1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
|
/* Routines for manipulating sequence alignment score matrices,
* such as the BLOSUM and PAM matrices.
*
* Contents:
* 1. The ESL_SCOREMATRIX object.
* 2. Some classic score matrices.
* 3. Deriving a score matrix probabilistically.
* 4. Reading/writing matrices from/to files.
* 5. Implicit probabilistic basis, I: given bg.
* 6. Implicit probabilistic basis, II: bg unknown. [Yu/Altschul03,05]
* 7. Experiment driver.
* 8 Utility programs.
* 9. Unit tests.
* 10. Test driver.
* 11. Example program.
*/
#include "esl_config.h"
#include <string.h>
#include <math.h>
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_composition.h"
#include "esl_dmatrix.h"
#include "esl_fileparser.h"
#include "esl_rootfinder.h"
#include "esl_ratematrix.h"
#include "esl_vectorops.h"
#include "esl_scorematrix.h"
/*****************************************************************
*# 1. The ESL_SCOREMATRIX object
*****************************************************************/
/* Function: esl_scorematrix_Create()
* Synopsis: Allocate and initialize an <ESL_SCOREMATRIX> object.
*
* Purpose: Allocates a score matrix for alphabet <abc>, initializes
* all scores to zero.
*
* Args: abc - pointer to digital alphabet
*
* Returns: a pointer to the new object.
*
* Throws: <NULL> on allocation failure.
*/
ESL_SCOREMATRIX *
esl_scorematrix_Create(const ESL_ALPHABET *abc)
{
ESL_SCOREMATRIX *S = NULL;
int status;
int i;
ESL_ALLOC(S, sizeof(ESL_SCOREMATRIX));
S->s = NULL;
S->K = abc->K;
S->Kp = abc->Kp;
S->isval = NULL;
S->abc_r = abc;
S->nc = 0;
S->outorder = NULL;
S->name = NULL;
S->path = NULL;
ESL_ALLOC(S->s, sizeof(int *) * abc->Kp);
S->s[0] = NULL;
ESL_ALLOC(S->isval, sizeof(char) * abc->Kp);
for (i = 0; i < abc->Kp; i++) S->isval[i] = FALSE;
ESL_ALLOC(S->outorder, sizeof(char) * (abc->Kp+1));
S->outorder[0] = '\0'; /* init to empty string. */
ESL_ALLOC(S->s[0], sizeof(int) * abc->Kp * abc->Kp);
for (i = 1; i < abc->Kp; i++) S->s[i] = S->s[0] + abc->Kp * i;
for (i = 0; i < abc->Kp*abc->Kp; i++) S->s[0][i] = 0;
return S;
ERROR:
esl_scorematrix_Destroy(S);
return NULL;
}
/* Function: esl_scorematrix_Copy()
* Synopsis: Copy <src> matrix to <dest>.
*
* Purpose: Copy <src> score matrix into <dest>. Caller
* has allocated <dest> for the same alphabet as
* <src>.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINCOMPAT> if <dest> isn't allocated for
* the same alphabet as <src>.
* <eslEMEM> on allocation error.
*/
int
esl_scorematrix_Copy(const ESL_SCOREMATRIX *src, ESL_SCOREMATRIX *dest)
{
int i,j;
int status;
if (src->abc_r->type != dest->abc_r->type || src->K != dest->K || src->Kp != dest->Kp)
ESL_EXCEPTION(eslEINCOMPAT, "source and dest score matrix types don't match");
for (i = 0; i < src->Kp; i++)
for (j = 0; j < src->Kp; j++)
dest->s[i][j] = src->s[i][j];
for (i = 0; i < src->Kp; i++)
dest->isval[i] = src->isval[i];
dest->nc = src->nc;
for (i = 0; i < src->nc; i++)
dest->outorder[i] = src->outorder[i];
dest->outorder[dest->nc] = '\0';
if ((status = esl_strdup(src->name, -1, &(dest->name))) != eslOK) return status;
if ((status = esl_strdup(src->path, -1, &(dest->path))) != eslOK) return status;
return eslOK;
}
/* Function: esl_scorematrix_Clone()
* Synopsis: Allocate a duplicate of a matrix.
*
* Purpose: Allocates a new matrix and makes it a duplicate
* of <S>. Return a pointer to the new matrix.
*
* Throws: <NULL> on allocation failure.
*/
ESL_SCOREMATRIX *
esl_scorematrix_Clone(const ESL_SCOREMATRIX *S)
{
ESL_SCOREMATRIX *dup = NULL;
if ((dup = esl_scorematrix_Create(S->abc_r)) == NULL) return NULL;
if (esl_scorematrix_Copy(S, dup) != eslOK) { esl_scorematrix_Destroy(dup); return NULL; }
return dup;
}
/* Function: esl_scorematrix_Compare()
* Synopsis: Compare two matrices for equality.
*
* Purpose: Compares two score matrices. Returns <eslOK> if they
* are identical, <eslFAIL> if they differ. Every aspect
* of the two matrices is compared.
*
* The annotation (name, filename path) are not
* compared; we may want to compare an internally
* generated scorematrix to one read from a file.
*/
int
esl_scorematrix_Compare(const ESL_SCOREMATRIX *S1, const ESL_SCOREMATRIX *S2)
{
int a,b;
if (strcmp(S1->outorder, S2->outorder) != 0) return eslFAIL;
if (S1->nc != S2->nc) return eslFAIL;
for (a = 0; a < S1->nc; a++)
if (S1->isval[a] != S2->isval[a]) return eslFAIL;
for (a = 0; a < S1->Kp; a++)
for (b = 0; b < S1->Kp; b++)
if (S1->s[a][b] != S2->s[a][b]) return eslFAIL;
return eslOK;
}
/* Function: esl_scorematrix_CompareCanon()
* Synopsis: Compares scores of canonical residues for equality.
*
* Purpose: Compares the scores of canonical residues in
* two score matrices <S1> and <S2> for equality.
* Returns <eslOK> if they are identical, <eslFAIL>
* if they differ. Peripheral aspects of the scoring matrices
* having to do with noncanonical residues, output
* order, and suchlike are ignored.
*/
int
esl_scorematrix_CompareCanon(const ESL_SCOREMATRIX *S1, const ESL_SCOREMATRIX *S2)
{
int a,b;
for (a = 0; a < S1->K; a++)
for (b = 0; b < S1->K; b++)
if (S1->s[a][b] != S2->s[a][b]) return eslFAIL;
return eslOK;
}
/* Function: esl_scorematrix_Max()
* Synopsis: Returns maximum value in score matrix.
*
* Purpose: Returns the maximum value in score matrix <S>.
*/
int
esl_scorematrix_Max(const ESL_SCOREMATRIX *S)
{
int i,j;
int max = S->s[0][0];
for (i = 0; i < S->K; i++)
for (j = 0; j < S->K; j++)
if (S->s[i][j] > max) max = S->s[i][j];
return max;
}
/* Function: esl_scorematrix_Min()
* Synopsis: Returns minimum value in score matrix.
*
* Purpose: Returns the minimum value in score matrix <S>.
*/
int
esl_scorematrix_Min(const ESL_SCOREMATRIX *S)
{
int i,j;
int min = S->s[0][0];
for (i = 0; i < S->K; i++)
for (j = 0; j < S->K; j++)
if (S->s[i][j] < min) min = S->s[i][j];
return min;
}
/* Function: esl_scorematrix_IsSymmetric()
* Synopsis: Returns <TRUE> for symmetric matrix.
*
* Purpose: Returns <TRUE> if matrix <S> is symmetric,
* or <FALSE> if it's not.
*/
int
esl_scorematrix_IsSymmetric(const ESL_SCOREMATRIX *S)
{
int i,j;
for (i = 0; i < S->K; i++)
for (j = i; j < S->K; j++)
if (S->s[i][j] != S->s[j][i]) return FALSE;
return TRUE;
}
/* Function: esl_scorematrix_ExpectedScore()
* Synopsis: Calculates the expected score of a matrix.
*
* Purpose: Calculates the expected score of a matrix <S>,
* given background frequencies <fi> and <fj>;
* return it in <*ret_E>.
*
* The expected score is defined as
* $\sum_{ab} f_a f_b \sigma_{ab}$.
*
* The expected score is in whatever units the score matrix
* <S> is in. If you know $\lambda$, you can convert it to
* units of bits ($\log 2$) by multiplying it by $\lambda /
* \log 2$.
*
* Args: S - score matrix
* fi - background frequencies $f_i$ (0..K-1)
* fj - background frequencies $f_j$ (0..K-1)
* ret_E - RETURN: expected score
*
* Returns: <eslOK> on success.
*/
int
esl_scorematrix_ExpectedScore(ESL_SCOREMATRIX *S, double *fi, double *fj, double *ret_E)
{
double E = 0.;
int a,b;
for (a = 0; a < S->K; a++)
for (b = 0; b < S->K; b++)
E += fi[a] * fj[b] * (double) S->s[a][b];
*ret_E = E;
return eslOK;
}
/* Function: esl_scorematrix_RelEntropy()
* Synopsis: Calculates relative entropy of a matrix.
*
* Purpose: Calculates the relative entropy of score matrix <S> in
* bits, given its background distributions <fi> and <fj> and
* its scale <lambda>.
*
* The relative entropy is defined as $\sum_{ab} p_{ab}
* \log_2 \frac{p_{ab}} {f_a f_b}$, the average score (in
* bits) of homologous aligned sequences. In general it is
* $\geq 0$ (and certainly so in the case when background
* frequencies $f_a$ and $f_b$ are the marginals of the
* $p_{ab}$ joint ptobabilities).
*
* Args: S - score matrix
* fi - background freqs for sequence i
* fj - background freqs for sequence j
* lambda - scale factor $\lambda$ for <S>
* ret_D - RETURN: relative entropy.
*
* Returns: <eslOK> on success, and <ret_D> contains the relative
* entropy.
*
* Throws: <eslEMEM> on allocation error.
* <eslEINVAL> if the implied $p_{ij}$'s don't sum to one,
* probably indicating that <lambda> was not the correct
* <lambda> for <S>, <fi>, and <fj>.
* In either exception, <ret_D> is returned as 0.0.
*/
int
esl_scorematrix_RelEntropy(const ESL_SCOREMATRIX *S, const double *fi, const double *fj, double lambda, double *ret_D)
{
int status;
double pij;
double sum = 0.;
int i,j;
double D = 0;
for (i = 0; i < S->K; i++)
for (j = 0; j < S->K; j++)
{
pij = fi[i] * fj[j] * exp(lambda * (double) S->s[i][j]);
sum += pij;
if (pij > 0.) D += pij * log(pij / (fi[i] * fj[j]));
}
if (esl_DCompare(sum, 1.0, 1e-3) != eslOK)
ESL_XEXCEPTION(eslEINVAL, "pij's don't sum to one (%.4f): bad lambda or bad bg?", sum);
D /= eslCONST_LOG2;
*ret_D = D;
return eslOK;
ERROR:
*ret_D = 0.;
return status;
}
/* Function: esl_scorematrix_JointToConditionalOnQuery()
* Synopsis: Convert a joint probability matrix to conditional probs P(b|a)
*
* Purpose: Given a joint probability matrix <P> that has been calculated
* by <esl_scorematrix_ProbifyGivenBG()> or <esl_scorematrix_Probify()>
* (or one that obeys the same conditions; see below),
* convert the joint probabilities <P(a,b)> to conditional
* probabilities <P(b | a)>, where <b> is a residue in the target,
* and <a> is a residue in the query.
*
* $P(b \mid a) = P(ab) / P(a)$, where $P(a) = \sum_b P(ab)$.
*
* The value stored in <P->mx[a][b]> is $P(b \mid a)$.
*
* All values in <P> involving the codes for gap,
* nonresidue, and missing data (codes <K>,<Kp-2>, and
* <Kp-1>) are 0.0, not probabilities. Only rows/columns
* <i=0..K,K+1..Kp-3> are valid probability vectors.
*
* Returns: <eslOK> on success.
*
* Throws: (no abnormal error conditions)
*
* Xref: J9/87.
*/
int
esl_scorematrix_JointToConditionalOnQuery(const ESL_ALPHABET *abc, ESL_DMATRIX *P)
{
int a,b;
/* P(b|a) = P(ab) / P(a)
* and P(a) = P(a,X), the value at [a][Kp-3]
*/
for (a = 0; a < abc->Kp-2; a++)
for (b = 0; b < abc->Kp-2; b++)
P->mx[a][b] = (P->mx[a][abc->Kp-3] == 0.0 ? 0.0 : P->mx[a][b] / P->mx[a][abc->Kp-3]);
return eslOK;
}
/* Function: esl_scorematrix_Destroy()
* Synopsis: Frees a matrix.
*
* Purpose: Frees a score matrix.
*/
void
esl_scorematrix_Destroy(ESL_SCOREMATRIX *S)
{
if (S == NULL) return;
if (S->s != NULL) {
if (S->s[0] != NULL) free(S->s[0]);
free(S->s);
}
if (S->isval != NULL) free(S->isval);
if (S->outorder != NULL) free(S->outorder);
if (S->name != NULL) free(S->name);
if (S->path != NULL) free(S->path);
free(S);
return;
}
/*------------------- end, scorematrix object -------------------*/
/*****************************************************************
*# 2. Some classic score matrices.
