1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
|
/* Portable, threadsafe random number generators.
* Provides both a fast generator and a strong generator.
*
* 1. The ESL_RANDOMNESS object.
* 2. The generators, esl_random().
* 3. Debugging/development tools.
* 4. Other fundamental sampling (including Gaussian, gamma).
* 5. Multinomial sampling from discrete probability n-vectors.
* 6. Benchmark driver
* 7. Unit tests.
* 8. Test driver.
* 9. Example.
*
* See http://csrc.nist.gov/rng/ for the NIST random number
* generation test suite.
*
* It'd be nice if we had a debugging/unit testing mode in which
* esl_random() deliberately generated extreme values, such as 0 for
* example. Routines that use esl_random() can be sensitive to whether
* the interval 0,1 is open or closed. We should be able to test for
* problems with interval endpoints without taking enormous numbers of
* samples.
*/
#include "esl_config.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <time.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "easel.h"
#include "esl_random.h"
static uint32_t choose_arbitrary_seed(void);
static uint32_t jenkins_mix3(uint32_t a, uint32_t b, uint32_t c);
static uint32_t knuth (ESL_RANDOMNESS *r);
static uint32_t mersenne_twister (ESL_RANDOMNESS *r);
static void mersenne_seed_table(ESL_RANDOMNESS *r, uint32_t seed);
static void mersenne_fill_table(ESL_RANDOMNESS *r);
/*****************************************************************
*# 1. The <ESL_RANDOMNESS> object.
*****************************************************************/
/* Function: esl_randomness_Create()
* Synopsis: Create the default strong random number generator.
*
* Purpose: Create a random number generator using
* a given random seed. The <seed> must be $\geq 0$.
*
* The default random number generator uses the Mersenne
* Twister MT19937 algorithm \citep{Matsumoto98}. It has a
* period of $2^{19937}-1$, and equidistribution over
* $2^{32}$ values.
*
* If <seed> is $>0$, the random number generator is
* reproducibly initialized with that seed. Two RNGs
* created with the same nonzero seed will give exactly the
* same stream of pseudorandom numbers. This allows you to
* make reproducible stochastic simulations, for example.
*
* If <seed> is 0, an arbitrary seed is chosen.
* Internally, the arbitrary seed is produced by a
* combination of the current <time()> and the process id
* (if available; POSIX only). Two RNGs created with
* <seed>=0 will very probably (but not assuredly) give
* different streams of pseudorandom numbers. The true seed
* can be retrieved from the <ESL_RANDOMNESS> object using
* <esl_randomness_GetSeed()>. The strategy used for
* choosing the arbitrary seed is predictable, so it is
* not secure in any sense, especially in the cryptographic
* sense.
*
* Args: seed $>= 0$.
*
* Returns: an initialized <ESL_RANDOMNESS *> on success.
* Caller free's with <esl_randomness_Destroy()>.
*
* Throws: <NULL> on failure.
*
* Xref: SRE:STL8/p57.
* SRE:J5/21: Mersenne Twister.
*/
ESL_RANDOMNESS *
esl_randomness_Create(uint32_t seed)
{
ESL_RANDOMNESS *r = NULL;
int status;
ESL_ALLOC(r, sizeof(ESL_RANDOMNESS));
r->type = eslRND_MERSENNE;
r->mti = 0;
r->x = 0;
r->seed = 0;
esl_randomness_Init(r, seed);
return r;
ERROR:
return NULL;
}
/* Function: esl_randomness_CreateFast()
* Synopsis: Create the alternative fast generator.
*
* Purpose: Same as <esl_randomness_Create()>, except that a simple
* linear congruential generator (LCG) will be used.
*
* This is a low quality generator. Successive samples from
* an LCG are correlated, and it has a relatively short
* period. IT SHOULD NOT BE USED FOR SERIOUS
* SIMULATIONS. Rather, it's a quick and dirty RNG where
* you're sure that speed is more important than the
* quality of your random numbers. For a high quality RNG,
* use <esl_randomness_Create()> instead.
*
* This is a $(a=69069, c=1)$ LCG, with a period of
* $2^{32}$.
*
* It is about 20x faster to initialize the generator, and
* about 25\% faster to sample each number, compared to the
* default Mersenne Twister. (In most cases, this speed
* differential is not worth the degradation in
* quality. Since we made MT our default generator, the
* speed advantage of the LCG essentially disappeared, so
* in some sense this is legacy code.)
*
* Here's an example of how serial correlation arises in an
* LCG, and how it can lead to serious (and difficult to
* diagnose) failure in a Monte Carlo simulation. Recall
* that an LCG calculates $x_{i+1} = ax_i + c$. Suppose
* $x_i$ is small: in the range 0..6000, say, as a specific
* example. Now $x_{i+1}$ cannot be larger than 4.1e8, for
* an LCG with $a=69069$,$c=1$. So if you take a sample and
* test whether it is $< 1e-6$ (say), the next sample will
* be in a range of about 0..0.1, rather than being uniform
* on 0..1.
*
* Args: seed $>= 0$.
*
* Returns: an initialized <ESL_RANDOMNESS *> on success.
* Caller free's with <esl_randomness_Destroy()>.
*
* Throws: <NULL> on failure.
*
* Xref: SRE:J5/44: for accidental proof that the period is
* indeed 2^32.
*/
ESL_RANDOMNESS *
esl_randomness_CreateFast(uint32_t seed)
{
ESL_RANDOMNESS *r = NULL;
int status;
ESL_ALLOC(r, sizeof(ESL_RANDOMNESS));
r->type = eslRND_FAST;
r->mti = 0;
r->x = 0;
r->seed = 0;
esl_randomness_Init(r, seed);
return r;
ERROR:
return NULL;
}
/* Function: esl_randomness_CreateTimeseeded()
* Synopsis: Create an RNG with a quasirandom seed.
