1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/* Finding roots.
*
* Contents:
* 1. The ESL_ROOTFINDER object.
* 2. One-dimensional root finding.
* 3. Unit tests.
* 4. Test driver.
* 5. Examples.
*/
#include "esl_config.h"
#include <math.h>
#include "easel.h"
#include "esl_rootfinder.h"
/*****************************************************************
* 1. The ESL_ROOTFINDER object.
*****************************************************************/
/* Function: esl_rootfinder_Create()
* Synopsis: Creates ESL_ROOTFINDER for an $f(x)$
* Incept: SRE, Tue Apr 10 19:54:09 2007 [Janelia]
*
* Purpose: Create a rootfinder to find a root of a function $f(x) = 0$.
* <(*func)()> is a pointer to an implementation of the
* function $f(x)$. <params> is a generic pointer to any
* parameters or storage needed in <(*func)()> other than
* the value of $x$.
*
* Caller implements a <func()> that takes three arguments.
* The first two are the value <x>, and a void pointer to
* any additional parameters that $f(x)$ depends on. The
* result, $f(x)$, is returned via the third argument. This
* function must return <eslOK> to indicate success. Upon
* error, it may throw any error code it wishes.
*
*
* Args: (*func)() - ptr to function that evaluates f(x)
* params - ptr to parameters to be passed to (*func)()
*
* Returns: pointer to a new <ESL_ROOTFINDER> structure.
*
* Throws: <NULL> on allocation failure.
*/
ESL_ROOTFINDER *
esl_rootfinder_Create(int (*func)(double, void*, double*), void *params)
{
int status;
ESL_ROOTFINDER *R = NULL;
ESL_ALLOC(R, sizeof(ESL_ROOTFINDER));
R->func = func;
R->fdf = NULL; /* unused */
R->params = params;
R->xl = -eslINFINITY; /* not set yet */
R->fl = 0.; /* not set yet */
R->xr = eslINFINITY; /* not set yet */
R->fr = 0.; /* not set yet */
R->x0 = 0.; /* not set yet */
R->f0 = 0.; /* not set yet */
R->x = 0.; /* not set yet */
R->fx = 0.; /* not set yet */
R->dfx = 0.; /* unused */
R->iter = 0;
R->abs_tolerance = 1e-12;
R->rel_tolerance = 1e-12;
R->residual_tol = 0.;
R->max_iter = 100;
return R;
ERROR:
esl_rootfinder_Destroy(R);
return NULL;
}
/* Function: esl_rootfinder_CreateFDF()
* Synopsis: Creates ESL_ROOTFINDER that uses both $f(x)$, $f'(x)$
* Incept: SRE, Tue Apr 10 20:47:42 2007 [Janelia]
*
* Purpose: Create a rootfinder that will find
* a root of a function $f(x) = 0$ using first derivative
* information $f'(x)$.
*
* Caller provides a pointer <*fdf()> to a function that
* takes four arguments. The first two are the current <x>
* value, and a void pointer to any additional parameters
* that $f(x)$ depends on. <*fdf()> calculates the function
* $f(x)$ and the derivative $f'(x)$ and returns them
* through the remaining two arguments.
*
* Args: (*fdf)() - ptr to function that returns f(x) and f'(x)
* params - ptr to parameters to be passed to (*fdf)()
*
* Returns: pointer to a new <ESL_ROOTFINDER> structure.
*
* Throws: <NULL> on allocation failure.
*/
ESL_ROOTFINDER *
esl_rootfinder_CreateFDF(int (*fdf)(double, void*, double*, double*), void *params)
{
int status;
ESL_ROOTFINDER *R = NULL;
ESL_ALLOC(R, sizeof(ESL_ROOTFINDER));
R->func = NULL;
R->fdf = fdf;
R->params = params;
R->xl = -eslINFINITY;
R->fl = 0.; /* unused */
R->xr = eslINFINITY;
R->fr = 0.; /* unused */
R->x0 = 0.;
R->f0 = 0.;
R->x = 0.; /* not set yet */
R->fx = 0.; /* not set yet */
R->dfx = 0.; /* not set yet */
R->iter = 0;
R->abs_tolerance = 1e-15;
R->rel_tolerance = 1e-15;
R->residual_tol = 0.;
R->max_iter = 100;
return R;
ERROR:
esl_rootfinder_Destroy(R);
return NULL;
}
/* Function: esl_rootfinder_SetBrackets()
* Incept: SRE, Wed Apr 11 08:35:10 2007 [Janelia]
*
* Purpose: Declare that a root is in the open interval
* <(xl..xr)>.