*****************************************************************/
/* PAM30, PAM70, PAM120, PAM240, BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM90 */
/* Standard matrices are reformatted to Easel static data by the UTILITY1 program; see below */
/* TODO: Instead of storing the classical low-precision versions of
* these, we should recalculate each one from its original
* probabilistic basis, and store it at higher integer precision,
* allowing the Yu/Altschul procedure to work. If we do that, we might also store
* lambda and background probabilities.
*/
#define eslAADIM 29
struct esl_scorematrix_aa_preload_s {
char *name;
int matrix[eslAADIM][eslAADIM];
};
static const struct esl_scorematrix_aa_preload_s ESL_SCOREMATRIX_AA_PRELOADS[] = {
{ "PAM30", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 6, -6, -3, -2, -8, -2, -7, -5, -7, -6, -5, -4, -2, -4, -7, 0, -1, -2, -13, -8, 0, -3, 0, -3, 0, 0, -3, -17, 0, }, /* A */
{ -6, 10, -14, -14, -13, -9, -7, -6, -14, -15, -13, -11, -8, -14, -8, -3, -8, -6, -15, -4, 0, -12, 0, -14, 0, 0, -9, -17, 0, }, /* C */
{ -3, -14, 8, 2, -15, -3, -4, -7, -4, -12, -11, 2, -8, -2, -10, -4, -5, -8, -15, -11, 0, 6, 0, 1, 0, 0, -5, -17, 0, }, /* D */
{ -2, -14, 2, 8, -14, -4, -5, -5, -4, -9, -7, -2, -5, 1, -9, -4, -6, -6, -17, -8, 0, 1, 0, 6, 0, 0, -5, -17, 0, }, /* E */
{ -8, -13, -15, -14, 9, -9, -6, -2, -14, -3, -4, -9, -10, -13, -9, -6, -9, -8, -4, 2, 0, -10, 0, -13, 0, 0, -8, -17, 0, }, /* F */
{ -2, -9, -3, -4, -9, 6, -9, -11, -7, -10, -8, -3, -6, -7, -9, -2, -6, -5, -15, -14, 0, -3, 0, -5, 0, 0, -5, -17, 0, }, /* G */
{ -7, -7, -4, -5, -6, -9, 9, -9, -6, -6, -10, 0, -4, 1, -2, -6, -7, -6, -7, -3, 0, -1, 0, -1, 0, 0, -5, -17, 0, }, /* H */
{ -5, -6, -7, -5, -2, -11, -9, 8, -6, -1, -1, -5, -8, -8, -5, -7, -2, 2, -14, -6, 0, -6, 0, -6, 0, 0, -5, -17, 0, }, /* I */
{ -7, -14, -4, -4, -14, -7, -6, -6, 7, -8, -2, -1, -6, -3, 0, -4, -3, -9, -12, -9, 0, -2, 0, -4, 0, 0, -5, -17, 0, }, /* K */
{ -6, -15, -12, -9, -3, -10, -6, -1, -8, 7, 1, -7, -7, -5, -8, -8, -7, -2, -6, -7, 0, -9, 0, -7, 0, 0, -6, -17, 0, }, /* L */
{ -5, -13, -11, -7, -4, -8, -10, -1, -2, 1, 11, -9, -8, -4, -4, -5, -4, -1, -13, -11, 0, -10, 0, -5, 0, 0, -5, -17, 0, }, /* M */
{ -4, -11, 2, -2, -9, -3, 0, -5, -1, -7, -9, 8, -6, -3, -6, 0, -2, -8, -8, -4, 0, 6, 0, -3, 0, 0, -3, -17, 0, }, /* N */
{ -2, -8, -8, -5, -10, -6, -4, -8, -6, -7, -8, -6, 8, -3, -4, -2, -4, -6, -14, -13, 0, -7, 0, -4, 0, 0, -5, -17, 0, }, /* P */
{ -4, -14, -2, 1, -13, -7, 1, -8, -3, -5, -4, -3, -3, 8, -2, -5, -5, -7, -13, -12, 0, -3, 0, 6, 0, 0, -5, -17, 0, }, /* Q */
{ -7, -8, -10, -9, -9, -9, -2, -5, 0, -8, -4, -6, -4, -2, 8, -3, -6, -8, -2, -10, 0, -7, 0, -4, 0, 0, -6, -17, 0, }, /* R */
{ 0, -3, -4, -4, -6, -2, -6, -7, -4, -8, -5, 0, -2, -5, -3, 6, 0, -6, -5, -7, 0, -1, 0, -5, 0, 0, -3, -17, 0, }, /* S */
{ -1, -8, -5, -6, -9, -6, -7, -2, -3, -7, -4, -2, -4, -5, -6, 0, 7, -3, -13, -6, 0, -3, 0, -6, 0, 0, -4, -17, 0, }, /* T */
{ -2, -6, -8, -6, -8, -5, -6, 2, -9, -2, -1, -8, -6, -7, -8, -6, -3, 7, -15, -7, 0, -8, 0, -6, 0, 0, -5, -17, 0, }, /* V */
{ -13, -15, -15, -17, -4, -15, -7, -14, -12, -6, -13, -8, -14, -13, -2, -5, -13, -15, 13, -5, 0, -10, 0, -14, 0, 0, -11, -17, 0, }, /* W */
{ -8, -4, -11, -8, 2, -14, -3, -6, -9, -7, -11, -4, -13, -12, -10, -7, -6, -7, -5, 10, 0, -6, 0, -9, 0, 0, -7, -17, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -3, -12, 6, 1, -10, -3, -1, -6, -2, -9, -10, 6, -7, -3, -7, -1, -3, -8, -10, -6, 0, 6, 0, 0, 0, 0, -5, -17, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -3, -14, 1, 6, -13, -5, -1, -6, -4, -7, -5, -3, -4, 6, -4, -5, -6, -6, -14, -9, 0, 0, 0, 6, 0, 0, -5, -17, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ -3, -9, -5, -5, -8, -5, -5, -5, -5, -6, -5, -3, -5, -5, -6, -3, -4, -5, -11, -7, 0, -5, 0, -5, 0, 0, -5, -17, 0, }, /* X */
{ -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, 0, -17, 0, -17, 0, 0, -17, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "PAM70", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 5, -4, -1, -1, -6, 0, -4, -2, -4, -4, -3, -2, 0, -2, -4, 1, 1, -1, -9, -5, 0, -1, 0, -1, 0, 0, -2, -11, 0, }, /* A */
{ -4, 9, -9, -9, -8, -6, -5, -4, -9, -10, -9, -7, -5, -9, -5, -1, -5, -4, -11, -2, 0, -8, 0, -9, 0, 0, -6, -11, 0, }, /* C */
{ -1, -9, 6, 3, -10, -1, -1, -5, -2, -8, -7, 3, -4, 0, -6, -1, -2, -5, -10, -7, 0, 5, 0, 2, 0, 0, -3, -11, 0, }, /* D */
{ -1, -9, 3, 6, -9, -2, -2, -4, -2, -6, -4, 0, -3, 2, -5, -2, -3, -4, -11, -6, 0, 2, 0, 5, 0, 0, -3, -11, 0, }, /* E */
{ -6, -8, -10, -9, 8, -7, -4, 0, -9, -1, -2, -6, -7, -9, -7, -4, -6, -5, -2, 4, 0, -7, 0, -9, 0, 0, -5, -11, 0, }, /* F */
{ 0, -6, -1, -2, -7, 6, -6, -6, -5, -7, -6, -1, -3, -4, -6, 0, -3, -3, -10, -9, 0, -1, 0, -3, 0, 0, -3, -11, 0, }, /* G */
{ -4, -5, -1, -2, -4, -6, 8, -6, -3, -4, -6, 1, -2, 2, 0, -3, -4, -4, -5, -1, 0, 0, 0, 1, 0, 0, -3, -11, 0, }, /* H */
{ -2, -4, -5, -4, 0, -6, -6, 7, -4, 1, 1, -3, -5, -5, -3, -4, -1, 3, -9, -4, 0, -4, 0, -4, 0, 0, -3, -11, 0, }, /* I */
{ -4, -9, -2, -2, -9, -5, -3, -4, 6, -5, 0, 0, -4, -1, 2, -2, -1, -6, -7, -7, 0, -1, 0, -2, 0, 0, -3, -11, 0, }, /* K */
{ -4, -10, -8, -6, -1, -7, -4, 1, -5, 6, 2, -5, -5, -3, -6, -6, -4, 0, -4, -4, 0, -6, 0, -4, 0, 0, -4, -11, 0, }, /* L */
{ -3, -9, -7, -4, -2, -6, -6, 1, 0, 2, 10, -5, -5, -2, -2, -3, -2, 0, -8, -7, 0, -6, 0, -3, 0, 0, -3, -11, 0, }, /* M */
{ -2, -7, 3, 0, -6, -1, 1, -3, 0, -5, -5, 6, -3, -1, -3, 1, 0, -5, -6, -3, 0, 5, 0, -1, 0, 0, -2, -11, 0, }, /* N */
{ 0, -5, -4, -3, -7, -3, -2, -5, -4, -5, -5, -3, 7, -1, -2, 0, -2, -3, -9, -9, 0, -4, 0, -2, 0, 0, -3, -11, 0, }, /* P */
{ -2, -9, 0, 2, -9, -4, 2, -5, -1, -3, -2, -1, -1, 7, 0, -3, -3, -4, -8, -8, 0, -1, 0, 5, 0, 0, -2, -11, 0, }, /* Q */
{ -4, -5, -6, -5, -7, -6, 0, -3, 2, -6, -2, -3, -2, 0, 8, -1, -4, -5, 0, -7, 0, -4, 0, -2, 0, 0, -3, -11, 0, }, /* R */
{ 1, -1, -1, -2, -4, 0, -3, -4, -2, -6, -3, 1, 0, -3, -1, 5, 2, -3, -3, -5, 0, 0, 0, -2, 0, 0, -1, -11, 0, }, /* S */
{ 1, -5, -2, -3, -6, -3, -4, -1, -1, -4, -2, 0, -2, -3, -4, 2, 6, -1, -8, -4, 0, -1, 0, -3, 0, 0, -2, -11, 0, }, /* T */
{ -1, -4, -5, -4, -5, -3, -4, 3, -6, 0, 0, -5, -3, -4, -5, -3, -1, 6, -10, -5, 0, -5, 0, -4, 0, 0, -2, -11, 0, }, /* V */
{ -9, -11, -10, -11, -2, -10, -5, -9, -7, -4, -8, -6, -9, -8, 0, -3, -8, -10, 13, -3, 0, -7, 0, -10, 0, 0, -7, -11, 0, }, /* W */
{ -5, -2, -7, -6, 4, -9, -1, -4, -7, -4, -7, -3, -9, -8, -7, -5, -4, -5, -3, 9, 0, -4, 0, -7, 0, 0, -5, -11, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -1, -8, 5, 2, -7, -1, 0, -4, -1, -6, -6, 5, -4, -1, -4, 0, -1, -5, -7, -4, 0, 5, 0, 1, 0, 0, -2, -11, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -1, -9, 2, 5, -9, -3, 1, -4, -2, -4, -3, -1, -2, 5, -2, -2, -3, -4, -10, -7, 0, 1, 0, 5, 0, 0, -3, -11, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ -2, -6, -3, -3, -5, -3, -3, -3, -3, -4, -3, -2, -3, -2, -3, -1, -2, -2, -7, -5, 0, -2, 0, -3, 0, 0, -3, -11, 0, }, /* X */
{ -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, 0, -11, 0, -11, 0, 0, -11, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "PAM120", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 3, -3, 0, 0, -4, 1, -3, -1, -2, -3, -2, -1, 1, -1, -3, 1, 1, 0, -7, -4, 0, 0, 0, -1, 0, 0, -1, -8, 0, }, /* A */
{ -3, 9, -7, -7, -6, -4, -4, -3, -7, -7, -6, -5, -4, -7, -4, 0, -3, -3, -8, -1, 0, -6, 0, -7, 0, 0, -4, -8, 0, }, /* C */
{ 0, -7, 5, 3, -7, 0, 0, -3, -1, -5, -4, 2, -3, 1, -3, 0, -1, -3, -8, -5, 0, 4, 0, 3, 0, 0, -2, -8, 0, }, /* D */
{ 0, -7, 3, 5, -7, -1, -1, -3, -1, -4, -3, 1, -2, 2, -3, -1, -2, -3, -8, -5, 0, 3, 0, 4, 0, 0, -1, -8, 0, }, /* E */
{ -4, -6, -7, -7, 8, -5, -3, 0, -7, 0, -1, -4, -5, -6, -5, -3, -4, -3, -1, 4, 0, -5, 0, -6, 0, 0, -3, -8, 0, }, /* F */
{ 1, -4, 0, -1, -5, 5, -4, -4, -3, -5, -4, 0, -2, -3, -4, 1, -1, -2, -8, -6, 0, 0, 0, -2, 0, 0, -2, -8, 0, }, /* G */