*
* Purpose: Like <esl_randomness_Create()>, but it initializes the
* the random number generator using a POSIX <time()> call
* (number of seconds since the POSIX epoch).
*
* This function is deprecated. Use
* <esl_randomness_Create(0)> instead.
*
* Returns: an initialized <ESL_RANDOMNESS *> on success.
* Caller free's with <esl_randomness_Destroy()>.
*
* Throws: <NULL> on failure.
*
* Xref: SRE:STL8/p57.
*/
ESL_RANDOMNESS *
esl_randomness_CreateTimeseeded(void)
{
return esl_randomness_Create(0);
}
/* Function: esl_randomness_Init()
* Synopsis: Reinitialize a RNG.
*
* Purpose: Reset and reinitialize an existing <ESL_RANDOMNESS>
* object with a new seed.
*
* Not generally recommended. This does not make a
* sequence of numbers more random, and may make it less
* so. Sometimes, though, it's useful to reseed an RNG
* to guarantee a particular reproducible series of
* pseudorandom numbers at an arbitrary point in a program;
* HMMER does this, for example, to guarantee the same
* results from the same HMM/sequence comparison regardless
* of where in a search the HMM or sequence occurs.
*
* Args: r - randomness object
* seed - new seed to use; >0.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if seed is $<= 0$.
*
* Xref: SRE:STL8/p57.
*/
int
esl_randomness_Init(ESL_RANDOMNESS *r, uint32_t seed)
{
if (seed == 0) seed = choose_arbitrary_seed();
if (r->type == eslRND_MERSENNE)
{
mersenne_seed_table(r, seed);
mersenne_fill_table(r);
}
else
{
r->seed = seed;
r->x = jenkins_mix3(seed, 87654321, 12345678); /* arbitrary dispersion of the seed */
if (r->x == 0) r->x = 42; /* make sure we don't have a zero */
}
return eslOK;
}
/* Function: esl_randomness_GetSeed()
* Synopsis: Returns the value of RNG's seed.
*
* Purpose: Return the value of the seed.
*/
uint32_t
esl_randomness_GetSeed(const ESL_RANDOMNESS *r)
{
return r->seed;
}
/* Function: esl_randomness_Destroy()
* Synopsis: Free an RNG.
*
* Purpose: Frees an <ESL_RANDOMNESS> object.
*/
void
esl_randomness_Destroy(ESL_RANDOMNESS *r)
{
free(r);
return;
}
/*----------- end of ESL_RANDOMNESS object functions --------------*/
/*****************************************************************
*# 2. The generators and <esl_random()>
*****************************************************************/
/* Function: esl_random()
* Synopsis: Generate a uniform random deviate on [0,1)
*
* Purpose: Returns a uniform deviate x, $0.0 \leq x < 1.0$, given
* RNG <r>.
*
* If you cast the return value to float, the [0,1) interval
* guarantee is lost because values close to 1 will round to
* 1.0.
*
* Returns: a uniformly distribute random deviate on interval
* $0.0 \leq x < 1.0$.
*/
double
esl_random(ESL_RANDOMNESS *r)
{
uint32_t x = (r->type == eslRND_MERSENNE) ? mersenne_twister(r) : knuth(r);
return ((double) x / 4294967296.0); /* 2^32: normalizes to [0,1) */
}
/* Function: esl_random_uint32()
* Synopsis: Generate a uniform random deviate on 0..2^32-1
* Incept: SRE, Wed Jan 13 10:59:26 2016
*
* Purpose: Returns a uniform deviate x, a 32-bit unsigned
* integer $0 \leq x < 2^{32}$, given RNG <r>.
*/
uint32_t
esl_random_uint32(ESL_RANDOMNESS *r)
{
return (r->type == eslRND_MERSENNE) ? mersenne_twister(r) : knuth(r);
}
static uint32_t
knuth(ESL_RANDOMNESS *r)
{
r->x *= 69069;
r->x += 1;
return r->x;
}
/* mersenne_twister() and other mersenne_*() functions below:
* A simple serial implementation of the original Mersenne Twister
* algorithm [Matsumoto98].
*
* There are more sophisticated and faster implementations of MT, using
* vector instructions and/or directly generating IEEE754 doubles
* bitwise rather than doing an expensive normalization. We can
* improve the implementation later if necessary, but even the basic
* MT offers ~10x speed improvement over Easel's previous RNG.
* [SRE, 30 May 09, Stockholm]
*/
static uint32_t
mersenne_twister(ESL_RANDOMNESS *r)
{
uint32_t x;
if (r->mti >= 624) mersenne_fill_table(r);
x = r->mt[r->mti++];
x ^= (x>>11);
x ^= (x<< 7) & 0x9d2c5680;
x ^= (x<<15) & 0xefc60000;
x ^= (x>>18);
return x;
}
/* mersenne_seed_table()
* Initialize the state of the RNG from a seed.
* Uses the knuth linear congruential generator.
*/
static void
mersenne_seed_table(ESL_RANDOMNESS *r, uint32_t seed)
{
int z;
r->seed = seed;
r->mt[0] = seed;
for (z = 1; z < 624; z++)
r->mt[z] = 69069 * r->mt[z-1];
return;
}
/* mersenne_fill_table()
* Refill the table with 624 new random numbers.
* We do this whenever we've reseeded, or when we
* run out of numbers.