*
* The function will be evaluated at both points.
*
* Args: R - rootfinder structure
* xl,xr - root lies in open interval (xl..xr)
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if <xl,xr> cannot bracket a root,
* because $f(x_l)$ and $f(x_r)$ do not have opposite
* signs.
*
* Additionally, if either evaluation fails in the
* caller-provided function, the error code from that
* failure will be thrown.
*/
int
esl_rootfinder_SetBrackets(ESL_ROOTFINDER *R, double xl, double xr)
{
int status;
double dfx;
R->xl = xl;
R->xr = xr;
if (R->func != NULL) {
if ((status = (*R->func)(R->xl, R->params, &(R->fl))) != eslOK) return status;
if ((status = (*R->func)(R->xr, R->params, &(R->fr))) != eslOK) return status;
} else {
if ((status = (*R->fdf) (R->xl, R->params, &(R->fl), &dfx)) != eslOK) return status;
if ((status = (*R->fdf) (R->xr, R->params, &(R->fr), &dfx)) != eslOK) return status;
}
if (R->fl * R->fr >= 0) ESL_EXCEPTION(eslEINVAL, "xl,xr do not bracket a root");
return eslOK;
}
int
esl_rootfinder_SetAbsoluteTolerance(ESL_ROOTFINDER *R, double tol)
{
R->abs_tolerance = tol;
return eslOK;
}
int
esl_rootfinder_SetRelativeTolerance(ESL_ROOTFINDER *R, double tol)
{
R->rel_tolerance = tol;
return eslOK;
}
int
esl_rootfinder_SetResidualTolerance(ESL_ROOTFINDER *R, double tol)
{
R->residual_tol = tol;
return eslOK;
}
int
esl_rootfinder_SetMaxIterations(ESL_ROOTFINDER *R, int maxiter)
{
R->max_iter = maxiter;
return eslOK;
}
void
esl_rootfinder_Destroy(ESL_ROOTFINDER *R)
{
if (R == NULL) return;
free(R);
}
/*****************************************************************
* 2. One-dimensional root finding.
*****************************************************************/
/* Function: esl_root_Bisection()
* Synopsis: Find a root of $f(x)$ by bisection method.
* Incept: SRE, Wed Apr 11 08:40:11 2007 [Janelia]
*
* Purpose: Find a root in the open interval <xl..xr> by the bisection method,
* and return it in <ret_x>.
*
* The bisection method is guaranteed to succeed, provided
* that <xl>,<xr> do indeed bracket a root, though it may
* be slow.
*
* The rootfinder <R> can be created either by
* <esl_rootfinder_Create()> or
* <esl_rootfinder_CreateFDF()>; if the latter (if the
* function in the rootfinder <R> includes derivative
* information), the bisection method will just ignore
* the derivative.
*
* Args: R - a rootfinder object for the function
* xl,xr - bounds of an open interval in which a root lies
* ret_x - RETURN: a root that satisfies $f(x) = 0$.
*
* Returns: <eslOK> on success, and <ret_x> points to a root.
*
* Throws: <eslEINVAL> if <xl,xr> do not bracket a root.
* <eslENOHALT> if the method exceeds the maximum number of
* iterations set in <R>.
*
* Additionally, any failure code that the caller-provided
* function $f(x)$ throws.
*/
int
esl_root_Bisection(ESL_ROOTFINDER *R, double xl, double xr, double *ret_x)
{
int status;
double xmag;
if ((status = esl_rootfinder_SetBrackets(R, xl, xr)) != eslOK) goto ERROR;
while (1) {
R->iter++;
if (R->iter > R->max_iter) ESL_XEXCEPTION(eslENOHALT, "failed to converge in Bisection");
/* Bisect and evaluate the function */
R->x = (R->xl+R->xr)/2.;
if (R->func != NULL) {
if ((status = (*R->func)(R->x, R->params, &(R->fx))) != eslOK) ESL_XEXCEPTION(status, "user-provided function failed");
} else {
if ((status = (*R->fdf) (R->x, R->params, &(R->fx), &(R->dfx))) != eslOK) ESL_XEXCEPTION(status, "user-provided function failed");
}
/* Test for convergence */
xmag = (R->xl < 0. && R->xr > 0.) ? 0. : R->x;
if (R->fx == 0.) break; /* an exact root, lucky */
if (((R->xr-R->xl) < R->abs_tolerance + R->rel_tolerance*xmag) || fabs(R->fx) < R->residual_tol) break;
/* Narrow the bracket; pay attention to directionality */
if (R->fl > 0.) {
if (R->fx > 0.) { R->xl = R->x; R->fl = R->fx; }
else { R->xr = R->x; R->fr = R->fx; }
} else {
if (R->fx < 0.) { R->xl = R->x; R->fl = R->fx; }
else { R->xr = R->x; R->fr = R->fx; }
}
}
*ret_x = R->x;
return eslOK;
ERROR:
*ret_x = 0.0;
return status;
}
/* Function: esl_root_NewtonRaphson()
* Synopsis: Find a root of $f(x)$ by Newton/Raphson method.