{ -3, -4, 0, -1, -3, -4, 7, -4, -2, -3, -4, 2, -1, 3, 1, -2, -3, -3, -3, -1, 0, 1, 0, 1, 0, 0, -2, -8, 0, }, /* H */
{ -1, -3, -3, -3, 0, -4, -4, 6, -3, 1, 1, -2, -3, -3, -2, -2, 0, 3, -6, -2, 0, -3, 0, -3, 0, 0, -1, -8, 0, }, /* I */
{ -2, -7, -1, -1, -7, -3, -2, -3, 5, -4, 0, 1, -2, 0, 2, -1, -1, -4, -5, -5, 0, 0, 0, -1, 0, 0, -2, -8, 0, }, /* K */
{ -3, -7, -5, -4, 0, -5, -3, 1, -4, 5, 3, -4, -3, -2, -4, -4, -3, 1, -3, -2, 0, -4, 0, -3, 0, 0, -2, -8, 0, }, /* L */
{ -2, -6, -4, -3, -1, -4, -4, 1, 0, 3, 8, -3, -3, -1, -1, -2, -1, 1, -6, -4, 0, -4, 0, -2, 0, 0, -2, -8, 0, }, /* M */
{ -1, -5, 2, 1, -4, 0, 2, -2, 1, -4, -3, 4, -2, 0, -1, 1, 0, -3, -4, -2, 0, 3, 0, 0, 0, 0, -1, -8, 0, }, /* N */
{ 1, -4, -3, -2, -5, -2, -1, -3, -2, -3, -3, -2, 6, 0, -1, 1, -1, -2, -7, -6, 0, -2, 0, -1, 0, 0, -2, -8, 0, }, /* P */
{ -1, -7, 1, 2, -6, -3, 3, -3, 0, -2, -1, 0, 0, 6, 1, -2, -2, -3, -6, -5, 0, 0, 0, 4, 0, 0, -1, -8, 0, }, /* Q */
{ -3, -4, -3, -3, -5, -4, 1, -2, 2, -4, -1, -1, -1, 1, 6, -1, -2, -3, 1, -5, 0, -2, 0, -1, 0, 0, -2, -8, 0, }, /* R */
{ 1, 0, 0, -1, -3, 1, -2, -2, -1, -4, -2, 1, 1, -2, -1, 3, 2, -2, -2, -3, 0, 0, 0, -1, 0, 0, -1, -8, 0, }, /* S */
{ 1, -3, -1, -2, -4, -1, -3, 0, -1, -3, -1, 0, -1, -2, -2, 2, 4, 0, -6, -3, 0, 0, 0, -2, 0, 0, -1, -8, 0, }, /* T */
{ 0, -3, -3, -3, -3, -2, -3, 3, -4, 1, 1, -3, -2, -3, -3, -2, 0, 5, -8, -3, 0, -3, 0, -3, 0, 0, -1, -8, 0, }, /* V */
{ -7, -8, -8, -8, -1, -8, -3, -6, -5, -3, -6, -4, -7, -6, 1, -2, -6, -8, 12, -2, 0, -6, 0, -7, 0, 0, -5, -8, 0, }, /* W */
{ -4, -1, -5, -5, 4, -6, -1, -2, -5, -2, -4, -2, -6, -5, -5, -3, -3, -3, -2, 8, 0, -3, 0, -5, 0, 0, -3, -8, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ 0, -6, 4, 3, -5, 0, 1, -3, 0, -4, -4, 3, -2, 0, -2, 0, 0, -3, -6, -3, 0, 4, 0, 2, 0, 0, -1, -8, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -1, -7, 3, 4, -6, -2, 1, -3, -1, -3, -2, 0, -1, 4, -1, -1, -2, -3, -7, -5, 0, 2, 0, 4, 0, 0, -1, -8, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ -1, -4, -2, -1, -3, -2, -2, -1, -2, -2, -2, -1, -2, -1, -2, -1, -1, -1, -5, -3, 0, -1, 0, -1, 0, 0, -2, -8, 0, }, /* X */
{ -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, 0, -8, 0, -8, 0, 0, -8, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "PAM240", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 2, -2, 0, 0, -4, 1, -1, -1, -1, -2, -1, 0, 1, 0, -2, 1, 1, 0, -6, -4, 0, 0, 0, 0, 0, 0, 0, -8, 0, }, /* A */
{ -2, 12, -5, -6, -5, -4, -4, -2, -6, -6, -5, -4, -3, -6, -4, 0, -2, -2, -8, 0, 0, -5, 0, -6, 0, 0, -3, -8, 0, }, /* C */
{ 0, -5, 4, 4, -6, 1, 1, -2, 0, -4, -3, 2, -1, 2, -1, 0, 0, -2, -7, -4, 0, 3, 0, 3, 0, 0, -1, -8, 0, }, /* D */
{ 0, -6, 4, 4, -6, 0, 1, -2, 0, -3, -2, 1, -1, 3, -1, 0, 0, -2, -7, -4, 0, 3, 0, 3, 0, 0, -1, -8, 0, }, /* E */
{ -4, -5, -6, -6, 9, -5, -2, 1, -5, 2, 0, -4, -5, -5, -5, -3, -3, -1, 0, 7, 0, -5, 0, -5, 0, 0, -2, -8, 0, }, /* F */
{ 1, -4, 1, 0, -5, 5, -2, -3, -2, -4, -3, 0, -1, -1, -3, 1, 0, -1, -7, -5, 0, 0, 0, 0, 0, 0, -1, -8, 0, }, /* G */
{ -1, -4, 1, 1, -2, -2, 7, -3, 0, -2, -2, 2, 0, 3, 2, -1, -1, -2, -3, 0, 0, 1, 0, 2, 0, 0, -1, -8, 0, }, /* H */
{ -1, -2, -2, -2, 1, -3, -3, 5, -2, 2, 2, -2, -2, -2, -2, -1, 0, 4, -5, -1, 0, -2, 0, -2, 0, 0, -1, -8, 0, }, /* I */
{ -1, -6, 0, 0, -5, -2, 0, -2, 5, -3, 0, 1, -1, 1, 3, 0, 0, -3, -4, -5, 0, 1, 0, 0, 0, 0, -1, -8, 0, }, /* K */
{ -2, -6, -4, -3, 2, -4, -2, 2, -3, 6, 4, -3, -3, -2, -3, -3, -2, 2, -2, -1, 0, -4, 0, -3, 0, 0, -1, -8, 0, }, /* L */
{ -1, -5, -3, -2, 0, -3, -2, 2, 0, 4, 7, -2, -2, -1, 0, -2, -1, 2, -4, -3, 0, -2, 0, -2, 0, 0, -1, -8, 0, }, /* M */
{ 0, -4, 2, 1, -4, 0, 2, -2, 1, -3, -2, 2, -1, 1, 0, 1, 0, -2, -4, -2, 0, 2, 0, 1, 0, 0, 0, -8, 0, }, /* N */
{ 1, -3, -1, -1, -5, -1, 0, -2, -1, -3, -2, -1, 6, 0, 0, 1, 0, -1, -6, -5, 0, -1, 0, 0, 0, 0, -1, -8, 0, }, /* P */
{ 0, -6, 2, 3, -5, -1, 3, -2, 1, -2, -1, 1, 0, 4, 1, -1, -1, -2, -5, -4, 0, 1, 0, 3, 0, 0, -1, -8, 0, }, /* Q */
{ -2, -4, -1, -1, -5, -3, 2, -2, 3, -3, 0, 0, 0, 1, 6, 0, -1, -3, 2, -4, 0, -1, 0, 0, 0, 0, -1, -8, 0, }, /* R */
{ 1, 0, 0, 0, -3, 1, -1, -1, 0, -3, -2, 1, 1, -1, 0, 2, 1, -1, -3, -3, 0, 0, 0, 0, 0, 0, 0, -8, 0, }, /* S */
{ 1, -2, 0, 0, -3, 0, -1, 0, 0, -2, -1, 0, 0, -1, -1, 1, 3, 0, -5, -3, 0, 0, 0, -1, 0, 0, 0, -8, 0, }, /* T */
{ 0, -2, -2, -2, -1, -1, -2, 4, -3, 2, 2, -2, -1, -2, -3, -1, 0, 4, -6, -3, 0, -2, 0, -2, 0, 0, -1, -8, 0, }, /* V */
{ -6, -8, -7, -7, 0, -7, -3, -5, -4, -2, -4, -4, -6, -5, 2, -3, -5, -6, 17, 0, 0, -5, 0, -6, 0, 0, -4, -8, 0, }, /* W */
{ -4, 0, -4, -4, 7, -5, 0, -1, -5, -1, -3, -2, -5, -4, -4, -3, -3, -3, 0, 10, 0, -3, 0, -4, 0, 0, -2, -8, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ 0, -5, 3, 3, -5, 0, 1, -2, 1, -4, -2, 2, -1, 1, -1, 0, 0, -2, -5, -3, 0, 3, 0, 2, 0, 0, -1, -8, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ 0, -6, 3, 3, -5, 0, 2, -2, 0, -3, -2, 1, 0, 3, 0, 0, -1, -2, -6, -4, 0, 2, 0, 3, 0, 0, -1, -8, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ 0, -3, -1, -1, -2, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -4, -2, 0, -1, 0, -1, 0, 0, -1, -8, 0, }, /* X */
{ -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, 0, -8, 0, -8, 0, 0, -8, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "BLOSUM45", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 5, -1, -2, -1, -2, 0, -2, -1, -1, -1, -1, -1, -1, -1, -2, 1, 0, 0, -2, -2, 0, -1, 0, -1, 0, 0, 0, -5, 0, }, /* A */
{ -1, 12, -3, -3, -2, -3, -3, -3, -3, -2, -2, -2, -4, -3, -3, -1, -1, -1, -5, -3, 0, -2, 0, -3, 0, 0, -2, -5, 0, }, /* C */
{ -2, -3, 7, 2, -4, -1, 0, -4, 0, -3, -3, 2, -1, 0, -1, 0, -1, -3, -4, -2, 0, 5, 0, 1, 0, 0, -1, -5, 0, }, /* D */
{ -1, -3, 2, 6, -3, -2, 0, -3, 1, -2, -2, 0, 0, 2, 0, 0, -1, -3, -3, -2, 0, 1, 0, 4, 0, 0, -1, -5, 0, }, /* E */
{ -2, -2, -4, -3, 8, -3, -2, 0, -3, 1, 0, -2, -3, -4, -2, -2, -1, 0, 1, 3, 0, -3, 0, -3, 0, 0, -1, -5, 0, }, /* F */
{ 0, -3, -1, -2, -3, 7, -2, -4, -2, -3, -2, 0, -2, -2, -2, 0, -2, -3, -2, -3, 0, -1, 0, -2, 0, 0, -1, -5, 0, }, /* G */
{ -2, -3, 0, 0, -2, -2, 10, -3, -1, -2, 0, 1, -2, 1, 0, -1, -2, -3, -3, 2, 0, 0, 0, 0, 0, 0, -1, -5, 0, }, /* H */
{ -1, -3, -4, -3, 0, -4, -3, 5, -3, 2, 2, -2, -2, -2, -3, -2, -1, 3, -2, 0, 0, -3, 0, -3, 0, 0, -1, -5, 0, }, /* I */
{ -1, -3, 0, 1, -3, -2, -1, -3, 5, -3, -1, 0, -1, 1, 3, -1, -1, -2, -2, -1, 0, 0, 0, 1, 0, 0, -1, -5, 0, }, /* K */
{ -1, -2, -3, -2, 1, -3, -2, 2, -3, 5, 2, -3, -3, -2, -2, -3, -1, 1, -2, 0, 0, -3, 0, -2, 0, 0, -1, -5, 0, }, /* L */
{ -1, -2, -3, -2, 0, -2, 0, 2, -1, 2, 6, -2, -2, 0, -1, -2, -1, 1, -2, 0, 0, -2, 0, -1, 0, 0, -1, -5, 0, }, /* M */
{ -1, -2, 2, 0, -2, 0, 1, -2, 0, -3, -2, 6, -2, 0, 0, 1, 0, -3, -4, -2, 0, 4, 0, 0, 0, 0, -1, -5, 0, }, /* N */
{ -1, -4, -1, 0, -3, -2, -2, -2, -1, -3, -2, -2, 9, -1, -2, -1, -1, -3, -3, -3, 0, -2, 0, -1, 0, 0, -1, -5, 0, }, /* P */
{ -1, -3, 0, 2, -4, -2, 1, -2, 1, -2, 0, 0, -1, 6, 1, 0, -1, -3, -2, -1, 0, 0, 0, 4, 0, 0, -1, -5, 0, }, /* Q */
{ -2, -3, -1, 0, -2, -2, 0, -3, 3, -2, -1, 0, -2, 1, 7, -1, -1, -2, -2, -1, 0, -1, 0, 0, 0, 0, -1, -5, 0, }, /* R */
{ 1, -1, 0, 0, -2, 0, -1, -2, -1, -3, -2, 1, -1, 0, -1, 4, 2, -1, -4, -2, 0, 0, 0, 0, 0, 0, 0, -5, 0, }, /* S */
{ 0, -1, -1, -1, -1, -2, -2, -1, -1, -1, -1, 0, -1, -1, -1, 2, 5, 0, -3, -1, 0, 0, 0, -1, 0, 0, 0, -5, 0, }, /* T */
{ 0, -1, -3, -3, 0, -3, -3, 3, -2, 1, 1, -3, -3, -3, -2, -1, 0, 5, -3, -1, 0, -3, 0, -3, 0, 0, -1, -5, 0, }, /* V */
{ -2, -5, -4, -3, 1, -2, -3, -2, -2, -2, -2, -4, -3, -2, -2, -4, -3, -3, 15, 3, 0, -4, 0, -2, 0, 0, -2, -5, 0, }, /* W */
{ -2, -3, -2, -2, 3, -3, 2, 0, -1, 0, 0, -2, -3, -1, -1, -2, -1, -1, 3, 8, 0, -2, 0, -2, 0, 0, -1, -5, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -1, -2, 5, 1, -3, -1, 0, -3, 0, -3, -2, 4, -2, 0, -1, 0, 0, -3, -4, -2, 0, 4, 0, 2, 0, 0, -1, -5, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -1, -3, 1, 4, -3, -2, 0, -3, 1, -2, -1, 0, -1, 4, 0, 0, -1, -3, -2, -2, 0, 2, 0, 4, 0, 0, -1, -5, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ 0, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -2, -1, 0, -1, 0, -1, 0, 0, -1, -5, 0, }, /* X */