*/
static void
mersenne_fill_table(ESL_RANDOMNESS *r)
{
uint32_t y;
int z;
static uint32_t mag01[2] = { 0x0, 0x9908b0df };
for (z = 0; z < 227; z++) /* 227 = N-M = 624-397 */
{
y = (r->mt[z] & 0x80000000) | (r->mt[z+1] & 0x7fffffff);
r->mt[z] = r->mt[z+397] ^ (y>>1) ^ mag01[(int)(y & 0x1)]; /* yes, the (int) cast is necessary; xref bug #e7; some compilers may try to cast y to signed int otherwise, to use it in an array index */
}
for (; z < 623; z++)
{
y = (r->mt[z] & 0x80000000) | (r->mt[z+1] & 0x7fffffff);
r->mt[z] = r->mt[z-227] ^ (y>>1) ^ mag01[(int)(y & 0x1)];
}
y = (r->mt[623] & 0x80000000) | (r->mt[0] & 0x7fffffff);
r->mt[623] = r->mt[396] ^ (y>>1) ^ mag01[(int)(y & 0x1)];
r->mti = 0;
return;
}
/* choose_arbitrary_seed()
* Return a 'quasirandom' seed > 0.
* This should be ok, but could be better.
* See RFC1750 for a discussion of securely seeding RNGs.
*/
static uint32_t
choose_arbitrary_seed(void)
{
uint32_t a = (uint32_t) time ((time_t *) NULL);
uint32_t b = 87654321; // we'll use getpid() below, if we can
uint32_t c = (uint32_t) clock(); // clock() gives time since process invocation, in msec at least, if not usec
uint32_t seed;
#ifdef HAVE_GETPID
b = (uint32_t) getpid(); // preferable b choice, if we have POSIX getpid()
#endif
seed = jenkins_mix3(a,b,c); // try to decorrelate closely spaced choices of pid/times
return (seed == 0) ? 42 : seed; /* 42 is entirely arbitrary, just to avoid seed==0. */
}
/* jenkins_mix3()
*
* from Bob Jenkins: given a,b,c, generate a number that's distributed
* reasonably uniformly on the interval 0..2^32-1 even for closely
* spaced choices of a,b,c.
*/
static uint32_t
jenkins_mix3(uint32_t a, uint32_t b, uint32_t c)
{
a -= b; a -= c; a ^= (c>>13);
b -= c; b -= a; b ^= (a<<8);
c -= a; c -= b; c ^= (b>>13);
a -= b; a -= c; a ^= (c>>12);
b -= c; b -= a; b ^= (a<<16);
c -= a; c -= b; c ^= (b>>5);
a -= b; a -= c; a ^= (c>>3);
b -= c; b -= a; b ^= (a<<10);
c -= a; c -= b; c ^= (b>>15);
return c;
}
/*----------- end of esl_random() --------------*/
/*****************************************************************
*# 3. Debugging and development tools
*****************************************************************/
/* Function: esl_randomness_Dump()
* Synopsis: Dump ESL_RANDOMNESS object to stream, for debugging/examination.
*/
int
esl_randomness_Dump(FILE *fp, ESL_RANDOMNESS *r)
{
if (r->type == eslRND_FAST)
{
fputs ("type = knuth\n", fp );
fprintf(fp, "state = %" PRIu32 "\n", r->x);
fprintf(fp, "seed = %" PRIu32 "\n", r->seed);
}
else if (r->type == eslRND_MERSENNE)
{
int i,j;
fputs ("type = mersenne twister\n", fp );
fprintf(fp, "mti = %d (0..623)\n", r->mti);
fprintf(fp, "mt[mti] = %" PRIu32 "\n", r->mt[r->mti]);
fprintf(fp, "%6d: ", 0);
for (i = 0, j=0; i < 624; i++)
{
fprintf(fp, "%11" PRIu32 " ", r->mt[i]);
if (++j == 20) { fprintf(fp, "\n%6d: ", i+1); j=0; }
}
fputs("\n", fp);
}
return eslOK;
}
/*----------- end, debugging/development tools ------------------*/
/*****************************************************************
*# 4. Other fundamental sampling (including Gaussian, gamma)
*****************************************************************/
/* Function: esl_rnd_UniformPositive()
* Synopsis: Generate a uniform positive random deviate on interval (0,1).
*
* Purpose: Same as <esl_random()>, but assure $0 < x < 1$;
* (positive uniform deviate).
*/
double
esl_rnd_UniformPositive(ESL_RANDOMNESS *r)
{
double x;
do { x = esl_random(r); } while (x == 0.0);
return x;
}
/* Function: esl_rnd_Gaussian()
* Synopsis: Generate a Gaussian-distributed sample.
*
* Purpose: Pick a Gaussian-distributed random variable
* with a given <mean> and standard deviation <stddev>, and
* return it.
*
* Implementation is derived from the public domain
* RANLIB.c <gennor()> function, written by Barry W. Brown
* and James Lovato (M.D. Anderson Cancer Center, Texas
* USA) using the method described in
* \citep{AhrensDieter73}.
*
* Original algorithm said to use uniform deviates on [0,1)
* interval (i.e. <esl_random()>), but this appears to be
* wrong. Use uniform deviates on (0,1) interval instead
* (i.e., <esl_rnd_UniformPositive()>). RANLIB, GNU Octave
* have made this alteration, possibly inadvertently.
* [xref cryptogenomicon post, 13 Oct 2014].
*
* Method: Impenetrability of the code is to be blamed on
* FORTRAN/f2c lineage.