* Incept: SRE, Wed Apr 11 08:56:28 2007 [Janelia]
*
* Purpose: Find a root by the Newton/Raphson method, starting from
* an initial guess <guess>. Return the root in <ret_x>.
*
* The Newton/Raphson method is not guaranteed to succeed,
* but when it does, it is much faster than bisection.
*
* Newton/Raphson uses first derivative information, so the
* rootfinder <R> must be created with
* <esl_rootfinder_CreateFDF()> for a function that evaluates
* both $f(x)$ and $f'(x)$.
*
* Args: R - a rootfinder object for $f(x)$ and $f'(x)$
* guess - an initial guess for the root
* ret_x - RETURN: a root that satisfies $f(x) = 0$.
*
* Returns: <eslOK> on success, and <ret_x> points to a root.
*
* Throws: <eslENOHALT> if the method exceeds the maximum number of
* iterations set in <R>.
*
* Additionally, any failure code that the caller-provided
* function $f(x)$ throws.
*/
int
esl_root_NewtonRaphson(ESL_ROOTFINDER *R, double guess, double *ret_x)
{
int status;
R->x = guess;
if ((status = (*R->fdf)(R->x, R->params, &(R->fx), &(R->dfx))) != eslOK) return status;
while (1) {
R->iter++;
if (R->iter > R->max_iter) ESL_EXCEPTION(eslENOHALT, "failed to converge in Newton");
/* printf("current: x=%20g f(x) = %20g f'(x) = %20g\n", R->x, R->fx, R->dfx); */
/* Take a Newton/Raphson step. */
R->x0 = R->x;
R->f0 = R->fx;
R->x = R->x - R->fx / R->dfx;
(*R->fdf)(R->x, R->params, &(R->fx), &(R->dfx));
/* Test for convergence. */
if (R->fx == 0) break; /* an exact root, lucky */
if ( (fabs(R->x - R->x0) < R->abs_tolerance + R->rel_tolerance*R->x) || fabs(R->fx) < R->residual_tol) break;
}
*ret_x = R->x;
return eslOK;
}
/*****************************************************************
* 3. Unit tests.
*****************************************************************/
#ifdef eslROOTFINDER_TESTDRIVE
/* For the unit tests, we'll use a quadratic function
* f(x) = ax^2 + bx + c = 0
* f'(x) = 2ax + b
* where it's easy to set up known roots.
*/
struct polyparams { double a,b,c; };
static int quadratic_f(double x, void *params, double *ret_fx)
{
struct polyparams *p = (struct polyparams *) params;
*ret_fx = (p->a * x * x + p->b * x + p->c);
return eslOK;
}
static int quadratic_fdf(double x, void *params, double *ret_fx, double *ret_dfx)
{
struct polyparams *p = (struct polyparams *) params;
*ret_fx = (p->a * x * x + p->b * x + p->c);
*ret_dfx = (2 * p->a) * x + p->b;
return eslOK;
}
static void
utest_Bisection(void)
{
char msg[] = "esl_rootfinder:: bisection unit test failed";
ESL_ROOTFINDER *R = NULL;
struct polyparams p;
double x;
/* (5x-1)(x+2) = 5x^2 + 9x - 2 with roots 0.2, -2 */
p.a = 5.;
p.b = 9.;
p.c = -2.;
/* find the positive root, 0.2 */
if (( R = esl_rootfinder_Create(quadratic_f, &p) ) == NULL) esl_fatal(msg);
if ( esl_root_Bisection(R, 0., 100., &x) != eslOK) esl_fatal(msg);
if ( fabs(x-0.2) > R->abs_tolerance) esl_fatal(msg);
esl_rootfinder_Destroy(R);
/* find the negative root, -2.0 */
if (( R = esl_rootfinder_CreateFDF(quadratic_fdf, &p) ) == NULL) esl_fatal(msg);
if ( esl_root_Bisection(R, -100., 0., &x) != eslOK) esl_fatal(msg);
if ( fabs(x+2.) > R->abs_tolerance) esl_fatal(msg);
esl_rootfinder_Destroy(R);
}
static void
utest_Newton(void)
{
ESL_ROOTFINDER *R = NULL;
struct polyparams p;
double x;
/* (5x-1)(x+2) = 5x^2 + 9x - 2 with roots 0.2, -2 */
p.a = 5.;
p.b = 9.;
p.c = -2.;
R = esl_rootfinder_CreateFDF(quadratic_fdf, &p);
esl_root_NewtonRaphson(R, 1., &x); /* find the positive root, 0.2 */
if (fabs(x-0.2) > R->abs_tolerance) esl_fatal("didn't find root 0.2");
esl_rootfinder_Destroy(R);
R = esl_rootfinder_CreateFDF(quadratic_fdf, &p);
esl_root_NewtonRaphson(R, -3., &x); /* find the negative root, -2.0 */
if (fabs(x+2.) > R->abs_tolerance) esl_fatal("didn't find root -2");
esl_rootfinder_Destroy(R);
}
#endif /*eslROOTFINDER_TESTDRIVE*/
/*****************************************************************
* 4. Test driver.