{ -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, 0, -5, 0, -5, 0, 0, -5, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "BLOSUM50", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 5, -1, -2, -1, -3, 0, -2, -1, -1, -2, -1, -1, -1, -1, -2, 1, 0, 0, -3, -2, 0, -2, 0, -1, 0, 0, -1, -5, 0, }, /* A */
{ -1, 13, -4, -3, -2, -3, -3, -2, -3, -2, -2, -2, -4, -3, -4, -1, -1, -1, -5, -3, 0, -3, 0, -3, 0, 0, -2, -5, 0, }, /* C */
{ -2, -4, 8, 2, -5, -1, -1, -4, -1, -4, -4, 2, -1, 0, -2, 0, -1, -4, -5, -3, 0, 5, 0, 1, 0, 0, -1, -5, 0, }, /* D */
{ -1, -3, 2, 6, -3, -3, 0, -4, 1, -3, -2, 0, -1, 2, 0, -1, -1, -3, -3, -2, 0, 1, 0, 5, 0, 0, -1, -5, 0, }, /* E */
{ -3, -2, -5, -3, 8, -4, -1, 0, -4, 1, 0, -4, -4, -4, -3, -3, -2, -1, 1, 4, 0, -4, 0, -4, 0, 0, -2, -5, 0, }, /* F */
{ 0, -3, -1, -3, -4, 8, -2, -4, -2, -4, -3, 0, -2, -2, -3, 0, -2, -4, -3, -3, 0, -1, 0, -2, 0, 0, -2, -5, 0, }, /* G */
{ -2, -3, -1, 0, -1, -2, 10, -4, 0, -3, -1, 1, -2, 1, 0, -1, -2, -4, -3, 2, 0, 0, 0, 0, 0, 0, -1, -5, 0, }, /* H */
{ -1, -2, -4, -4, 0, -4, -4, 5, -3, 2, 2, -3, -3, -3, -4, -3, -1, 4, -3, -1, 0, -4, 0, -3, 0, 0, -1, -5, 0, }, /* I */
{ -1, -3, -1, 1, -4, -2, 0, -3, 6, -3, -2, 0, -1, 2, 3, 0, -1, -3, -3, -2, 0, 0, 0, 1, 0, 0, -1, -5, 0, }, /* K */
{ -2, -2, -4, -3, 1, -4, -3, 2, -3, 5, 3, -4, -4, -2, -3, -3, -1, 1, -2, -1, 0, -4, 0, -3, 0, 0, -1, -5, 0, }, /* L */
{ -1, -2, -4, -2, 0, -3, -1, 2, -2, 3, 7, -2, -3, 0, -2, -2, -1, 1, -1, 0, 0, -3, 0, -1, 0, 0, -1, -5, 0, }, /* M */
{ -1, -2, 2, 0, -4, 0, 1, -3, 0, -4, -2, 7, -2, 0, -1, 1, 0, -3, -4, -2, 0, 4, 0, 0, 0, 0, -1, -5, 0, }, /* N */
{ -1, -4, -1, -1, -4, -2, -2, -3, -1, -4, -3, -2, 10, -1, -3, -1, -1, -3, -4, -3, 0, -2, 0, -1, 0, 0, -2, -5, 0, }, /* P */
{ -1, -3, 0, 2, -4, -2, 1, -3, 2, -2, 0, 0, -1, 7, 1, 0, -1, -3, -1, -1, 0, 0, 0, 4, 0, 0, -1, -5, 0, }, /* Q */
{ -2, -4, -2, 0, -3, -3, 0, -4, 3, -3, -2, -1, -3, 1, 7, -1, -1, -3, -3, -1, 0, -1, 0, 0, 0, 0, -1, -5, 0, }, /* R */
{ 1, -1, 0, -1, -3, 0, -1, -3, 0, -3, -2, 1, -1, 0, -1, 5, 2, -2, -4, -2, 0, 0, 0, 0, 0, 0, -1, -5, 0, }, /* S */
{ 0, -1, -1, -1, -2, -2, -2, -1, -1, -1, -1, 0, -1, -1, -1, 2, 5, 0, -3, -2, 0, 0, 0, -1, 0, 0, 0, -5, 0, }, /* T */
{ 0, -1, -4, -3, -1, -4, -4, 4, -3, 1, 1, -3, -3, -3, -3, -2, 0, 5, -3, -1, 0, -4, 0, -3, 0, 0, -1, -5, 0, }, /* V */
{ -3, -5, -5, -3, 1, -3, -3, -3, -3, -2, -1, -4, -4, -1, -3, -4, -3, -3, 15, 2, 0, -5, 0, -2, 0, 0, -3, -5, 0, }, /* W */
{ -2, -3, -3, -2, 4, -3, 2, -1, -2, -1, 0, -2, -3, -1, -1, -2, -2, -1, 2, 8, 0, -3, 0, -2, 0, 0, -1, -5, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -2, -3, 5, 1, -4, -1, 0, -4, 0, -4, -3, 4, -2, 0, -1, 0, 0, -4, -5, -3, 0, 5, 0, 2, 0, 0, -1, -5, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -1, -3, 1, 5, -4, -2, 0, -3, 1, -3, -1, 0, -1, 4, 0, 0, -1, -3, -2, -2, 0, 2, 0, 5, 0, 0, -1, -5, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ -1, -2, -1, -1, -2, -2, -1, -1, -1, -1, -1, -1, -2, -1, -1, -1, 0, -1, -3, -1, 0, -1, 0, -1, 0, 0, -1, -5, 0, }, /* X */
{ -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, 0, -5, 0, -5, 0, 0, -5, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "BLOSUM62", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 4, 0, -2, -1, -2, 0, -2, -1, -1, -1, -1, -2, -1, -1, -1, 1, 0, 0, -3, -2, 0, -2, 0, -1, 0, 0, 0, -4, 0, }, /* A */
{ 0, 9, -3, -4, -2, -3, -3, -1, -3, -1, -1, -3, -3, -3, -3, -1, -1, -1, -2, -2, 0, -3, 0, -3, 0, 0, -2, -4, 0, }, /* C */
{ -2, -3, 6, 2, -3, -1, -1, -3, -1, -4, -3, 1, -1, 0, -2, 0, -1, -3, -4, -3, 0, 4, 0, 1, 0, 0, -1, -4, 0, }, /* D */
{ -1, -4, 2, 5, -3, -2, 0, -3, 1, -3, -2, 0, -1, 2, 0, 0, -1, -2, -3, -2, 0, 1, 0, 4, 0, 0, -1, -4, 0, }, /* E */
{ -2, -2, -3, -3, 6, -3, -1, 0, -3, 0, 0, -3, -4, -3, -3, -2, -2, -1, 1, 3, 0, -3, 0, -3, 0, 0, -1, -4, 0, }, /* F */
{ 0, -3, -1, -2, -3, 6, -2, -4, -2, -4, -3, 0, -2, -2, -2, 0, -2, -3, -2, -3, 0, -1, 0, -2, 0, 0, -1, -4, 0, }, /* G */
{ -2, -3, -1, 0, -1, -2, 8, -3, -1, -3, -2, 1, -2, 0, 0, -1, -2, -3, -2, 2, 0, 0, 0, 0, 0, 0, -1, -4, 0, }, /* H */
{ -1, -1, -3, -3, 0, -4, -3, 4, -3, 2, 1, -3, -3, -3, -3, -2, -1, 3, -3, -1, 0, -3, 0, -3, 0, 0, -1, -4, 0, }, /* I */
{ -1, -3, -1, 1, -3, -2, -1, -3, 5, -2, -1, 0, -1, 1, 2, 0, -1, -2, -3, -2, 0, 0, 0, 1, 0, 0, -1, -4, 0, }, /* K */
{ -1, -1, -4, -3, 0, -4, -3, 2, -2, 4, 2, -3, -3, -2, -2, -2, -1, 1, -2, -1, 0, -4, 0, -3, 0, 0, -1, -4, 0, }, /* L */
{ -1, -1, -3, -2, 0, -3, -2, 1, -1, 2, 5, -2, -2, 0, -1, -1, -1, 1, -1, -1, 0, -3, 0, -1, 0, 0, -1, -4, 0, }, /* M */
{ -2, -3, 1, 0, -3, 0, 1, -3, 0, -3, -2, 6, -2, 0, 0, 1, 0, -3, -4, -2, 0, 3, 0, 0, 0, 0, -1, -4, 0, }, /* N */
{ -1, -3, -1, -1, -4, -2, -2, -3, -1, -3, -2, -2, 7, -1, -2, -1, -1, -2, -4, -3, 0, -2, 0, -1, 0, 0, -2, -4, 0, }, /* P */
{ -1, -3, 0, 2, -3, -2, 0, -3, 1, -2, 0, 0, -1, 5, 1, 0, -1, -2, -2, -1, 0, 0, 0, 3, 0, 0, -1, -4, 0, }, /* Q */
{ -1, -3, -2, 0, -3, -2, 0, -3, 2, -2, -1, 0, -2, 1, 5, -1, -1, -3, -3, -2, 0, -1, 0, 0, 0, 0, -1, -4, 0, }, /* R */
{ 1, -1, 0, 0, -2, 0, -1, -2, 0, -2, -1, 1, -1, 0, -1, 4, 1, -2, -3, -2, 0, 0, 0, 0, 0, 0, 0, -4, 0, }, /* S */
{ 0, -1, -1, -1, -2, -2, -2, -1, -1, -1, -1, 0, -1, -1, -1, 1, 5, 0, -2, -2, 0, -1, 0, -1, 0, 0, 0, -4, 0, }, /* T */
{ 0, -1, -3, -2, -1, -3, -3, 3, -2, 1, 1, -3, -2, -2, -3, -2, 0, 4, -3, -1, 0, -3, 0, -2, 0, 0, -1, -4, 0, }, /* V */
{ -3, -2, -4, -3, 1, -2, -2, -3, -3, -2, -1, -4, -4, -2, -3, -3, -2, -3, 11, 2, 0, -4, 0, -3, 0, 0, -2, -4, 0, }, /* W */
{ -2, -2, -3, -2, 3, -3, 2, -1, -2, -1, -1, -2, -3, -1, -2, -2, -2, -1, 2, 7, 0, -3, 0, -2, 0, 0, -1, -4, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -2, -3, 4, 1, -3, -1, 0, -3, 0, -4, -3, 3, -2, 0, -1, 0, -1, -3, -4, -3, 0, 4, 0, 1, 0, 0, -1, -4, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -1, -3, 1, 4, -3, -2, 0, -3, 1, -3, -1, 0, -1, 3, 0, 0, -1, -2, -3, -2, 0, 1, 0, 4, 0, 0, -1, -4, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ 0, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, 0, 0, -1, -2, -1, 0, -1, 0, -1, 0, 0, -1, -4, 0, }, /* X */
{ -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, 0, -4, 0, -4, 0, 0, -4, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "BLOSUM80", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 7, -1, -3, -2, -4, 0, -3, -3, -1, -3, -2, -3, -1, -2, -3, 2, 0, -1, -5, -4, 0, -3, 0, -2, 0, 0, -1, -8, 0, }, /* A */
{ -1, 13, -7, -7, -4, -6, -7, -2, -6, -3, -3, -5, -6, -5, -6, -2, -2, -2, -5, -5, 0, -6, 0, -7, 0, 0, -4, -8, 0, }, /* C */
{ -3, -7, 10, 2, -6, -3, -2, -7, -2, -7, -6, 2, -3, -1, -3, -1, -2, -6, -8, -6, 0, 6, 0, 1, 0, 0, -3, -8, 0, }, /* D */
{ -2, -7, 2, 8, -6, -4, 0, -6, 1, -6, -4, -1, -2, 3, -1, -1, -2, -4, -6, -5, 0, 1, 0, 6, 0, 0, -2, -8, 0, }, /* E */
{ -4, -4, -6, -6, 10, -6, -2, -1, -5, 0, 0, -6, -6, -5, -5, -4, -4, -2, 0, 4, 0, -6, 0, -6, 0, 0, -3, -8, 0, }, /* F */
{ 0, -6, -3, -4, -6, 9, -4, -7, -3, -7, -5, -1, -5, -4, -4, -1, -3, -6, -6, -6, 0, -2, 0, -4, 0, 0, -3, -8, 0, }, /* G */
{ -3, -7, -2, 0, -2, -4, 12, -6, -1, -5, -4, 1, -4, 1, 0, -2, -3, -5, -4, 3, 0, -1, 0, 0, 0, 0, -2, -8, 0, }, /* H */
{ -3, -2, -7, -6, -1, -7, -6, 7, -5, 2, 2, -6, -5, -5, -5, -4, -2, 4, -5, -3, 0, -6, 0, -6, 0, 0, -2, -8, 0, }, /* I */
{ -1, -6, -2, 1, -5, -3, -1, -5, 8, -4, -3, 0, -2, 2, 3, -1, -1, -4, -6, -4, 0, -1, 0, 1, 0, 0, -2, -8, 0, }, /* K */
{ -3, -3, -7, -6, 0, -7, -5, 2, -4, 6, 3, -6, -5, -4, -4, -4, -3, 1, -4, -2, 0, -7, 0, -5, 0, 0, -2, -8, 0, }, /* L */
{ -2, -3, -6, -4, 0, -5, -4, 2, -3, 3, 9, -4, -4, -1, -3, -3, -1, 1, -3, -3, 0, -5, 0, -3, 0, 0, -2, -8, 0, }, /* M */
{ -3, -5, 2, -1, -6, -1, 1, -6, 0, -6, -4, 9, -4, 0, -1, 1, 0, -5, -7, -4, 0, 5, 0, -1, 0, 0, -2, -8, 0, }, /* N */
{ -1, -6, -3, -2, -6, -5, -4, -5, -2, -5, -4, -4, 12, -3, -3, -2, -3, -4, -7, -6, 0, -4, 0, -2, 0, 0, -3, -8, 0, }, /* P */