*
* Args: r - ESL_RANDOMNESS object
* mean - mean of the Gaussian we're sampling from
* stddev - standard deviation of the Gaussian
*/
double
esl_rnd_Gaussian(ESL_RANDOMNESS *r, double mean, double stddev)
{
long i;
double snorm,u,s,ustar,aa,w,y,tt;
/* These static's are threadsafe: they are magic constants
* we will not touch.
*/
static double a[32] = {
0.0,3.917609E-2,7.841241E-2,0.11777,0.1573107,0.1970991,0.2372021,0.2776904,
0.3186394,0.36013,0.4022501,0.4450965,0.4887764,0.5334097,0.5791322,
0.626099,0.6744898,0.7245144,0.7764218,0.8305109,0.8871466,0.9467818,
1.00999,1.077516,1.150349,1.229859,1.318011,1.417797,1.534121,1.67594,
1.862732,2.153875
};
static double d[31] = {
0.0,0.0,0.0,0.0,0.0,0.2636843,0.2425085,0.2255674,0.2116342,0.1999243,
0.1899108,0.1812252,0.1736014,0.1668419,0.1607967,0.1553497,0.1504094,
0.1459026,0.14177,0.1379632,0.1344418,0.1311722,0.128126,0.1252791,
0.1226109,0.1201036,0.1177417,0.1155119,0.1134023,0.1114027,0.1095039
};
static double t[31] = {
7.673828E-4,2.30687E-3,3.860618E-3,5.438454E-3,7.0507E-3,8.708396E-3,
1.042357E-2,1.220953E-2,1.408125E-2,1.605579E-2,1.81529E-2,2.039573E-2,
2.281177E-2,2.543407E-2,2.830296E-2,3.146822E-2,3.499233E-2,3.895483E-2,
4.345878E-2,4.864035E-2,5.468334E-2,6.184222E-2,7.047983E-2,8.113195E-2,
9.462444E-2,0.1123001,0.136498,0.1716886,0.2276241,0.330498,0.5847031
};
static double h[31] = {
3.920617E-2,3.932705E-2,3.951E-2,3.975703E-2,4.007093E-2,4.045533E-2,
4.091481E-2,4.145507E-2,4.208311E-2,4.280748E-2,4.363863E-2,4.458932E-2,
4.567523E-2,4.691571E-2,4.833487E-2,4.996298E-2,5.183859E-2,5.401138E-2,
5.654656E-2,5.95313E-2,6.308489E-2,6.737503E-2,7.264544E-2,7.926471E-2,
8.781922E-2,9.930398E-2,0.11556,0.1404344,0.1836142,0.2790016,0.7010474
};
u = esl_rnd_UniformPositive(r);
s = 0.0;
if(u > 0.5) s = 1.0;
u += (u-s);
u = 32.0*u;
i = (long) (u);
if(i == 32) i = 31;
if(i == 0) goto S100;
/*
* START CENTER
*/
ustar = u-(double)i;
aa = a[i-1];
S40:
if (ustar <= t[i-1]) goto S60;
w = (ustar - t[i-1]) * h[i-1];
S50:
/*
* EXIT (BOTH CASES)
*/
y = aa+w;
snorm = y;
if(s == 1.0) snorm = -y;
return (stddev*snorm + mean);
S60:
/*
* CENTER CONTINUED
*/
u = esl_rnd_UniformPositive(r);
w = u*(a[i]-aa);
tt = (0.5*w+aa)*w;
goto S80;
S70:
tt = u;
ustar = esl_rnd_UniformPositive(r);
S80:
if(ustar > tt) goto S50;
u = esl_rnd_UniformPositive(r);
if(ustar >= u) goto S70;
ustar = esl_rnd_UniformPositive(r);
goto S40;
S100:
/*
* START TAIL
*/
i = 6;
aa = a[31];
goto S120;
S110:
aa += d[i-1];
i += 1;
ESL_DASSERT1(( i <= 31 ));
S120:
u += u;
if(u < 1.0) goto S110;
u -= 1.0;
S140:
w = u*d[i-1];
tt = (0.5*w+aa)*w;
goto S160;
S150:
tt = u;
S160:
ustar = esl_rnd_UniformPositive(r);
if(ustar > tt) goto S50;
u = esl_rnd_UniformPositive(r);
if(ustar >= u) goto S150;
u = esl_rnd_UniformPositive(r);
goto S140;
}
/* subfunctions that esl_rnd_Gamma() is going to call:
*/
static double
gamma_ahrens(ESL_RANDOMNESS *r, double a) /* for a >= 3 */
{
double V; /* uniform deviates */
double X,Y;
double test;
do {
do { /* generate candidate X */
Y = tan(eslCONST_PI * esl_random(r));
X = Y * sqrt(2.*a -1.) + a - 1.;
} while (X <= 0.);
/* accept/reject X */
V = esl_random(r);
test = (1+Y*Y) * exp( (a-1.)* log(X/(a-1.)) - Y*sqrt(2.*a-1.));
} while (V > test);
return X;
}
static double
gamma_integer(ESL_RANDOMNESS *r, unsigned int a) /* for small integer a, a < 12 */
{
int i;
double U,X;
U = 1.;
for (i = 0; i < a; i++)
U *= esl_rnd_UniformPositive(r);
X = -log(U);
return X;
}
static double
gamma_fraction(ESL_RANDOMNESS *r, double a) /* for fractional a, 0 < a < 1 */
{ /* Knuth 3.4.1, exercise 16, pp. 586-587 */
double p, U, V, X, q;
p = eslCONST_E / (a + eslCONST_E);
do {
U = esl_random(r);
V = esl_rnd_UniformPositive(r);
if (U < p) {
X = pow(V, 1./a);
q = exp(-X);
} else {
X = 1. - log(V);
q = pow(X, a-1.);
}
U = esl_random(r);
} while (U >= q);
return X;
}
/* Function: esl_rnd_Gamma()
* Synopsis: Returns a random deviate from a Gamma(a, 1) distribution.
