1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/* Statistical routines for normal (Gaussian) distributions.
*
* Contents:
* 1. Densities and distributions
* 2. Generic API, interface to histogram module
* 3. Unit tests
* 4. Test driver
* 5. Example
*
* To-do:
* - incomplete API, by the standards of other Easel stats modules.
* Compare esl_gumbel, for example.
*
*****************************************************************
* Crib notes.
*
* The error function is defined as: erf(x) = 2/sqrt(pi) \int_0^x e^{-t^2} dt
* The complementary error function is: erfc(x) = 1 - erf(x)
* The normal CDF in terms of erf: CDF(z) = 1/2 + 1/2 erf(z/sqrt(2))
* erf(x) is an "odd function": erf(x) = -erf(-x)
*
* lim_{x -> -inf} erf(x) = -1; erf(0) = 0; lim_{x -> +inf} erf(x) = 1
* lim_{x -> -inf} erfc(x) = 2 erfc(0) = 1; lim_{x -> +inf} erfc(x) = 0;
*
* erf(), erfc() in double precision are in the C99 standard. Some
* systems (cough, Microsoft, cough) are not necessarily C99 compliant
* and may not provide erf(), erfc(). But Easel will compile in an
* alternative, esl_stats_erfc(), if needed.
*/
#include "esl_config.h"
#include <math.h>
#include "easel.h"
#include "esl_normal.h"
#include "esl_stats.h"
/*****************************************************************
* 1. Densities and distributions.
*****************************************************************/
/* Function: esl_normal_pdf()
* Incept: SRE, Tue Nov 21 14:15:43 2006 [Janelia]
*
* Purpose: Calculates the normal (Gaussian) probability density
* function $P(X=x)$ for a normal distribution, given
* value <x>, mean <mu>, and standard deviation <sigma>.
*
* Xref: STL11/94.
*/
double
esl_normal_pdf(double x, double mu, double sigma)
{
double z;
z = (x - mu) / sigma;
return exp(-z*z*0.5) / (sigma * sqrt(2. * eslCONST_PI));
}
/* Function: esl_normal_logpdf()
* Incept: SRE, Tue Jan 9 20:43:52 2007 [Casa de Gatos]
*
* Purpose: Calculates the log of the probabiility density function
* for the normal (Gaussian), $\log P(X=x)$, given value
* <x>, mean <mu>, and standard deviation <sigma>.
*
* Xref: STL11/94.
*/
double
esl_normal_logpdf(double x, double mu, double sigma)
{
double z;
z = (x - mu) / sigma;
return (-z*z*0.5) - log(sigma) - log(sqrt(2.*eslCONST_PI));
}
/* Function: esl_normal_cdf()
* Incept: SRE, Tue Jan 9 20:59:04 2007 [Casa de Gatos]
*
* Purpose: Calculates the cumulative distribution function for the
* normal, $P(X \leq x)$, given value <x>, mean <mu>,
* and standard deviation <sigma>.
*
* Xref: STL11/94.
*/
double
esl_normal_cdf(double x, double mu, double sigma)
{
double z;
/* for z -> -inf, CDF->0, so we rearrange in order to avoid 1 - 1
* cancellation error that arises in 0.5 * (1 + erf(z)) version.
* This way, esl_normal_cdf() returns full double-precision dynamic
* range.
*/
z = (x - mu) / sigma;
return 0.5 * erfc(-1. * z / sqrt(2.));
}
/* Function: esl_normal_surv()
* Incept: SRE, Thu Jan 11 20:16:23 2007 [Casa de Gatos]
*
* Purpose: Calculates the survivor function, $P(X>x)$ (that is,
* 1-CDF, the right tail probability mass) for a normal
* distribution, given value <x>, mean <mu>, and standard
* deviation <sigma>.
*
* Xref: STL11/94
*/
double
esl_normal_surv(double x, double mu, double sigma)
{
double z = (x - mu) / sigma;
/* As above, we avoid the use of 1-CDF or the more
* common 1/2 (1 - erf(z)) version because we need to
* avoid 1-1 cancellation error.
*/
return 0.5 * erfc( z / sqrt(2.));
}
/*****************************************************************
* 2. Generic API, interface to histogram module
*****************************************************************/
double
esl_normal_generic_pdf(double x, void *params)
{
double *v = (double *) params;
return esl_normal_pdf(x, v[0], v[1]);
}
double
esl_normal_generic_cdf(double x, void *params)
{
double *v = (double *) params;
return esl_normal_cdf(x, v[0], v[1]);
}
double
esl_normal_generic_surv(double x, void *params)
{
double *v = (double *) params;
return esl_normal_surv(x, v[0], v[1]);
}
/*****************************************************************
* 3. Unit tests.
*****************************************************************/
#ifdef eslNORMAL_TESTDRIVE
static int
utest_pdf(void)
{
char msg[] = "gaussian PDF unit test failed";
double mu = 0.;
double sigma = 1.;
double delta = 0.01;
double x;
double newpdf, lastpdf;
double cdf;
/* One way to test the PDF is to integrate the CDF by quadrature, which should give us ~ 1. */
for (cdf = 0., x = -40.; x < 40.; x += delta)
cdf += esl_normal_pdf(x, mu, sigma) * delta;
if (esl_DCompare(cdf, 1.0, 1e-9) != eslOK) esl_fatal(msg);
/* We also verify that we're using double-precision range */
x = 0.;
newpdf = esl_normal_pdf(x, mu, sigma);
do {
x += 1.;
lastpdf = newpdf;
newpdf = esl_normal_pdf(x, mu, sigma);
} while (newpdf > 0.);
/* If denormals flush to zero, we reach x=38; lastpdf = 2.12001e-298.
