_fatal(msg);
free(X);
free(T2);
esl_huffman_Destroy(hc);
}
/* utest_uniletter()
* Tests an edge case of a text consisting of a single letter, Ku=1.
* (Ku=1 cases get tested occasionally by utest_backandforth() too.)
*/
static void
utest_uniletter(void)
{
char msg[] = "uniletter utest failed";
char T[] = "AAAAAAAAAA";
int n = strlen(T);
int K = 128;
float fq[128];
ESL_HUFFMAN *hc = NULL;
uint32_t *X = NULL;
int nb;
char *T2 = NULL;
int n2;
int i;
int status;
for (i = 0; i < 128; i++) fq[i] = 0.;
fq['A'] = (float) n;
if (( status = esl_huffman_Build (fq, K, &hc) ) != eslOK) esl_fatal(msg);
if (( status = esl_huffman_Encode(hc, T, n, &X, &nb)) != eslOK) esl_fatal(msg);
if (( status = esl_huffman_Decode(hc, X, nb, &T2, &n2)) != eslOK) esl_fatal(msg);
if (n2 != n) esl_fatal(msg);
if (strcmp(T, T2) != 0) esl_fatal(msg);
free(X);
free(T2);
esl_huffman_Destroy(hc);
}
/* utest_backandforth()
* Encode and decode a random text string, and test
* that it decodes to the original.
*/
static void
utest_backandforth(ESL_RANDOMNESS *rng)
{
char msg[] = "back and forth utest failed";
ESL_HUFFMAN *hc = NULL;
double *fq0 = NULL;
float *fq = NULL;
int K; // alphabet size: randomly chosen from 1..128
char *T = NULL; // random plaintext
int n; // randomly chosen length of plaintext T
uint32_t *X = NULL; // Huffman-coded bit stream
int nb; // length of X in bits
char *T2 = NULL; // decoded plaintext
int n2; // length of T2 in chars
int i;
int status;
/* Sample a zero-peppered frequency distribution <fq> for a randomly
* selected alphabet size <K>.
*/
K = 1 + esl_rnd_Roll(rng, 128); // Choose a random alphabet size from 1 to 128
if (( fq0 = malloc(sizeof(double) * K)) == NULL) esl_fatal(msg); // esl_random works in doubles
if (( fq = malloc(sizeof(float) * K)) == NULL) esl_fatal(msg); // esl_huffman works in floats
esl_rnd_Dirichlet(rng, NULL, K, fq0); // Sample a uniform random probability vector
for (i = 0; i < K; i++) // Pepper it with exact 0's while converting to float
fq[i] = ( esl_rnd_Roll(rng, 4) == 0 ? 0. : (float) fq0[i] );
esl_vec_FNorm(fq, K); // and renormalize. (edge case: if fq was all 0, now it's uniform.)
/* Sample a random plaintext array <T>, of randomly selected length <n>.
* We're using codes 0..K-1 -- T is not a string, it's an array -- don't \0 it.
*/
n = 1 + esl_rnd_Roll(rng, 10);
if (( T = malloc(sizeof(char) * (n+1))) == NULL) esl_fatal(msg);
for (i = 0; i < n; i++) T[i] = esl_rnd_FChoose(rng,fq,K);
if (( status = esl_huffman_Build (fq, K, &hc) ) != eslOK) esl_fatal(msg);
if (( status = esl_huffman_Encode(hc, T, n, &X, &nb)) != eslOK) esl_fatal(msg);
if (( status = esl_huffman_Decode(hc, X, nb, &T2, &n2)) != eslOK) esl_fatal(msg);
//esl_huffman_Dump(stdout, hc);
if ( n2 != n) esl_fatal(msg);
if ( memcmp(T, T2, n) != 0) esl_fatal(msg);
free(T2);
free(X);
free(fq0);
free(fq);
free(T);
esl_huffman_Destroy(hc);
}
#endif /*eslHUFFMAN_TESTDRIVE*/
/*****************************************************************
* 7. Test driver
*****************************************************************/
#ifdef eslHUFFMAN_TESTDRIVE
#include "esl_config.h"
#include <stdio.h>
#include "easel.h"
#include "esl_getopts.h"
#include "esl_huffman.h"
#include "esl_random.h"
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgrp */
{"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0},
{"-s", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "set random number seed to <n>", 0},
{ 0,0,0,0,0,0,0,0,0,0},
};
static char usage[] = "[-options]";
static char banner[] = "test driver for huffman module";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *rng = esl_randomness_Create(esl_opt_GetInteger(go, "-s"));
fprintf(stderr, "## %s\n", argv[0]);
fprintf(stderr, "# rng seed = %" PRIu32 "\n", esl_randomness_GetSeed(rng));
utest_kryptos (rng);
utest_uniletter ( );
utest_backandforth(rng);
fprintf(stderr, "# status = ok\n");
esl_getopts_Destroy(go);
esl_randomness_Destroy(rng);
return eslOK;
}
#endif /*eslHUFFMAN_TESTDRIVE*/
/*****************************************************************
* 8. Examples
*****************************************************************/
#ifdef eslHUFFMAN_EXAMPLE2
/* esl_huffman_example2 <fqfile>
*
* The input <fqfile> consists of N lines with
* two whitespace-delimited fields:
* <label> <frequency>
*
* Huffman code the frequency distribution, and output the resulting
* encoding.