*
* Purpose: Return a random deviate distributed as Gamma(a, 1.)
* \citep[pp. 133--134]{Knu-81a}.
*
* The implementation follows not only Knuth \citep{Knu-81a},
* but also relied on examination of the implementation in
* the GNU Scientific Library (libgsl) \citep{Galassi06}.
*
* Args: r - random number generation seed
* a - order of the gamma function; a > 0
*/
double
esl_rnd_Gamma(ESL_RANDOMNESS *r, double a)
{
double aint;
ESL_DASSERT1(( a > 0. ));
aint = floor(a);
if (a == aint && a < 12.)
return gamma_integer(r, (unsigned int) a);
else if (a > 3.)
return gamma_ahrens(r, a);
else if (a < 1.)
return gamma_fraction(r, a);
else
return gamma_integer(r, aint) + gamma_fraction(r, a-aint);
}
/* Function: esl_rnd_Dirichlet()
* Synopsis: Sample a Dirichlet-distributed random probability vector
* Incept: SRE, Wed Feb 17 12:20:53 2016 [H1/76]
*
* Purpose: Using generator <rng>, sample a Dirichlet-distributed
* probabilty vector <p> of <K> elements, using Dirichlet
* parameters <alpha> (also of <K> elements).
*
* Caller provides the allocated space for <p>.
*
* <alpha> is optional. If it isn't provided (i.e. is
* <NULL>), sample <p> uniformly. (That is, use <alpha[i] =
* 1.> for all i=0..K-1.)
*
* This routine is redundant with <esl_dirichlet_DSample()>
* and <esl_dirichlet_DSampleUniform()> in the dirichlet
* module. Provided here because there's cases where we
* just want to sample a probability vector without
* introducing a dependency on all the stats/dirichlet code
* in Easel.
*
* Args: rng : random number generator
* alpha : OPTIONAL: Dirichlet parameters 0..K-1, or NULL to use alpha[i]=1 for all i
* K : number of elements in alpha, p
* p : RESULT: sampled probability vector
*
* Returns: (void)
*/
void
esl_rnd_Dirichlet(ESL_RANDOMNESS *rng, const double *alpha, int K, double *p)
{
int x;
double norm = 0.;
for (x = 0; x < K; x++)
{
p[x] = esl_rnd_Gamma(rng, (alpha ? alpha[x] : 1.0));
norm += p[x];
}
for (x = 0; x < K; x++)
p[x] /= norm;
}
/* Function: esl_rnd_mem()
* Synopsis: Overwrite a buffer with random garbage.
* Incept: SRE, Fri Feb 19 08:53:07 2016
*
* Purpose: Write <n> bytes of random garbage into buffer
* <buf>, by uniform sampling of values 0..255,
* using generator <rng>.
*
* Used in unit tests that are reusing memory, and that
* want to make sure that there's no favorable side effects
* from that reuse.
*/
void
esl_rnd_mem(ESL_RANDOMNESS *rng, void *buf, int n)
{
unsigned char *p = (unsigned char *) buf;
int i;
for (i = 0; i < n; i++)
p[i] = (unsigned char) esl_rnd_Roll(rng, 256);
}
/*****************************************************************
*# 5. Multinomial sampling from discrete probability n-vectors
*****************************************************************/
/* Function: esl_rnd_DChoose()
* Synopsis: Return random choice from discrete multinomial distribution.
*
* Purpose: Make a random choice from a normalized discrete
* distribution <p> of <N> elements, where <p>
* is double-precision. Returns the index of the
* selected element, $0..N-1$.
*
* <p> must be a normalized probability distribution
* (i.e. must sum to one). Sampling distribution is
* undefined otherwise: that is, a choice will always
* be returned, but it might be an arbitrary one.
*
* All $p_i$ must be $>$ <DBL_EPSILON> in order to
* have a non-zero probability of being sampled.
*
* <esl_rnd_FChoose()> is the same, but for floats in <p>,
* and all $p_i$ must be $>$ <FLT_EPSILON>.
*/
int
esl_rnd_DChoose(ESL_RANDOMNESS *r, const double *p, int N)
{
double norm = 0.0; /* ~ 1.0 */
double sum = 0.0; /* integrated prob */
double roll = esl_random(r); /* random fraction */
int i; /* counter over the probs */
/* we need to deal with finite roundoff error in p's sum */
for (i = 0; i < N; i++) norm += p[i];
ESL_DASSERT1((norm > 0.999 && norm < 1.001));
for (i = 0; i < N; i++)
{
sum += p[i];
if (roll < (sum / norm) ) return i;
}
esl_fatal("unreached code was reached. universe collapses.");
return 0; /*notreached*/
}
int
esl_rnd_FChoose(ESL_RANDOMNESS *r, const float *p, int N)
{
/* Computing in double precision is important:
* casting <roll> to (float) gives a [0,1] number instead of [0,1).
*/
double norm = 0.0; /* ~ 1.0 */
double sum = 0.0; /* integrated prob */
double roll = esl_random(r); /* random fraction */
int i; /* counter over the probs */
for (i = 0; i < N; i++) norm += p[i];
ESL_DASSERT1((norm > 0.99 && norm < 1.01));
for (i = 0; i < N; i++)
{
sum += (double) p[i];
if (roll < (sum / norm) ) return i;
}
esl_fatal("unreached code was reached. universe collapses.");
return 0; /*notreached*/
}
/* Function: esl_rnd_DChooseCDF()
* Synopsis: Return random choice from cumulative multinomial distribution.