* With denormals, we reach one more step, x=39; lastpdf = 1.09722e-314.
* icc enables flush-to-zero at all -O levels, and gcc does not.
*/
if (lastpdf > 1e-297 || x < 38.) esl_fatal(msg);
return eslOK;
}
static int
utest_logpdf(void)
{
char msg[] = "gaussian log PDF unit test failed";
double mu = 0.;
double sigma = 1.;
double delta = 0.01;
double x;
double old, new;
double cdf;
/* One way to test the log PDF is to integrate the CDF by quadrature, which should give us ~ 1. */
for (cdf = 0., x = -40.; x < 40.; x += delta)
cdf += exp(esl_normal_logpdf(x, mu, sigma)) * delta;
if (esl_DCompare(cdf, 1.0, 1e-9) != eslOK) esl_fatal(msg);
/* Another way is to compare exp(logpdf) to the PDF */
for (x = -20.; x < 20.; x += delta)
{
old = esl_normal_pdf (x, mu, sigma);
new = exp(esl_normal_logpdf(x, mu, sigma));
if (esl_DCompare(old, new, 1e-9) != eslOK) esl_fatal(msg);
}
return eslOK;
}
static int
utest_cdf(void)
{
char msg[] = "gaussian CDF unit test failed";
double mu = 0.;
double sigma = 1.;
double x;
x = esl_normal_cdf(mu, mu, sigma);
if (esl_DCompare(x, 0.5, 1e-9) != eslOK) esl_fatal(msg);
x = esl_normal_cdf(99., mu, sigma);
if (esl_DCompare(x, 1.0, 1e-9) != eslOK) esl_fatal(msg);
x = esl_normal_cdf(-99., mu, sigma);
if (esl_DCompare(x, 0.0, 1e-9) != eslOK) esl_fatal(msg);
x = esl_normal_cdf(-30., mu, sigma);
if (x > 1e-100 || x == 0.) esl_fatal(msg);
return eslOK;
}
static int
utest_surv(void)
{
char msg[] = "gaussian survival unit test failed";
double mu = 0.;
double sigma = 1.;
double x;
x = esl_normal_surv(mu, mu, sigma);
if (esl_DCompare(x, 0.5, 1e-9) != eslOK) esl_fatal(msg);
x = esl_normal_surv(-99., mu, sigma);
if (esl_DCompare(x, 1.0, 1e-9) != eslOK) esl_fatal(msg);
x = esl_normal_surv(99., mu, sigma);
if (esl_DCompare(x, 0.0, 1e-9) != eslOK) esl_fatal(msg);
x = esl_normal_surv(30., mu, sigma);
if (x > 1e-100 || x == 0.) esl_fatal(msg);
return eslOK;
}
#endif /*eslNORMAL_TESTDRIVE*/
/*****************************************************************
* 4. Test driver.
*****************************************************************/
#ifdef eslNORMAL_TESTDRIVE
/* Compile:
gcc -g -Wall -I. -L. -o esl_normal_utest -DeslNORMAL_TESTDRIVE esl_normal.c -leasel -lm
*/
#include <stdio.h>
#include <math.h>
#include "easel.h"
#include "esl_normal.h"
int
main(int argc, char **argv)
{
utest_pdf();
utest_logpdf();
utest_cdf();
utest_surv();
return eslOK;
}
#endif /*eslNORMAL_TESTDRIVE*/
/*****************************************************************
* 5. Example.
*****************************************************************/
#ifdef eslNORMAL_EXAMPLE
/* Print Gaussian distribution(s) in xmgrace XY set format
gcc -g -Wall -I. -L. -o esl_normal_example -DeslNORMAL_EXAMPLE esl_normal.c -leasel -lm
*/
#include <stdio.h>
#include <math.h>
#include "easel.h"
#include "esl_getopts.h"
#include "esl_normal.h"
static ESL_OPTIONS options[] = {
/* name type default env range toggles reqs incomp help docgroup*/
{ "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 },
{ "--mean", eslARG_REAL, "0.0", NULL, NULL, NULL, NULL, NULL, "mean of normal distribution", 0 },
{ "--sd", eslARG_REAL, "1.0", NULL, NULL, NULL, NULL, NULL, "s.d. of normal distribution", 0 },
{ "--min", eslARG_REAL, "-10.0", NULL, NULL, NULL, NULL, NULL, "minimum for xaxis", 0 },
{ "--max", eslARG_REAL, "10.0", NULL, NULL, NULL, NULL, NULL, "maximum for xaxis", 0 },
{ "--step", eslARG_REAL, "1.0", NULL, NULL, NULL, NULL, NULL, "step size for xaxis", 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static char usage[] = "[-options]";
static char banner[] = "output a Gaussian histogram";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
double minx = esl_opt_GetReal(go, "--min");
double maxx = esl_opt_GetReal(go, "--max");
double xstep = esl_opt_GetReal(go, "--step");
double mean = esl_opt_GetReal(go, "--mean");
double sd = esl_opt_GetReal(go, "--sd");
double x;
double val;
for (x = minx; x < maxx; x += xstep)
{
val = esl_normal_logpdf(x, mean, sd) * xstep; /* replace w/ whatever you want to test drive */
printf("%f %g\n", x, val);
}
printf("&\n");
esl_getopts_Destroy(go);
return 0;
}
#endif /*eslNORMAL_EXAMPLE*/
|