{ -2, -5, -1, 3, -5, -4, 1, -5, 2, -4, -1, 0, -3, 9, 1, -1, -1, -4, -4, -3, 0, -1, 0, 5, 0, 0, -2, -8, 0, }, /* Q */
{ -3, -6, -3, -1, -5, -4, 0, -5, 3, -4, -3, -1, -3, 1, 9, -2, -2, -4, -5, -4, 0, -2, 0, 0, 0, 0, -2, -8, 0, }, /* R */
{ 2, -2, -1, -1, -4, -1, -2, -4, -1, -4, -3, 1, -2, -1, -2, 7, 2, -3, -6, -3, 0, 0, 0, -1, 0, 0, -1, -8, 0, }, /* S */
{ 0, -2, -2, -2, -4, -3, -3, -2, -1, -3, -1, 0, -3, -1, -2, 2, 8, 0, -5, -3, 0, -1, 0, -2, 0, 0, -1, -8, 0, }, /* T */
{ -1, -2, -6, -4, -2, -6, -5, 4, -4, 1, 1, -5, -4, -4, -4, -3, 0, 7, -5, -3, 0, -6, 0, -4, 0, 0, -2, -8, 0, }, /* V */
{ -5, -5, -8, -6, 0, -6, -4, -5, -6, -4, -3, -7, -7, -4, -5, -6, -5, -5, 16, 3, 0, -8, 0, -5, 0, 0, -5, -8, 0, }, /* W */
{ -4, -5, -6, -5, 4, -6, 3, -3, -4, -2, -3, -4, -6, -3, -4, -3, -3, -3, 3, 11, 0, -5, 0, -4, 0, 0, -3, -8, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -3, -6, 6, 1, -6, -2, -1, -6, -1, -7, -5, 5, -4, -1, -2, 0, -1, -6, -8, -5, 0, 6, 0, 0, 0, 0, -3, -8, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -2, -7, 1, 6, -6, -4, 0, -6, 1, -5, -3, -1, -2, 5, 0, -1, -2, -4, -5, -4, 0, 0, 0, 6, 0, 0, -1, -8, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ -1, -4, -3, -2, -3, -3, -2, -2, -2, -2, -2, -2, -3, -2, -2, -1, -1, -2, -5, -3, 0, -3, 0, -1, 0, 0, -2, -8, 0, }, /* X */
{ -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, 0, -8, 0, -8, 0, 0, -8, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
{ "BLOSUM90", {
/* A C D E F G H I K L M N P Q R S T V W Y - B J Z O U X * ~ */
{ 5, -1, -3, -1, -3, 0, -2, -2, -1, -2, -2, -2, -1, -1, -2, 1, 0, -1, -4, -3, 0, -2, 0, -1, 0, 0, -1, -6, 0, }, /* A */
{ -1, 9, -5, -6, -3, -4, -5, -2, -4, -2, -2, -4, -4, -4, -5, -2, -2, -2, -4, -4, 0, -4, 0, -5, 0, 0, -3, -6, 0, }, /* C */
{ -3, -5, 7, 1, -5, -2, -2, -5, -1, -5, -4, 1, -3, -1, -3, -1, -2, -5, -6, -4, 0, 4, 0, 0, 0, 0, -2, -6, 0, }, /* D */
{ -1, -6, 1, 6, -5, -3, -1, -4, 0, -4, -3, -1, -2, 2, -1, -1, -1, -3, -5, -4, 0, 0, 0, 4, 0, 0, -2, -6, 0, }, /* E */
{ -3, -3, -5, -5, 7, -5, -2, -1, -4, 0, -1, -4, -4, -4, -4, -3, -3, -2, 0, 3, 0, -4, 0, -4, 0, 0, -2, -6, 0, }, /* F */
{ 0, -4, -2, -3, -5, 6, -3, -5, -2, -5, -4, -1, -3, -3, -3, -1, -3, -5, -4, -5, 0, -2, 0, -3, 0, 0, -2, -6, 0, }, /* G */
{ -2, -5, -2, -1, -2, -3, 8, -4, -1, -4, -3, 0, -3, 1, 0, -2, -2, -4, -3, 1, 0, -1, 0, 0, 0, 0, -2, -6, 0, }, /* H */
{ -2, -2, -5, -4, -1, -5, -4, 5, -4, 1, 1, -4, -4, -4, -4, -3, -1, 3, -4, -2, 0, -5, 0, -4, 0, 0, -2, -6, 0, }, /* I */
{ -1, -4, -1, 0, -4, -2, -1, -4, 6, -3, -2, 0, -2, 1, 2, -1, -1, -3, -5, -3, 0, -1, 0, 1, 0, 0, -1, -6, 0, }, /* K */
{ -2, -2, -5, -4, 0, -5, -4, 1, -3, 5, 2, -4, -4, -3, -3, -3, -2, 0, -3, -2, 0, -5, 0, -4, 0, 0, -2, -6, 0, }, /* L */
{ -2, -2, -4, -3, -1, -4, -3, 1, -2, 2, 7, -3, -3, 0, -2, -2, -1, 0, -2, -2, 0, -4, 0, -2, 0, 0, -1, -6, 0, }, /* M */
{ -2, -4, 1, -1, -4, -1, 0, -4, 0, -4, -3, 7, -3, 0, -1, 0, 0, -4, -5, -3, 0, 4, 0, -1, 0, 0, -2, -6, 0, }, /* N */
{ -1, -4, -3, -2, -4, -3, -3, -4, -2, -4, -3, -3, 8, -2, -3, -2, -2, -3, -5, -4, 0, -3, 0, -2, 0, 0, -2, -6, 0, }, /* P */
{ -1, -4, -1, 2, -4, -3, 1, -4, 1, -3, 0, 0, -2, 7, 1, -1, -1, -3, -3, -3, 0, -1, 0, 4, 0, 0, -1, -6, 0, }, /* Q */
{ -2, -5, -3, -1, -4, -3, 0, -4, 2, -3, -2, -1, -3, 1, 6, -1, -2, -3, -4, -3, 0, -2, 0, 0, 0, 0, -2, -6, 0, }, /* R */
{ 1, -2, -1, -1, -3, -1, -2, -3, -1, -3, -2, 0, -2, -1, -1, 5, 1, -2, -4, -3, 0, 0, 0, -1, 0, 0, -1, -6, 0, }, /* S */
{ 0, -2, -2, -1, -3, -3, -2, -1, -1, -2, -1, 0, -2, -1, -2, 1, 6, -1, -4, -2, 0, -1, 0, -1, 0, 0, -1, -6, 0, }, /* T */
{ -1, -2, -5, -3, -2, -5, -4, 3, -3, 0, 0, -4, -3, -3, -3, -2, -1, 5, -3, -3, 0, -4, 0, -3, 0, 0, -2, -6, 0, }, /* V */
{ -4, -4, -6, -5, 0, -4, -3, -4, -5, -3, -2, -5, -5, -3, -4, -4, -4, -3, 11, 2, 0, -6, 0, -4, 0, 0, -3, -6, 0, }, /* W */
{ -3, -4, -4, -4, 3, -5, 1, -2, -3, -2, -2, -3, -4, -3, -3, -3, -2, -3, 2, 8, 0, -4, 0, -3, 0, 0, -2, -6, 0, }, /* Y */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* - */
{ -2, -4, 4, 0, -4, -2, -1, -5, -1, -5, -4, 4, -3, -1, -2, 0, -1, -4, -6, -4, 0, 4, 0, 0, 0, 0, -2, -6, 0, }, /* B */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* J */
{ -1, -5, 0, 4, -4, -3, 0, -4, 1, -4, -2, -1, -2, 4, 0, -1, -1, -3, -4, -3, 0, 0, 0, 4, 0, 0, -1, -6, 0, }, /* Z */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* O */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* U */
{ -1, -3, -2, -2, -2, -2, -2, -2, -1, -2, -1, -2, -2, -1, -2, -1, -1, -2, -3, -2, 0, -2, 0, -1, 0, 0, -2, -6, 0, }, /* X */
{ -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, 0, -6, 0, -6, 0, 0, -6, 1, 0, }, /* * */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /* ~ */
}},
};
#define eslNTDIM 18
struct esl_scorematrix_nt_preload_s {
char *name;
int matrix[eslNTDIM][eslNTDIM];
};
/* "DNA1" matrix
*
* Travis Wheeler created the "DNA1" custom matrix for nhmmer. It's
* derived from the DNA prior (see <p7_prior_CreateNucleic()>), by
* computing mean posterior joint probabilities p_ij for a single
* observed count of each residue, assuming uniform background, and
* symmetricizing the result by taking means; then calling
* <esl_scorematrix_SetFromProbs()> with lambda = 0.02.
*
* The p_ij matrix was:
* A C G T
* 0.143 0.033 0.037 0.037 A
* 0.033 0.136 0.029 0.044 C
* 0.037 0.029 0.157 0.034 G
* 0.037 0.044 0.034 0.136 T
*
* Travis estimated the DNA prior from a subset of Rfam 10.0 seed
* alignments, based on a procedure from Eric Nawrocki: remove
* columns with >50% gaps, collect weighted counts, and estimate
* a four-component Dirichlet mixture.
*
* [xref email from Travis 8/21/2017]
*
*/
static const struct esl_scorematrix_nt_preload_s ESL_SCOREMATRIX_NT_PRELOADS[] = {
{ "DNA1", {
/* A C G T - R Y M K S W H B V D N * ~ */
{ 41, -32, -26, -26, 0, 18, -29, 17, -26, -29, 18, 6, -28, 6, 7, 0, -38, 0, }, /*A*/
{ -32, 39, -38, -17, 0, -35, 18, 15, -26, 14, -24, 6, 6, 3, -28, -1, -38, 0, }, /*C*/
{ -26, -38, 46, -31, 0, 22, -34, -32, 21, 20, -29, -32, 8, 9, 10, 1, -38, 0, }, /*G*/
{ -26, -17, -31, 39, 0, -28, 18, -21, 15, -23, 16, 7, 7, -24, 5, 0, -38, 0, }, /*T*/
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /*-*/
{ 18, -35, 22, -28, 0, 20, -32, -2, 3, 1, 0, -9, -7, 7, 8, 1, -38, 0, }, /*R*/
{ -29, 18, -34, 18, 0, -32, 18, 0, -1, -1, 0, 7, 6, -9, -9, -1, -38, 0, }, /*Y*/
{ 17, 15, -32, -21, 0, -2, 0, 16, -26, -3, 1, 6, -8, 4, -7, -1, -38, 0, }, /*M*/
{ -26, -26, 21, 15, 0, 3, -1, -26, 18, 3, -1, -8, 7, -5, 7, 1, -38, 0, }, /*K*/
{ -29, 14, 20, -23, 0, 1, -1, -3, 3, 17, -26, -9, 7, 6, -6, 0, -38, 0, }, /*S*/
{ 18, -24, -29, 16, 0, 0, 0, 1, -1, -26, 17, 7, -8, -7, 6, 0, -38, 0, }, /*W*/
{ 6, 6, -32, 7, 0, -9, 7, 6, -8, -9, 7, 7, -3, -3, -3, 0, -38, 0, }, /*H*/
{ -28, 6, 8, 7, 0, -7, 6, -8, 7, 7, -8, -3, 7, -2, -2, 0, -38, 0, }, /*B*/
{ 6, 3, 9, -24, 0, 7, -9, 4, -5, 6, -7, -3, -2, 6, -1, 0, -38, 0, }, /*V*/
{ 7, -28, 10, 5, 0, 8, -9, -7, 7, -6, 6, -3, -2, -1, 7, 0, -38, 0, }, /*D*/
{ 0, -1, 1, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /*N*/
{ -38, -38, -38, -38, 0, -38, -38, -38, -38, -38, -38, -38, -38, -38, -38, 0, -38, 0, }, /***/
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, /*~*/
}},
};
/* Function: esl_scorematrix_Set()
* Synopsis: Set one of several standard matrices.
*
* Purpose: Set the allocated score matrix <S> to standard score
* matrix <name>, where <name> is the name of one of
* several matrices built-in to Easel. For example,
* <esl_scorematrix_Set("BLOSUM62", S)>.
*
* The alphabet for <S> (<S->abc_r>) must be set already.
*
* Built-in amino acid score matrices in Easel include
* BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM90, PAM30,
* PAM70, PAM120, and PAM240.
*
* Returns: <eslOK> on success, and the scores in <S> are set.
*
* <eslENOTFOUND> if <name> is not available as a built-in matrix
* for the alphabet that's set in <S>.
*
* Throws: <eslEMEM> on allocation error.