*/
#include "easel.h"
#include "esl_buffer.h"
#include "esl_huffman.h"
#include "esl_mem.h"
#include "esl_vectorops.h"
int
main(int argc, char **argv)
{
ESL_HUFFMAN *hc = NULL;
ESL_BUFFER *bf = NULL;
esl_pos_t n;
char *p;
char *tok;
esl_pos_t toklen;
int kalloc = 16;
char **label = malloc(sizeof(char *) * kalloc);
float *fq = malloc(sizeof(float) * kalloc);
int K = 0;
float meanL = 0.;
int i;
int status;
status = esl_buffer_Open(argv[1], NULL, &bf);
if (status == eslENOTFOUND) esl_fatal("open failed: %s", bf->errmsg);
else if (status == eslFAIL) esl_fatal("gzip -dc failed: %s", bf->errmsg);
else if (status != eslOK) esl_fatal("open failed with error code %d", status);
while (( status = esl_buffer_GetLine(bf, &p, &n)) == eslOK)
{
if ( esl_memtok(&p, &n, " \t\n", &tok, &toklen) != eslOK) continue;
if ( esl_memstrdup(tok, toklen, &(label[K])) != eslOK) continue;
if ( esl_mem_strtof(p, n, NULL, &(fq[K])) != eslOK) continue;
if (++K == kalloc) {
kalloc *= 2;
label = realloc(label, sizeof(char *) * kalloc);
fq = realloc(fq, sizeof(float) * kalloc);
}
}
esl_vec_FNorm(fq, K);
if (( status = esl_huffman_Build(fq, K, &hc)) != eslOK) esl_fatal("failed to build huffman code");
for (i = 0; i < K; i++)
{
printf("%-10s %2d ", label[i], hc->len[i]);
dump_uint32(stdout, hc->code[i], hc->len[i]);
printf("\n");
}
for (i = 0; i < K; i++)
meanL += (float) hc->len[i] * fq[i];
printf("\nMean code length = %.2f bits\n", meanL);
for (i = 0; i < K; i++) free(label[i]);
free(label);
free(fq);
esl_huffman_Destroy(hc);
esl_buffer_Close(bf);
return 0;
}
#endif /*eslHUFFMAN_EXAMPLE2*/
#ifdef eslHUFFMAN_EXAMPLE
#include "easel.h"
#include "esl_huffman.h"
#include <stdio.h>
#include <string.h>
/* Given an open <fp> for reading;
* input text from it and return it as a single string.
* Optionally return the number of characters in <opt_n>.
* Convert all \n to spaces.
*/
static char *
read_text(FILE *fp, int *opt_n)
{
int maxlinelen = 4096;
char *text = malloc(sizeof(char) * maxlinelen);
int n = 0;
char *p;
while (fgets(text+n, maxlinelen-1, fp) != NULL)
{
for (p = text+n; *p != '\0'; p++)
if (*p == '\n') *p = ' ';
n += strlen(text+n);
text = realloc(text, sizeof(char) * (n+maxlinelen));
}
if (opt_n) *opt_n = n;
return text;
}
int
main(int argc, char **argv)
{
FILE *fp = fopen(argv[1], "r");
int n;
char *T = read_text(fp, &n);
uint32_t *X = NULL;
float fq[128];
int c,i;
int nb;
ESL_HUFFMAN *hc = NULL;
char *newT = NULL;
int nT;
/* You provide a frequency table for your digital alphabet 0..K-1.
* It's fine for there to be 0-frequency characters, even many of them;
* they will not be encoded, and cost nothing.
* Here, our digital alphabet is 7-bit ASCII text, 0..127, K=128.
*/
for (c = 0; c < 128; c++) fq[c] = 0.;
for (i = 0; i < n; i++) fq[(int) T[i]] += 1.;
/* There does have to be at least one character to encode, of course. */
ESL_DASSERT1(( n > 0 ));
esl_huffman_Build(fq, 128, &hc);
esl_huffman_Dump(stdout, hc);
esl_huffman_Encode(hc, T, n, &X, &nb);
printf("\nOriginal: %d bytes\n", n);
printf("Compressed: %d bytes (%d bits)\n", 4*(nb+31)/32, nb);
/* Dump the compresstext, up to 30 words of it */
printf("\nCompressed text:\n");
for (i = 0; i < ESL_MIN(30, (nb+31)/32); i++) {
dump_uint32(stdout, X[i], 32);
fputc('\n', stdout);
}
esl_huffman_Decode(hc, X, nb, &newT, &nT);
/* Show the decoded plaintext, up to 100 chars of it */
printf("\nDecoded text:\n");
for (i = 0; i < ESL_MIN(100, nT); i++)
fputc(newT[i], stdout);
fputc('\n', stdout);
esl_huffman_Destroy(hc);
free(T);
fclose(fp);
return 0;
}
#endif /*eslHUFFMAN_EXAMPLE*/
|