*
* Purpose: Given a random number generator <r> and a cumulative
* multinomial distribution <cdf[0..N-1]>, sample an element
* <0..N-1> from that distribution. Return the index <0..N-1>.
*
* Caller should be sure that <cdf[0..N-1]> is indeed a
* cumulative multinomial distribution -- in particular, that
* <cdf[N-1]> is tolerably close to 1.0 (within roundoff error).
*
* When sampling many times from the same multinomial
* distribution <p>, it will generally be faster to
* calculate the CDF once using <esl_vec_DCDF(p, N, cdf)>,
* then sampling many times from the CDF with
* <esl_rnd_DChooseCDF(r, cdf, N)>, as opposed to calling
* <esl_rnd_DChoose(r, p, N)> many times, because
* <esl_rnd_DChoose()> has to calculated the CDF before
* sampling. This also gives you a bit more control over
* error detection: you can make sure that the CDF is ok (p
* does sum to ~1.0) before doing a lot of sampling from
* it.
*
* <esl_rnd_FChooseCDF()> is the same, but for
* a single-precision float <cdf>.
*
* Args: r - random number generator
* cdf - cumulative multinomial distribution, cdf[0..N-1]
* N - number of elements in <cdf>
*
* Returns: index 0..N-1 of the randomly sampled choice from <cdf>.
*
* Note: For large N, it might be advantageous to bisection search the
* cdf. For typical N in Easel (up to 20, for amino acid
* prob vectors, for example), the naive code below is
* faster. We could revisit this if we start sampling
* larger vectors.
*/
int
esl_rnd_DChooseCDF(ESL_RANDOMNESS *r, const double *cdf, int N)
{
double roll = esl_random(r); /* uniform 0.0 <= x < 1.0 */
int i;
ESL_DASSERT1((cdf[0] >= 0.0));
ESL_DASSERT1((cdf[N-1] > 0.999 && cdf[N-1] < 1.001));
for (i = 0; i < N; i++)
if (roll < cdf[i] / cdf[N-1]) return i;
esl_fatal("unreached code is reached. universe goes foom");
return 0; /*notreached*/
}
int
esl_rnd_FChooseCDF(ESL_RANDOMNESS *r, const float *cdf, int N)
{
double roll = esl_random(r); /* uniform 0.0 <= x < 1.0. must be double, not float, to guarantee x <1 */
int i;
ESL_DASSERT1((cdf[0] >= 0.0));
ESL_DASSERT1((cdf[N-1] > 0.99 && cdf[N-1] < 1.01));
for (i = 0; i < N; i++)
if (roll < (double) cdf[i] / (double) cdf[N-1]) return i; // yes, the casts are NECESSARY. Without them, you get a heisenbug on icc/linux.
esl_fatal("unreached code is reached. universe goes foom");
return 0; /*notreached*/
}
/*****************************************************************
* 6. Benchmark driver
*****************************************************************/
#ifdef eslRANDOM_BENCHMARK
/*
gcc -O3 -malign-double -o esl_random_benchmark -I. -L. -DeslRANDOM_BENCHMARK esl_random.c -leasel -lm
./esl_random_benchmark -N 1000000000
./esl_random_benchmark -f -N 1000000000
./esl_random_benchmark -r -N1000000
./esl_random_benchmark -fr -N 1000000000
esl_random() esl_randomness_Init()
iter cpu time per call iter cpu time per call
---- -------- -------- ---- ---------- ---------
27 Dec 08 on wanderoo: 1e7 0.78s 78 nsec 1e6 2.08s 2.1 usec ran2() from NR
30 May 09 on wanderoo: 1e9 8.39s 8 nsec 1e6 5.98s 6.0 usec Mersenne Twister
1e9 5.73s 6 nsec 1e8 2.51s 0.03 usec Knuth
*/
#include "easel.h"
#include "esl_composition.h"
#include "esl_getopts.h"
#include "esl_random.h"
#include "esl_stopwatch.h"
#include "esl_vectorops.h"
static ESL_OPTIONS options[] = {
/* name type default env range toggles reqs incomp help docgroup*/
{ "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 },
{ "-c", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "benchmark DChooseCDF()", 0 },
{ "-d", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "benchmark DChoose()", 0 },
{ "-f", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "run fast version instead of MT19937", 0 },
{ "-r", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "benchmark _Init(), not just random()", 0 },
{ "-N", eslARG_INT, "10000000",NULL, NULL, NULL, NULL, NULL, "number of trials", 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static char usage[] = "[-options]";
static char banner[] = "benchmarking speed of random number generator";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *r = (esl_opt_GetBoolean(go, "-f") == TRUE ? esl_randomness_CreateFast(42) : esl_randomness_Create(42));
ESL_STOPWATCH *w = esl_stopwatch_Create();
int N = esl_opt_GetInteger(go, "-N");
double p[20];
double cdf[20];
esl_composition_BL62(p);
esl_vec_DCDF(p, 20, cdf);
esl_stopwatch_Start(w);
if (esl_opt_GetBoolean(go, "-c")) { while (N--) esl_rnd_DChoose(r, p, 20); }
else if (esl_opt_GetBoolean(go, "-d")) { while (N--) esl_rnd_DChooseCDF(r, cdf, 20); }
else if (esl_opt_GetBoolean(go, "-r")) { while (N--) esl_randomness_Init(r, 42); }
else { while (N--) esl_random(r); }
esl_stopwatch_Stop(w);
esl_stopwatch_Display(stdout, w, "# CPU Time: ");
esl_stopwatch_Destroy(w);
esl_randomness_Destroy(r);
esl_getopts_Destroy(go);
return 0;
}
#endif /*eslRANDOM_BENCHMARK*/
/*----------------- end, benchmark driver -----------------------*/
/*****************************************************************
* 7. Unit tests.