*/
int
esl_scorematrix_Set(const char *name, ESL_SCOREMATRIX *S)
{
int which;
int x, y;
if (S->abc_r->type == eslAMINO)
{
int nmat = sizeof(ESL_SCOREMATRIX_AA_PRELOADS) / sizeof(struct esl_scorematrix_aa_preload_s);
for (which = 0; which < nmat; which++)
if (strcmp(ESL_SCOREMATRIX_AA_PRELOADS[which].name, name) == 0) break;
if (which >= nmat) return eslENOTFOUND;
ESL_DASSERT1(( S->Kp >= 24 )); // strcpy below is safe. The assertion tries to convince static analyzer of that.
strcpy(S->outorder, "ARNDCQEGHILKMFPSTWYVBZX*");
/* All standard PAM, BLOSUM matrices have same list of valid
* residues. If that ever changes, make <outorder> a data elem in the
* structures above.
*/
/* Transfer scores from static built-in storage */
for (x = 0; x < S->Kp; x++)
for (y = 0; y < S->Kp; y++)
S->s[x][y] = ESL_SCOREMATRIX_AA_PRELOADS[which].matrix[x][y];
}
else if (S->abc_r->type == eslDNA || S->abc_r->type == eslRNA)
{
int nmat = sizeof(ESL_SCOREMATRIX_NT_PRELOADS) / sizeof(struct esl_scorematrix_nt_preload_s);
for (which = 0; which < nmat; which++)
if (strcmp(ESL_SCOREMATRIX_NT_PRELOADS[which].name, name) == 0) break;
if (which >= nmat) return eslENOTFOUND;
ESL_DASSERT1(( S->Kp >= 15 )); // strcpy below is safe. The assertion tries to convince static analyzer of that.
strcpy(S->outorder, "ACGTRYMKSWHBVDN");
/* Transfer scores from static built-in storage */
for (x = 0; x < S->Kp; x++)
for (y = 0; y < S->Kp; y++)
S->s[x][y] = ESL_SCOREMATRIX_NT_PRELOADS[which].matrix[x][y];
}
else return eslENOTFOUND; /* no DNA matrices are built in yet! */
/* Use <outorder> list to set <isval[x]> */
S->nc = strlen(S->outorder);
for (y = 0; y < S->nc; y++) {
x = esl_abc_DigitizeSymbol(S->abc_r, S->outorder[y]);
S->isval[x] = TRUE;
}
/* Copy the name */
if (esl_strdup(name, -1, &(S->name)) != eslOK) return eslEMEM;
return eslOK;
}
/* Function: esl_scorematrix_SetIdentity()
* Synopsis: Set matrix to +1 match, 0 mismatch.
*
* Purpose: Sets score matrix <S> to be +1 for a match,
* 0 for a mismatch. <S> may be for any alphabet.
*
* Rarely useful in real use, but may be useful to create
* simple examples (including debugging).
*
* Returns: <eslOK> on success, and the scores in <S> are set.
*/
int
esl_scorematrix_SetIdentity(ESL_SCOREMATRIX *S)
{
int a;
int x;
for (a = 0; a < S->abc_r->Kp*S->abc_r->Kp; a++) S->s[0][a] = 0;
for (a = 0; a < S->K; a++) S->s[a][a] = 1;
for (x = 0; x < S->K; x++) S->isval[x] = TRUE;
for (x = S->abc_r->K; x < S->Kp; x++) S->isval[x] = FALSE;
strncpy(S->outorder, S->abc_r->sym, S->K);
S->outorder[S->K] = '\0';
S->nc = S->K;
return eslOK;
}
/*---------------- end, some classic score matrices --------*/
/*****************************************************************
*# 3. Deriving a score matrix probabilistically.
*****************************************************************/
/* Function: esl_scorematrix_SetFromProbs()
* Synopsis: Set matrix from target and background probabilities.
*
* Purpose: Sets the scores in a new score matrix <S> from target joint
* probabilities in <P>, query background probabilities <fi>, and
* target background probabilities <fj>, with scale factor <lambda>:
* $s_{ij} = \frac{1}{\lambda} \frac{p_{ij}}{f_i f_j}$.
*
* Size of everything must match the canonical alphabet
* size in <S>. That is, <S->abc->K> is the canonical
* alphabet size of <S>; <P> must contain $K times K$
* probabilities $P_{ij}$, and <fi>,<fj> must be vectors of
* K probabilities. All probabilities must be nonzero.
*
* Args: S - score matrix to set scores in
* lambda - scale factor
* P - matrix of joint probabilities P_ij (KxK)
* fi - query background probabilities (0..K-1)
* fj - target background probabilities
*
* Returns: <eslOK> on success, and <S> contains the calculated score matrix.
*/
int
esl_scorematrix_SetFromProbs(ESL_SCOREMATRIX *S, double lambda, const ESL_DMATRIX *P, const double *fi, const double *fj)
{
int i,j;
double sc;
for (i = 0; i < S->abc_r->K; i++)
for (j = 0; j < S->abc_r->K; j++)
{
sc = log(P->mx[i][j] / (fi[i] * fj[j])) / lambda;
S->s[i][j] = (int) (sc + (sc>0 ? 0.5 : -0.5)); /* that's rounding to the nearest integer */
}
for (i = 0; i < S->abc_r->K; i++)
S->isval[i] = TRUE;
S->nc = S->abc_r->K;
strncpy(S->outorder, S->abc_r->sym, S->abc_r->K);
S->outorder[S->nc] = '\0';
return eslOK;
}
/* Function: esl_scorematrix_SetWAG()
* Synopsis: Set matrix using the WAG evolutionary model.
*
* Purpose: Parameterize an amino acid score matrix <S> using the WAG
* rate matrix \citep{WhelanGoldman01} as the underlying
* evolutionary model, at a distance of <t>
* substitutions/site, with scale factor <lambda>.
*
* Args: S - score matrix to set parameters in. Must be created for
* an amino acid alphabet.
* lambda - scale factor for scores
* t - distance to exponentiate WAG to, in substitutions/site
*
* Returns: <eslOK> on success, and the 20x20 residue scores in <S> are set.
*
* Throws: <eslEINVAL> if <S> isn't an allocated amino acid score matrix.
* <eslEMEM> on allocation failure.
*/
int
esl_scorematrix_SetWAG(ESL_SCOREMATRIX *S, double lambda, double t)
{
ESL_DMATRIX *Q = NULL;
ESL_DMATRIX *P = NULL;
static double wagpi[20];
int i,j;
int status;
if (S->K != 20) ESL_EXCEPTION(eslEINVAL, "Must be using an amino acid alphabet (K=20) to make WAG-based matrices");
if (( Q = esl_dmatrix_Create(20, 20)) == NULL) { status = eslEMEM; goto ERROR; }
if (( P = esl_dmatrix_Create(20, 20)) == NULL) { status = eslEMEM; goto ERROR; }
if ((status = esl_composition_WAG(wagpi)) != eslOK) goto ERROR;
if ((status = esl_rmx_SetWAG(Q, wagpi)) != eslOK) goto ERROR;
if ((status = esl_dmx_Exp(Q, t, P)) != eslOK) goto ERROR;
for (i = 0; i < 20; i++)
for (j = 0; j < 20; j++)
P->mx[i][j] *= wagpi[i]; /* P_ij = P(j|i) pi_i */
esl_scorematrix_SetFromProbs(S, lambda, P, wagpi, wagpi);
if ((status = esl_strdup("WAG", -1, &(S->name))) != eslOK) goto ERROR;
esl_dmatrix_Destroy(Q);
esl_dmatrix_Destroy(P);
return eslOK;
ERROR:
if (Q != NULL) esl_dmatrix_Destroy(Q);
if (Q != NULL) esl_dmatrix_Destroy(P);
return status;
}
/*--------------- end, deriving score matrices ------------------*/
/*****************************************************************
*# 4. Reading/writing matrices from/to files
*****************************************************************/
/* Function: esl_scorematrix_Read()
* Synopsis: Read a standard matrix input file.
*
* Purpose: Given a pointer <efp> to an open file parser for a file
* containing a score matrix (such as a PAM or BLOSUM
* matrix), parse the file and create a new score matrix
* object. The scores are expected to be for the alphabet
* <abc>.
*
* The score matrix file is in the format that BLAST or
* FASTA use. The first line is a header contains N
* single-letter codes for the residues. Each of N
* subsequent rows optionally contains a residue row label
* (in the same order as the columns), followed by N
* residue scores. (Older matrix files do not contain the
* leading row label; newer ones do.) The residues may
* appear in any order. They must minimally include the
* canonical K residues (K=4 for DNA, K=20 for protein),
* and may also contain none, some, or all degeneracy
* codes. Any other residue code that is not in the Easel
* digital alphabet (including, in particular, the '*' code
* for a stop codon) is ignored by the parser.
*
* Returns: <eslOK> on success, and <ret_S> points to a newly allocated
* score matrix.
*
* Returns <eslEFORMAT> on parsing error; in which case, <ret_S> is
* returned <NULL>, and <efp->errbuf> contains an informative
* error message.
*
* Throws: <eslEMEM> on allocation error.
*/
int
esl_scorematrix_Read(ESL_FILEPARSER *efp, const ESL_ALPHABET *abc, ESL_SCOREMATRIX **ret_S)
{
int status;
ESL_SCOREMATRIX *S = NULL;
int *map = NULL; /* maps col/row index to digital alphabet x */
char *tok;
int toklen;
int c, x;
int row,col;
/* Allocate the matrix
*/
if ((S = esl_scorematrix_Create(abc)) == NULL) { status = eslEMEM; goto ERROR; }
/* Make sure we've got the comment character set properly in the fileparser.
* Score matrices use #.
*/
esl_fileparser_SetCommentChar(efp, '#');
/* Look for the first non-blank, non-comment line in the file. That line
* gives us the single-letter codes in the order that the file's using.
*/
if ((status = esl_fileparser_NextLine(efp)) != eslOK) ESL_XFAIL(eslEFORMAT, efp->errbuf, "file appears to be empty");
/* Read the characters: count them and store them in order in label[0..nc-1].
* nc cannot exceed Kp+1 in our expected alphabet (+1, for the stop character *)
*/
S->nc = 0;
while ((status = esl_fileparser_GetTokenOnLine(efp, &tok, &toklen)) == eslOK)
{
if (S->nc >= abc->Kp) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Header contains more residues than expected for alphabet");
if (toklen != 1) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Header can only contain single-char labels; %s is invalid", tok);
S->outorder[S->nc++] = *tok;
}
if (status != eslEOL) ESL_XFAIL(status, efp->errbuf, "Unexpected failure of esl_fileparser_GetTokenOnLine()");
S->outorder[S->nc] = '\0'; /* NUL terminate */
/* Verify that these labels for the score matrix seem plausible, given our alphabet.
* This sets S->isval array: which residues we have scores for.
* It also sets the map[] array, which maps coord in label[] to x in alphabet.
*/
ESL_ALLOC(map, sizeof(int) * S->nc);
for (c = 0; c < S->nc; c++)
{
if (esl_abc_CIsValid(abc, S->outorder[c]))
{
x = esl_abc_DigitizeSymbol(abc, S->outorder[c]);
map[c] = x;
S->isval[x] = TRUE;
}
else
ESL_XFAIL(eslEFORMAT, efp->errbuf, "Don't know how to deal with residue %c in matrix file", S->outorder[c]);
}
for (x = 0; x < abc->K; x++)
if (! S->isval[x]) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Expected to see a column for residue %c", abc->sym[x]);
/* Read nc rows, one at a time;
* on each row, read nc+1 or nc tokens, of which nc are scores (may lead with a label or not)
*/
for (row = 0; row < S->nc; row++)
{
if ((status = esl_fileparser_NextLine(efp)) != eslOK) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Unexpectedly ran out of lines in file");
for (col = 0; col < S->nc; col++)
{
if ((status = esl_fileparser_GetTokenOnLine(efp, &tok, &toklen)) != eslOK) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Unexpectedly ran out of fields on line");
if (col == 0 && *tok == S->outorder[row]) { col--; continue; } /* skip leading label */
S->s[map[row]][map[col]] = atoi(tok);
}
if ((status = esl_fileparser_GetTokenOnLine(efp, &tok, &toklen)) != eslEOL) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Too many fields on line");
}
if ((status = esl_fileparser_NextLine(efp)) != eslEOF) ESL_XFAIL(eslEFORMAT, efp->errbuf, "Too many lines in file. (Make sure it's square & symmetric. E.g. use NUC.4.4 not NUC.4.2)");
/* Annotate the score matrix */
if ((status = esl_strdup (efp->filename, -1, &(S->path))) != eslOK) goto ERROR;
if ((status = esl_FileTail(efp->filename, FALSE, &(S->name))) != eslOK) goto ERROR;
free(map);
*ret_S = S;
return eslOK;
ERROR:
esl_scorematrix_Destroy(S);
if (map != NULL) free(map);
*ret_S = NULL;
return status;
}
/* Function: esl_scorematrix_Write()
* Synopsis: Write a BLAST-compatible score matrix file.
*
* Purpose: Writes a score matrix <S> to an open stream <fp>, in
* format compatible with BLAST, FASTA, and other common
* sequence alignment software.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error, such as filled disk.