*****************************************************************/
/*
gcc -g -Wall -I. -L. -DeslROOTFINDER_TESTDRIVE -o test esl_rootfinder.c -leasel -lm
./test
*/
#ifdef eslROOTFINDER_TESTDRIVE
int
main(int argc, char **argv)
{
utest_Bisection();
utest_Newton();
return eslOK;
}
#endif /*eslROOTFINDER_TESTDRIVE*/
/*****************************************************************
* 5. Examples.
*****************************************************************/
/* An example of bisection.
* gcc -g -Wall -o example -I. -DeslROOTFINDER_EXAMPLE esl_rootfinder.c easel.c -lm
*/
#ifdef eslROOTFINDER_EXAMPLE
/*::cexcerpt::rootfinder_example::begin::*/
#include "easel.h"
#include "esl_rootfinder.h"
struct polyparams { double a,b,c; };
int quadratic_f(double x, void *params, double *ret_fx)
{
struct polyparams *p = (struct polyparams *) params;
*ret_fx = (p->a * x * x + p->b * x + p->c);
return eslOK;
}
int main(void)
{
ESL_ROOTFINDER *R = NULL;
struct polyparams p;
double x, fx;
p.a = 5.;
p.b = 2.;
p.c = -1.;
R = esl_rootfinder_Create(quadratic_f, &p);
esl_root_Bisection(R, 0., 100., &x);
quadratic_f(x, &p, &fx);
printf("Find an x such that f(x) = %.0fx^2 + %.0fx + %.0f = 0 ...\n", p.a, p.b, p.c);
printf("x = %f (f(x) = %f)\n", x, fx);
esl_rootfinder_Destroy(R);
return 0;
}
/*::cexcerpt::rootfinder_example::end::*/
#endif /*eslROOTFINDER_EXAMPLE*/
/* An example of Newton/Raphson.
* gcc -g -Wall -o example -I. -DeslROOTFINDER_EXAMPLE2 esl_rootfinder.c easel.c -lm
*/
#ifdef eslROOTFINDER_EXAMPLE2
/*::cexcerpt::rootfinder_example2::begin::*/
#include "easel.h"
#include "esl_rootfinder.h"
struct polyparams { double a,b,c; };
int quadratic_fdf(double x, void *params, double *ret_fx, double *ret_dfx)
{
struct polyparams *p = (struct polyparams *) params;
*ret_fx = (p->a * x * x + p->b * x + p->c);
*ret_dfx = (2 * p->a) * x + p->b;
return eslOK;
}
int main(void)
{
ESL_ROOTFINDER *R = NULL;
struct polyparams p;
double x;
p.a = 5.;
p.b = 2.;
p.c = -1.;
R = esl_rootfinder_CreateFDF(quadratic_fdf, &p);
esl_root_NewtonRaphson(R, -1., &x);
printf("Find an x such that f(x) = %.0fx^2 + %.0fx + %.0f = 0 ...\n", p.a, p.b, p.c);
printf("x = %f\n", x);
esl_rootfinder_Destroy(R);
return 0;
}
/*::cexcerpt::rootfinder_example2::end::*/
#endif /*eslROOTFINDER_EXAMPLE2*/
|