*****************************************************************/
#ifdef eslRANDOM_TESTDRIVE
#include "esl_vectorops.h"
#include "esl_stats.h"
#include "esl_dirichlet.h"
/* The esl_random() unit test:
* a binned frequency test.
*/
static void
utest_random(ESL_RANDOMNESS *r, int n, int nbins, int be_verbose)
{
char msg[] = "esl_random() unit test failed";
int *counts = NULL;
double X2p = 0.;
int i;
int sample;
double X2, exp, diff;
if ((counts = malloc(sizeof(int) * nbins)) == NULL) esl_fatal(msg);
esl_vec_ISet(counts, nbins, 0);
for (i = 0; i < n; i++)
{
sample = esl_rnd_Roll(r, nbins);
if (sample < 0 || sample >= nbins) esl_fatal(msg);
counts[sample]++;
}
/* X^2 value: \sum (o_i - e_i)^2 / e_i */
for (X2 = 0., i = 0; i < nbins; i++) {
exp = (double) n / (double) nbins;
diff = (double) counts[i] - exp;
X2 += diff*diff/exp;
}
if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal(msg);
if (be_verbose) printf("random(): \t%g\n", X2p);
if (X2p < 0.01) esl_fatal(msg);
free(counts);
return;
}
/* The DChoose() and FChoose() unit tests.
*/
static void
utest_choose(ESL_RANDOMNESS *r, int n, int nbins, int be_verbose)
{
double *pd = NULL; /* probability vector, double */
double *pdc = NULL; /* CDF, double */
float *pf = NULL; /* probability vector, float */
float *pfc = NULL; /* CDF, float */
int *ct = NULL;
int i;
double X2, diff, exp, X2p;
if ((pd = malloc(sizeof(double) * nbins)) == NULL) esl_fatal("malloc failed");
if ((pdc = malloc(sizeof(double) * nbins)) == NULL) esl_fatal("malloc failed");
if ((pf = malloc(sizeof(float) * nbins)) == NULL) esl_fatal("malloc failed");
if ((pfc = malloc(sizeof(float) * nbins)) == NULL) esl_fatal("malloc failed");
if ((ct = malloc(sizeof(int) * nbins)) == NULL) esl_fatal("malloc failed");
/* Sample a random multinomial probability vector. */
if (esl_dirichlet_DSampleUniform(r, nbins, pd) != eslOK) esl_fatal("dirichlet sample failed");
esl_vec_D2F(pd, nbins, pf);
/* Test esl_rnd_DChoose():
* sample observed counts, chi-squared test against expected
*/
esl_vec_ISet(ct, nbins, 0);
for (i = 0; i < n; i++)
ct[esl_rnd_DChoose(r, pd, nbins)]++;
for (X2 = 0., i=0; i < nbins; i++) {
exp = (double) n * pd[i];
diff = (double) ct[i] - exp;
X2 += diff*diff/exp;
}
if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed");
if (be_verbose) printf("DChoose(): \t%g\n", X2p);
if (X2p < 0.01) esl_fatal("chi squared test failed");
/* Repeat above for FChoose(). */
esl_vec_ISet(ct, nbins, 0);
for (i = 0; i < n; i++)
ct[esl_rnd_FChoose(r, pf, nbins)]++;
for (X2 = 0., i=0; i < nbins; i++) {
exp = (double) n * pd[i];
diff = (double) ct[i] - exp;
X2 += diff*diff/exp;
}
if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed");
if (be_verbose) printf("FChoose(): \t%g\n", X2p);
if (X2p < 0.01) esl_fatal("chi squared test failed");
/* esl_rnd_DChooseCDF(). */
esl_vec_ISet(ct, nbins, 0);
esl_vec_DCDF(pd, nbins, pdc);
for (i = 0; i < n; i++)
ct[esl_rnd_DChooseCDF(r, pdc, nbins)]++;
for (X2 = 0., i=0; i < nbins; i++) {
exp = (double) n * pd[i];
diff = (double) ct[i] - exp;
X2 += diff*diff/exp;
}
if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed");
if (be_verbose) printf("DChoose(): \t%g\n", X2p);
if (X2p < 0.01) esl_fatal("chi squared test failed");
/* esl_rnd_FChooseCDF() */
esl_vec_ISet(ct, nbins, 0);
esl_vec_FCDF(pf, nbins, pfc);
for (i = 0; i < n; i++)
ct[esl_rnd_FChooseCDF(r, pfc, nbins)]++;
for (X2 = 0., i=0; i < nbins; i++) {
exp = (double) n * pf[i];
diff = (double) ct[i] - exp;
X2 += diff*diff/exp;
}
if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed");
if (be_verbose) printf("DChoose(): \t%g\n", X2p);
if (X2p < 0.01) esl_fatal("chi squared test failed");
free(pd);
free(pdc);
free(pf);
free(pfc);
free(ct);
return;
}
#endif /*eslRANDOM_TESTDRIVE*/
/*-------------------- end, unit tests --------------------------*/
/*****************************************************************
* 8. Test driver.