*/
int
esl_scorematrix_Write(FILE *fp, const ESL_SCOREMATRIX *S)
{
int a,b;
int x,y;
int nc = S->nc;
/* The header line, with column labels for residues */
if (fprintf(fp, " ") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "score matrix write failed");
for (a = 0; a < nc; a++)
{ if (fprintf(fp, " %c ", S->outorder[a]) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "score matrix write failed"); }
if (fprintf(fp, "\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "score matrix write failed");
/* The data */
for (a = 0; a < nc; a++)
{
if (fprintf(fp, "%c ", S->outorder[a]) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "score matrix write failed");
for (b = 0; b < nc; b++)
{
x = esl_abc_DigitizeSymbol(S->abc_r, S->outorder[a]);
y = esl_abc_DigitizeSymbol(S->abc_r, S->outorder[b]);
if (fprintf(fp, "%3d ", S->s[x][y]) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "score matrix write failed");
}
if (fprintf(fp, "\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "score matrix write failed");
}
return eslOK;
}
/*-------------- end, reading/writing matrices ------------------*/
/*****************************************************************
*# 5. Implicit probabilistic basis, I: given bg.
*****************************************************************/
static int set_degenerate_probs(const ESL_ALPHABET *abc, ESL_DMATRIX *P, double *fi, double *fj);
struct lambda_params {
const double *fi;
const double *fj;
const ESL_SCOREMATRIX *S;
};
static int
lambda_fdf(double lambda, void *params, double *ret_fx, double *ret_dfx)
{
struct lambda_params *p = (struct lambda_params *) params;
int i,j;
double tmp;
*ret_fx = 0.;
*ret_dfx = 0.;
for (i = 0; i < p->S->K; i++)
for (j = 0; j < p->S->K; j++)
{
tmp = p->fi[i] * p->fj[j] * exp(lambda * (double) p->S->s[i][j]);
*ret_fx += tmp;
*ret_dfx += tmp * (double) p->S->s[i][j];
}
*ret_fx -= 1.0;
return eslOK;
}
/* Function: esl_scorematrix_ProbifyGivenBG()
* Synopsis: Obtain $P_{ij}$ for matrix with known $\lambda$ and background.
*
* Purpose: Given a score matrix <S> and known query and target
* background frequencies <fi> and <fj> respectively, calculate scale
* <lambda> and implicit target probabilities \citep{Altschul01}.
* Optionally returns either (or both) in <opt_lambda> and <opt_P>.
*
* The implicit target probabilities are returned in a
* newly allocated $Kp \times Kp$ <ESL_DMATRIX>, over both
* the canonical (typically K=4 or K=20) residues in the
* residue alphabet, and the degenerate residue codes.
* Values involving degenerate residue codes are marginal
* probabilities (i.e. summed over the degeneracy).
* Only actual residue degeneracy can have nonzero values
* for <p_ij>; by convention, all values involving the
* special codes for gap, nonresidue, and missing data
* (<K>, <Kp-2>, <Kp-1>) are 0.
*
* If the caller wishes to convert this joint probability
* matrix to conditionals, it can take advantage of the
* fact that the degenerate probability <P(X,j)> is our
* marginalized <pj>, and <P(i,X)> is <pi>.
* i.e., <P(j|i) = P(i,j) / P(i) = P(i,j) / P(X,j)>.
* Those X values are <P->mx[i][esl_abc_GetUnknown(abc)]>,
* <P->mx[esl_abc_GetUnknown(abc)][j]>; equivalently, just use
* code <Kp-3> for X.
*
* By convention, i is always the query sequence, and j is
* always the target. We do not assume symmetry in the
* scoring system, though that is usually the case.
*
* Args: S - score matrix
* fi - background frequencies for query sequence i
* fj - background frequencies for target sequence j
* opt_lambda - optRETURN: calculated $\lambda$ parameter
* opt_P - optRETURN: implicit target probabilities $p_{ij}$; a KxK DMATRIX.
*
* Returns: <eslOK> on success, <*ret_lambda> contains the
* calculated $\lambda$ parameter, and <*ret_P> points to
* the target probability matrix (which is allocated here,
* and must be free'd by caller with <esl_dmatrix_Destroy(*ret_P)>.
*
* Throws: <eslEMEM> on allocation error;
* <eslEINVAL> if matrix is invalid and has no solution for $\lambda$;
* <eslENOHALT> if the solver fails to find $\lambda$.
* In these cases, <*ret_lambda> is 0.0, and <*ret_P> is <NULL>.
*/
int
esl_scorematrix_ProbifyGivenBG(const ESL_SCOREMATRIX *S, const double *fi, const double *fj,
double *opt_lambda, ESL_DMATRIX **opt_P)
{
ESL_ROOTFINDER *R = NULL;
ESL_DMATRIX *P = NULL;
struct lambda_params p;
double lambda_guess;
double lambda;
int i,j;
double fx, dfx;
int status;
/* First, solve for lambda by rootfinding. */
/* Set up the data passed to the lambda_fdf function. */
p.fi = fi;
p.fj = fj;
p.S = S;
/* Bracket the root.
* It's important that we come at the root from the far side, where
* f(lambda) is positive; else we may identify the root we don't want
* at lambda=0.
*/
fx = -1.0;
lambda_guess = 1. / (double) esl_scorematrix_Max(S);
for (; lambda_guess < 50.; lambda_guess *= 2.0) {
lambda_fdf(lambda_guess, &p, &fx, &dfx);
if (fx > 0) break;
}
if (fx <= 0) ESL_XEXCEPTION(eslEINVAL, "Failed to bracket root for solving lambda");
/* Create a solver and find lambda by Newton/Raphson */
if (( R = esl_rootfinder_CreateFDF(lambda_fdf, &p) ) == NULL) { status = eslEMEM; goto ERROR; }
if (( status = esl_root_NewtonRaphson(R, lambda_guess, &lambda)) != eslOK) goto ERROR;
/* Now, given solution for lambda, calculate P */
if (opt_P != NULL)
{
if ((P = esl_dmatrix_Create(S->Kp, S->Kp)) == NULL) { status = eslEMEM; goto ERROR; }
for (i = 0; i < S->K; i++)
for (j = 0; j < S->K; j++)
P->mx[i][j] = fi[i] * fj[j] * exp(lambda * (double) S->s[i][j]);
set_degenerate_probs(S->abc_r, P, NULL, NULL);
}
esl_rootfinder_Destroy(R);
if (opt_lambda) *opt_lambda = lambda;
if (opt_P) *opt_P = P;
return eslOK;
ERROR:
if (R) esl_rootfinder_Destroy(R);
if (opt_lambda) *opt_lambda = 0.;
if (opt_P) *opt_P = NULL;
return status;
}
/* set_degenerate_probs()
*
* Used by both esl_scorematrix_Probify() and
* esl_scorematrix_ProbifyGivenBG() to set degenerate residue
* probabilities once probs for canonical residues are known.
*
* Input: P->mx[i][j] are joint probabilities p_ij for the canonical
* alphabet 0..abc->K-1, but P matrix is allocated for Kp X Kp.
*
* Calculate marginal sums for all i,j pairs involving degeneracy
* codes. Fill in [i][j'=K..Kp-1], [i'=K..Kp-1][j], and
* [i'=K..Kp-1][j'=K..Kp-1] for degeneracies i',j'. Any p_ij involving
* a gap (K), nonresidue (Kp-2), or missing data (Kp-1) character is
* set to 0.0 by convention.
*
* Don't assume symmetry.
*
* If <fi> or <fj> background probability vectors are non-<NULL>, set
* them too. (Corresponding to the assumption of background =
* marginal probs, rather than background being given.) This takes
* advantage of the fact that P(X,i) is already the marginalized p_i,
* and P(j,X) is p_j.
*/
static int
set_degenerate_probs(const ESL_ALPHABET *abc, ESL_DMATRIX *P, double *fi, double *fj)
{
int i,j; /* indices into canonical codes */
int ip,jp; /* indices into degenerate codes */
/* sum to get [i=0..K] canonicals to [jp=K+1..Kp-3] degeneracies;
* and [jp=K,Kp-2,Kp-1] set to 0.0
*/
for (i = 0; i < abc->K; i++)
{
P->mx[i][abc->K] = 0.0;
for (jp = abc->K+1; jp < abc->Kp-2; jp++)
{
P->mx[i][jp] = 0.0;
for (j = 0; j < abc->K; j++)
if (abc->degen[jp][j]) P->mx[i][jp] += P->mx[i][j];
}
P->mx[i][abc->Kp-2] = 0.0;
P->mx[i][abc->Kp-1] = 0.0;
}
esl_vec_DSet(P->mx[abc->K], abc->Kp, 0.0); /* gap row: all 0.0 by convention */
/* [ip][all] */
for (ip = abc->K+1; ip < abc->Kp-2; ip++)
{
/* [ip][j]: degenerate i, canonical j */
for (j = 0; j < abc->K; j++)
{
P->mx[ip][j] = 0.0;
for (i = 0; i < abc->K; i++)
if (abc->degen[ip][i]) P->mx[ip][j] += P->mx[i][j];
}
P->mx[ip][abc->K] = 0.0;
/* [ip][jp]: both positions degenerate */
for (jp = abc->K+1; jp < abc->Kp-2; jp++)
{
P->mx[ip][jp] = 0.0;
for (j = 0; j < abc->K; j++)
if (abc->degen[jp][j]) P->mx[ip][jp] += P->mx[ip][j];
}
P->mx[ip][abc->Kp-2] = 0.0;
P->mx[ip][abc->Kp-1] = 0.0;
}
esl_vec_DSet(P->mx[abc->Kp-2], abc->Kp, 0.0); /* nonresidue data * row, all 0.0 */
esl_vec_DSet(P->mx[abc->Kp-1], abc->Kp, 0.0); /* missing data ~ row, all 0.0 */
if (fi != NULL) { /* fi[i'] = p(i',X) */
fi[abc->K] = 0.0;
for (ip = abc->K+1; ip < abc->Kp-2; ip++) fi[ip] = P->mx[ip][abc->Kp-3];
fi[abc->Kp-2] = 0.0;
fi[abc->Kp-1] = 0.0;
}
if (fj != NULL) { /* fj[j'] = p(X,j')*/
fj[abc->K] = 0.0;
for (jp = abc->K+1; jp < abc->Kp-2; jp++) fj[jp] = P->mx[abc->Kp-3][jp];
fj[abc->Kp-2] = 0.0;
fj[abc->Kp-1] = 0.0;
}
return eslOK;
}
/*------------- end, implicit prob basis, bg known --------------*/
/*****************************************************************
*# 6. Implicit probabilistic basis, II: bg unknown
*****************************************************************/
/* This section implements one of the key ideas in Yu and Altschul,
* PNAS 100:15688, 2003 [YuAltschul03], and Yu and Altschul,
* Bioinformatics 21:902-911, 2005 [YuAltschul05]:
*
* Given a valid score matrix, calculate its probabilistic
* basis (P_ij, f_i, f_j, and lambda), on the assumption that
* the background probabilities are the marginals of P_ij.
*
* However, this procedure appears to be unreliable.
* There are often numerous invalid solutions with negative
* probabilities, and the Yu/Altschul Y function (that we've solving
* for its root) is often discontinuous. Although Yu and Altschul say
* they can just keep searching for solutions until a valid one is
* found, and "this procedure presents no difficulties in practice", I
* don't see how.
*
* For example, run the procedure on PAM190 and PAM200. For PAM190
* you will obtain a valid solution with lambda = 0.2301. For PAM200
* you will obtain an *invalid* solution with lambda = 0.2321, and
* negative probabilities f_{ENT} (and all p_ij involving ENT and
* the other 17 aa). There is a discontinuity in the function, but
* it's not near these lambdas, it's at about lambda=0.040, so it's
* not that we fell into a discontinuity: the bisection procedure on
* lambda is working smoothly. And if you calculate a score matrix again
* from the invalid PAM200 solution, you get PAM200 back, so it's not
* that there's an obvious bug -- we do obtain a "solution" to PAM200,
* just not one with positive probabilities. It's not obvious how
* we could find a different solution to PAM200 than the invalid one!
*
* What we're going to do [xref J7/126, Apr 2011] is to deprecate
* the Yu/Altschul procedure altogether.
*/
struct yualtschul_params {
ESL_DMATRIX *S; /* pointer to the KxK score matrix w/ values cast to doubles */
ESL_DMATRIX *M; /* not a param per se: alloc'ed storage for M matrix provided to the objective function */
ESL_DMATRIX *Y; /* likewise, alloc'ed storage for Y (M^-1) matrix provided to obj function */
};
/* yualtschul_scorematrix_validate
* See start of section 3, p. 903, YuAltschul05
* (Implementation could be more efficient here; don't really have
* to sweep the entire matrix twice to do this.)
*/
static int
yualtschul_scorematrix_validate(const ESL_SCOREMATRIX *S)
{
int i, j;
int has_neg, has_pos;
/* each row must have at least one positive and one negative score */
for (i = 0; i < S->K; i++)
{
has_neg = has_pos = FALSE;
for (j = 0; j < S->K; j++)
{
if (S->s[i][j] > 0) has_pos = TRUE;
if (S->s[i][j] < 0) has_neg = TRUE;
}
if (! has_pos || ! has_neg) return eslFAIL;
}
/* ditto for columns */
for (j = 0; j < S->K; j++)
{
has_neg = has_pos = FALSE;
for (i = 0; i < S->K; i++)
{
if (S->s[i][j] > 0) has_pos = TRUE;
if (S->s[i][j] < 0) has_neg = TRUE;
}
if (! has_pos || ! has_neg) return eslFAIL;
}
return eslOK;
}
/* upper bound bracketing lambda solution: eqn (12) in [YuAltschul05] */
static double
yualtschul_upper_bound(const ESL_DMATRIX *Sd)
{
int i;
double minimax;
double maxlambda;
/* minimax = c in YuAltschul05 p.903 = smallest of the max scores in each row/col */
minimax = esl_vec_DMax(Sd->mx[0], Sd->n);
for (i = 1; i < Sd->n; i++)
minimax = ESL_MIN(minimax, esl_vec_DMax(Sd->mx[i], Sd->n));
maxlambda = log((double) Sd->n) / minimax; /* eqn (12), YuAltschul05 */
return maxlambda;
}
static int
yualtschul_solution_validate(const ESL_DMATRIX *P, const double *fi, const double *fj)
{
if ( esl_dmx_Min(P) < 0.0) return eslFAIL;
if ( esl_vec_DMin(fi, P->n) < 0.0) return eslFAIL;
if ( esl_vec_DMin(fj, P->n) < 0.0) return eslFAIL;
return eslOK;
}
/* yualtschul_func()
*
* This is the objective function we try to find a root of.
