1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/* Quicksort.
*
* Differs from stdlib's qsort() in that Easel provides a standardized
* and reentrant way to sort arbitrary data arrays/structures by
* sorting an array of unique integer identifiers.
*
* Contents:
* 1. Quicksort algorithm
* 2. Unit tests
* 3. Test driver
* 4. Example
*/
#include "esl_config.h"
#include "easel.h"
#include "esl_quicksort.h"
static void partition(const void *data, int (*comparison)(const void *data, int o1, int o2), int *ord, int lo, int hi);
/*****************************************************************
* 1. Quicksort
*****************************************************************/
/* Function: esl_quicksort()
* Synopsis: Quicksort algorithm.
* Incept: SRE, Wed Nov 11 16:34:05 2015
*
* Purpose: <data> points to an array or structure that consists of
* <n> elements that we can identify with unique integer
* identifiers 0..<n-1>. Sort these elements, using a
* <*comparison()> function that returns -1, 0, or 1 when
* element <o1> should be sorted before, equal to, or after
* element <o2>. Caller provides an allocated array
* <sorted_at> to hold the result, allocated for at least
* <n> integers. The result in <sorted_at> consists of the
* ordered array of identifiers. For example,
* <sorted_at[0]> is the index of the best (first) element
* in the original <data> array, and <sorted_at[n-1]> is
* the id of the worst (last) element; <data[sorted_at[0]]>
* and <data[sorted_at[n-1]]> are the best and worst
* elements themselves. The original <data> array is
* unaltered.
*
* Compared to standard <qsort()>, the main advantage of
* <esl_qsort()> is that it is reentrant: it passes an
* arbitrary <data> pointer to the comparison function, so
* it can sort the elements of arbitrary structures or
* arrays without having to globally or statically expose
* those data. (A reentrant <qsort_r()> function is
* available in the libc of some platforms, but is not
* standard POSIX ANSI C, so we cannot rely on it.) The
* main disadvantage is that <esl_quicksort()> takes
* additional memory (the <sorted_at> array), whereas
* <qsort()> sorts in place.
*
* Args: data - generic pointer to the data to be sorted.
* n - <data> consists of <n> elements numbered 0..n-1
* comparison() - returns -1,0,1 if o1 is better, equal, worse than o2
* sorted_at - sorted array of the data[] idx's 0..n-1.
*
* Returns: <eslOK> on success.
*/
int
esl_quicksort(const void *data, int n, int (*comparison)(const void *data, int o1, int o2), int *sorted_at)
{
int i;
for (i = 0; i < n; i++) sorted_at[i] = i;
partition(data, comparison, sorted_at, 0, n-1);
return eslOK;
}
/*
* We're sorting a subrange of <ord>, from <ord[lo]..ord[hi]>
* Values in <ord> are unique identifiers for <data>.
* We're sorting <ord> by data[ord[i]] better than data[ord[i+1]]
*/
static void
partition(const void *data, int (*comparison)(const void *data, int o1, int o2), int *ord, int lo, int hi)
{
int i = lo;
int j = hi+1;
int swap, pivot;
/* Select pivot position from lo, hi, lo + (hi-lo)/2 by median-of-three */
if (comparison(data, ord[hi], ord[lo]) < 0) { swap = ord[hi]; ord[hi] = ord[lo]; ord[hi] = swap; }
pivot = lo + (hi-lo)/2;
if (comparison(data, ord[pivot], ord[lo]) < 0) pivot = lo;
else if (comparison(data, ord[pivot], ord[hi]) > 0) pivot = hi;
swap = ord[pivot]; ord[pivot] = ord[lo]; ord[lo] = swap;
/* Partition */
while (1)
{
do { i++; } while (i <= hi && comparison(data, ord[i], ord[lo]) < 0);
do { j--; } while ( comparison(data, ord[j], ord[lo]) > 0);
if (j > i) { swap = ord[j]; ord[j] = ord[i]; ord[i] = swap; }
else break;
}
swap = ord[lo]; ord[lo] = ord[j]; ord[j] = swap;
/* Recurse, doing the smaller partition first */
if (j-lo < hi-j) {
if (j-lo > 1) partition(data, comparison, ord, lo, j-1);
if (hi-j > 1) partition(data, comparison, ord, j+1, hi);
} else {
if (hi-j > 1) partition(data, comparison, ord, j+1, hi);
if (j-lo > 1) partition(data, comparison, ord, lo, j-1);
}
}
/*****************************************************************
* 2. Unit tests
*****************************************************************/
#ifdef eslQUICKSORT_TESTDRIVE
#include "esl_random.h"
int
sort_floats_ascending(const void *data, int o1, int o2)
{
float *x = (float *) data;
if (x[o1] < x[o2]) return -1;
if (x[o1] > x[o2]) return 1;
return 0;
}
static void
utest_floatsort(ESL_RANDOMNESS *rng, int N, int K)
{
char msg[] = "esl_quicksort: float sort test failed";
float *x = malloc(sizeof(float) * N);
int *sorted_at = malloc(sizeof(int) * N);
int i,r;
for (i = 0; i < N; i++)
x[i] = esl_random(rng) * K;
esl_quicksort(x, N, sort_floats_ascending, sorted_at);
for (r = 1; r < N; r++)
if (x[sorted_at[r]] < x[sorted_at[r-1]]) esl_fatal(msg);
free(x);
free(sorted_at);
}
#endif /*eslQUICKSORT_TESTDRIVE*/
/*****************************************************************
* 3. Test driver
*****************************************************************/
#ifdef eslQUICKSORT_TESTDRIVE
#include "easel.h"
#include "esl_getopts.h"
#include "esl_random.h"
#include "esl_quicksort.h"
#include <stdio.h>
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgrp */
{"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0},
{"-s", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "set random number seed to <n>", 0},
{ 0,0,0,0,0,0,0,0,0,0},
};
static char usage[] = "[-options]";
static char banner[] = "test driver for quicksort module";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *rng = esl_randomness_Create(esl_opt_GetInteger(go, "-s"));
int N = 100;
int K = 10;
utest_floatsort(rng, N, K);
esl_randomness_Destroy(rng);
esl_getopts_Destroy(go);
return 0;
}
#endif /*eslQUICKSORT_TESTDRIVE*/
/*****************************************************************
* 4. Example
*****************************************************************/
#ifdef eslQUICKSORT_EXAMPLE
#include "easel.h"
#include "esl_random.h"
#include "esl_quicksort.h"
int
sort_floats_descending(const void *data, int o1, int o2)
{
float *x = (float *) data;
if (x[o1] > x[o2]) return -1;
if (x[o1] < x[o2]) return 1;
return 0;
}
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *rng = esl_randomness_Create(0);
int N = 100;
float K = 10.0;
float *x = malloc(sizeof(float) * N);
int *sorted_at = malloc(sizeof(int) * N);
int i,r;
for (i = 0; i < N; i++)
x[i] = esl_random(rng) * K;
esl_quicksort(x, N, sort_floats_descending, sorted_at);
for (r = 0; r < N; r++)
printf("%.4f\n", x[sorted_at[r]]);
return 0;
}
#endif /*eslQUICKSORT_EXAMPLE*/
|