*****************************************************************/
#ifdef eslRANDOM_TESTDRIVE
/* gcc -g -Wall -o esl_random_utest -L. -I. -DeslRANDOM_TESTDRIVE esl_random.c -leasel -lm
*/
#include "esl_config.h"
#include <stdio.h>
#include "easel.h"
#include "esl_dirichlet.h"
#include "esl_getopts.h"
#include "esl_random.h"
#include "esl_randomseq.h"
#include "esl_vectorops.h"
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgrp */
{"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0},
{"-b", eslARG_INT, "20", NULL, "n>0",NULL, NULL, NULL, "number of test bins", 0},
{"-n", eslARG_INT, "1000000", NULL, "n>0",NULL, NULL, NULL, "number of samples", 0},
{"-s", eslARG_INT, "42", NULL, NULL, NULL, NULL, NULL, "set random number seed to <n>", 0},
{"-v", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show verbose output", 0},
{"--mtbits",eslARG_STRING,NULL,NULL, NULL, NULL, NULL, NULL, "save MT bit file for NIST benchmark",0},
{"--kbits", eslARG_STRING,NULL,NULL, NULL, NULL, NULL, NULL, "save Knuth bit file for NIST benchmark",0},
{ 0,0,0,0,0,0,0,0,0,0},
};
static char usage[] = "[-options]";
static char banner[] = "test driver for random module";
static int save_bitfile(char *bitfile, ESL_RANDOMNESS *r, int n);
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *r1 = esl_randomness_Create(esl_opt_GetInteger(go, "-s"));
ESL_RANDOMNESS *r2 = esl_randomness_CreateFast(esl_opt_GetInteger(go, "-s"));
char *mtbitfile = esl_opt_GetString (go, "--mtbits");
char *kbitfile = esl_opt_GetString (go, "--kbits");
int nbins = esl_opt_GetInteger(go, "-b");
int n = esl_opt_GetInteger(go, "-n");
int be_verbose = esl_opt_GetBoolean(go, "-v");
fprintf(stderr, "## %s\n", argv[0]);
fprintf(stderr, "# rng seed 1 (slow) = %" PRIu32 "\n", esl_randomness_GetSeed(r1));
fprintf(stderr, "# rng seed 2 (fast) = %" PRIu32 "\n", esl_randomness_GetSeed(r2));
utest_random(r1, n, nbins, be_verbose);
utest_choose(r1, n, nbins, be_verbose);
utest_random(r2, n, nbins, be_verbose);
utest_choose(r2, n, nbins, be_verbose);
if (mtbitfile) save_bitfile(mtbitfile, r1, n);
if (kbitfile) save_bitfile(kbitfile, r2, n);
fprintf(stderr, "# status = ok\n");
esl_randomness_Destroy(r1);
esl_randomness_Destroy(r2);
esl_getopts_Destroy(go);
return 0;
}
static int
save_bitfile(char *bitfile, ESL_RANDOMNESS *r, int n)
{
FILE *fp = NULL;
int b,i;
long x;
/* Open the file.
*/
if ((fp = fopen(bitfile, "w")) == NULL)
esl_fatal("failed to open %s for writing", bitfile);
/* Sample <n> random numbers, output 32n random bits to the file.
*/
for (i = 0; i < n; i++)
{
x = (r->type == eslRND_FAST ? knuth(r) : mersenne_twister(r)); /* generate a 32 bit random variate by MT19937 */
for (b = 0; b < 32; b++)
{
if (x & 01) fprintf(fp, "1");
else fprintf(fp, "0");
x >>= 1;
}
fprintf(fp, "\n");
}
fclose(fp);
return eslOK;
}
#endif /*eslRANDOM_TESTDRIVE*/
/*****************************************************************
* 9. Example.
*****************************************************************/
#ifdef eslRANDOM_EXAMPLE
/*::cexcerpt::random_example::begin::*/
/* compile: cc -I. -o esl_random_example -DeslRANDOM_EXAMPLE esl_random.c esl_getopts.c easel.c -lm
* run: ./random_example 42
*/
#include <stdio.h>
#include "easel.h"
#include "esl_getopts.h"
#include "esl_random.h"
/* In Easel and HMMER, the option for setting the seed is typically -s, sometimes --seed.
* Default is usually 0 because we want a "random" seed. Less commonly, "42" for a fixed seed;
* rarely, a different fixed seed.
*
* Generally you want to use esl_randomness_Create(), to get a Mersenne Twister. The "fast"
* RNG you get from esl_randomness_CreateFast() isn't all that much faster (~25% per sample)
* but has much worse quality in its randomness.
*/
static ESL_OPTIONS options[] = {
/* name type default env range toggles reqs incomp help docgroup*/
{ "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 },
{ "-i", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "sample uint32's instead of doubles", 0 },
{ "-n", eslARG_INT, "20", NULL, NULL, NULL, NULL, NULL, "number of random samples to show", 0 },
{ "-s", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "set random number seed to <n>", 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static char usage[] = "[-options]";
static char banner[] = "example of using random module";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_RANDOMNESS *rng = esl_randomness_Create( esl_opt_GetInteger(go, "-s") );
int do_uint32 = esl_opt_GetBoolean(go, "-i");
int n = esl_opt_GetInteger(go, "-n");
printf("RNG seed: %" PRIu32 "\n", esl_randomness_GetSeed(rng));
printf("\nA sequence of %d pseudorandom numbers:\n", n);
if (do_uint32) while (n--) printf("%" PRIu32 "\n", esl_random_uint32(rng));
else while (n--) printf("%f\n", esl_random(rng));
printf("\nInternal dump of RNG state:\n");
esl_randomness_Dump(stdout, rng);
esl_randomness_Destroy(rng);
esl_getopts_Destroy(go);
return 0;
}
/*::cexcerpt::random_example::end::*/
#endif /*eslRANDOM_EXAMPLE*/
|