* Its prototype is dictated by the esl_rootfinder API.
*/
static int
yualtschul_func(double lambda, void *params, double *ret_fx)
{
int status;
struct yualtschul_params *p = (struct yualtschul_params *) params;
ESL_DMATRIX *S = p->S;
ESL_DMATRIX *M = p->M;
ESL_DMATRIX *Y = p->Y;
int i,j;
/* the M matrix has entries M_ij = e^{lambda * s_ij} */
for (i = 0; i < S->n; i++)
for (j = 0; j < S->n; j++)
M->mx[i][j] = exp(lambda * S->mx[i][j]);
/* the Y matrix is the inverse of M */
if ((status = esl_dmx_Invert(M, Y)) != eslOK) goto ERROR;
/* We're trying to find the root of \sum_ij Y_ij - 1 = 0 */
*ret_fx = esl_dmx_Sum(Y) - 1.;
return eslOK;
ERROR:
*ret_fx = 0.;
return status;
}
/* yualtschul_engine()
*
* This function backcalculates the probabilistic basis for a score
* matrix S, when S is a double-precision matrix. Providing this
* as a separate "engine" and writing esl_scorematrix_Probify()
* as a wrapper around it allows us to separately test inaccuracy
* due to numerical performance of our linear algebra, versus
* inaccuracy due to integer roundoff in integer scoring matrices.
*
* It is not uncommon for this to fail when S is derived from
* integer scores. Because the scores may have been provided by the
* user, and this may be our first chance to detect the "user error"
* of an invalid matrix, this engine returns <eslEINVAL> as a normal error
* if it can't reach a valid solution.
*/
static int
yualtschul_engine(ESL_DMATRIX *S, ESL_DMATRIX *P, double *fi, double *fj, double *ret_lambda)
{
int status;
ESL_ROOTFINDER *R = NULL;
struct yualtschul_params p;
double lambda;
double xl, xr;
double fx = -1.0;
int i,j;
/* Set up a bisection method to find lambda */
p.S = S;
p.M = p.Y = NULL;
if ((p.M = esl_dmatrix_Create(S->n, S->n)) == NULL) { status = eslEMEM; goto ERROR; }
if ((p.Y = esl_dmatrix_Create(S->n, S->n)) == NULL) { status = eslEMEM; goto ERROR; }
if ((R = esl_rootfinder_Create(yualtschul_func, &p)) == NULL) { status = eslEMEM; goto ERROR; }
/* Identify suitable brackets on lambda. */
xr = yualtschul_upper_bound(S);
for (xl = xr; xl > 1e-10; xl /= 1.6) {
if ((status = yualtschul_func(xl, &p, &fx)) != eslOK) goto ERROR;
if (fx > 0.) break;
}
if (fx <= 0.) { status = eslEINVAL; goto ERROR; }
for (; xr < 100.; xr *= 1.6) {
if ((status = yualtschul_func(xr, &p, &fx)) != eslOK) goto ERROR;
if (fx < 0.) break;
}
if (fx >= 0.) { status = eslEINVAL; goto ERROR; }
/* Find lambda by bisection */
if (( status = esl_root_Bisection(R, xl, xr, &lambda)) != eslOK) goto ERROR;
/* Find fi, fj from Y: fi are column sums, fj are row sums */
for (i = 0; i < S->n; i++) {
fi[i] = 0.;
for (j = 0; j < S->n; j++) fi[i] += p.Y->mx[j][i];
}
for (j = 0; j < S->n; j++) {
fj[j] = 0.;
for (i = 0; i < S->n; i++) fj[j] += p.Y->mx[j][i];
}
/* Find p_ij */
for (i = 0; i < S->n; i++)
for (j = 0; j < S->n; j++)
P->mx[i][j] = fi[i] * fj[j] * p.M->mx[i][j];
*ret_lambda = lambda;
esl_dmatrix_Destroy(p.M);
esl_dmatrix_Destroy(p.Y);
esl_rootfinder_Destroy(R);
return eslOK;
ERROR:
if (p.M) esl_dmatrix_Destroy(p.M);
if (p.Y) esl_dmatrix_Destroy(p.Y);
if (R) esl_rootfinder_Destroy(R);
return status;
}
/* Function: esl_scorematrix_Probify()
* Synopsis: Calculate the probabilistic basis of a score matrix.
*
* Purpose: Reverse engineering of a score matrix: given a "valid"
* substitution matrix <S>, obtain implied joint
* probabilities $p_{ij}$, query composition $f_i$, target
* composition $f_j$, and scale $\lambda$, by assuming that
* $f_i$ and $f_j$ are the appropriate marginals of $p_{ij}$.
* Optionally return any or all of these solutions in
* <*opt_P>, <*opt_fi>, <*opt_fj>, and <*opt_lambda>.
*
* The calculation is run only on canonical residue scores
* $0..K-1$ in S, to calculate joint probabilities for all
* canonical residues. Joint and background probabilities
* involving degenerate residues are then calculated by
* appropriate marginalizations. See notes on
* <esl_scorematrix_ProbifyGivenBG()> about how probabilities
* involving degeneracy codes are calculated.
*
* This implements an algorithm described in
* \citep{YuAltschul03} and \citep{YuAltschul05}.
*
* Although this procedure may succeed in many cases,
* it is unreliable and should be used with great caution.
* Yu and Altschul note that it can find invalid solutions
* (negative probabilities), and although they say that one
* can keep searching until a valid solution is found,
* one can produce examples where this does not seem to be
* the case. The caller MUST check return status, and
* MUST expect <eslENORESULT>.
*
* Args: S - score matrix
* opt_P - optRETURN: Kp X Kp matrix of implied target probs $p_{ij}$
* opt_fi - optRETURN: vector of Kp $f_i$ background probs, 0..Kp-1
* opt_fj - optRETURN: vector of Kp $f_j$ background probs, 0..Kp-1
* opt_lambda - optRETURN: calculated $\lambda$ parameter
*
* Returns: <eslOK> on success, and <opt_P>, <opt_fi>, <opt_fj>, and <opt_lambda>
* point to the results (for any of these that were passed non-<NULL>).
*
* <opt_P>, <opt_fi>, and <opt_fj>, if requested, are new
* allocations, and must be freed by the caller.
*
* Returns <eslENORESULT> if the algorithm fails to determine a valid solution,
* but the solution is still returned (and caller needs to free).
*
* Returns <eslEINVAL> if input score matrix isn't valid (sensu YuAltschul05);
* now <opt_P>, <opt_fi>, <opt_fj> are returned NULL and <opt_lambda> is returned
* as 0.
*
* Throws: <eslEMEM> on allocation failure.
*
* Xref: SRE:J1/35; SRE:J7/126.
*/
int
esl_scorematrix_Probify(const ESL_SCOREMATRIX *S, ESL_DMATRIX **opt_P, double **opt_fi, double **opt_fj, double *opt_lambda)
{
int status;
ESL_DMATRIX *Sd = NULL;
ESL_DMATRIX *P = NULL;
double *fi = NULL;
double *fj = NULL;
double lambda;
int i,j;
/* Check the input matrix for validity */
if ( yualtschul_scorematrix_validate(S) != eslOK) { status = eslEINVAL; goto ERROR; }
if (( Sd = esl_dmatrix_Create(S->K, S->K)) == NULL) {status = eslEMEM; goto ERROR; }
if (( P = esl_dmatrix_Create(S->Kp, S->Kp)) == NULL) {status = eslEMEM; goto ERROR; }
ESL_ALLOC(fi, sizeof(double) * S->Kp);
ESL_ALLOC(fj, sizeof(double) * S->Kp);
/* Construct a double-precision dmatrix from S.
* I've tried integrating over the rounding uncertainty by
* averaging over trials with values jittered by +/- 0.5,
* but it doesn't appear to help.
*/
for (i = 0; i < S->K; i++)
for (j = 0; j < S->K; j++)
Sd->mx[i][j] = (double) S->s[i][j];
/* Reverse engineer the doubles */
if ((status = yualtschul_engine(Sd, P, fi, fj, &lambda)) != eslOK) goto ERROR;
set_degenerate_probs(S->abc_r, P, fi, fj);
/* Done. */
if (yualtschul_solution_validate(P, fi, fj) != eslOK) status = eslENORESULT;
else status = eslOK;
esl_dmatrix_Destroy(Sd);
if (opt_P != NULL) *opt_P = P; else esl_dmatrix_Destroy(P);
if (opt_fi != NULL) *opt_fi = fi; else free(fi);
if (opt_fj != NULL) *opt_fj = fj; else free(fj);
if (opt_lambda != NULL) *opt_lambda = lambda;
return status;
ERROR:
if (Sd != NULL) esl_dmatrix_Destroy(Sd);
if (P != NULL) esl_dmatrix_Destroy(P);
if (fi != NULL) free(fi);
if (fj != NULL) free(fj);
if (opt_P != NULL) *opt_P = NULL;
if (opt_fi != NULL) *opt_fi = NULL;
if (opt_fj != NULL) *opt_fj = NULL;
if (opt_lambda != NULL) *opt_lambda = 0.;
return status;
}
/*---------- end, implicit prob basis, bg unknown ---------------*/
/*****************************************************************
* 7. Experiment driver
*****************************************************************/
#ifdef eslSCOREMATRIX_EXPERIMENT
#include <stdio.h>
#include <stdlib.h>
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_dmatrix.h"
#include "esl_getopts.h"
#include "esl_scorematrix.h"
#include "esl_vectorops.h"
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgrp */
{"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0},
{"-l", eslARG_REAL, "0.3466", NULL, NULL, NULL, NULL, NULL, "set base lambda (units of score mx) to <x>", 0},
{"-s", eslARG_REAL, "1.0", NULL, NULL, NULL, NULL, NULL, "additional scale factor applied to lambda", 0},
{"-t", eslARG_REAL, "1.37", NULL, NULL, NULL, NULL, NULL, "set WAG time (branch length) to <x>", 0},
{"--yfile", eslARG_OUTFILE, NULL, NULL, NULL, NULL, NULL, NULL, "save xy file of Yu/Altschul root eqn to <f>", 0},
{"--mfile", eslARG_OUTFILE, NULL, NULL, NULL, NULL, NULL, NULL, "save WAG score matrix to <f>", 0},
{ 0,0,0,0,0,0,0,0,0,0},
};
static char usage[] = "[-options]";
static char banner[] = "Yu/Altschul experiment driver for scorematrix module";
/* yualtschul_graph_dump()
* Dump an XY plot of (\sum Y -1) vs. lambda for a score matrix.
* X-axis of graph starts at <lambda0>, ends at <lambda1>, stepping by <stepsize>.
*/
static int
yualtschul_graph_dump(FILE *ofp, ESL_SCOREMATRIX *S, double scale, double lambda0, double lambda1, double stepsize)
{
struct yualtschul_params p;
int a,b;
double fx;
double lambda;
/* Set up a bisection method to find lambda */
p.S = esl_dmatrix_Create(S->K, S->K);
p.M = esl_dmatrix_Create(S->K, S->K);
p.Y = esl_dmatrix_Create(S->K, S->K);
for (a = 0; a < S->K; a++)
for (b = 0; b < S->K; b++)
p.S->mx[a][b] = (double) S->s[a][b];
for (lambda = lambda0; lambda <= lambda1; lambda += stepsize)
{
yualtschul_func(lambda/scale, &p, &fx);
fprintf(ofp, "%f %f\n", lambda, fx);
}
fprintf(ofp, "&\n");
fprintf(ofp, "%f 0.0\n", lambda0);
fprintf(ofp, "%f 0.0\n", lambda1);
fprintf(ofp, "&\n");
esl_dmatrix_Destroy(p.S);
esl_dmatrix_Destroy(p.M);
esl_dmatrix_Destroy(p.Y);
return 0;
}
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage);
ESL_ALPHABET *abc = esl_alphabet_Create(eslAMINO); /* protein matrices 20x20 */
ESL_DMATRIX *Q = esl_dmatrix_Create(abc->K, abc->K); /* WAG rate matrix */
ESL_DMATRIX *P0 = esl_dmatrix_Create(abc->K, abc->K); /* p_ij joint probabilities calculated from WAG */
double *wagpi = malloc(sizeof(double) * abc->K);
ESL_SCOREMATRIX *S0 = esl_scorematrix_Create(abc); /* score matrix calculated from WAG p_ij's */
double lambda0 = esl_opt_GetReal(go, "-l");
double t = esl_opt_GetReal(go, "-t");
double scale = esl_opt_GetReal(go, "-s");
char *yfile = esl_opt_GetString(go, "--yfile");
char *mfile = esl_opt_GetString(go, "--mfile");
ESL_DMATRIX *P = NULL; /* p_ij's from Yu/Altschul reverse eng of S0 */
double *fi = NULL;
double *fj = NULL;
double lambda;
double D;
int status;
/* Calculate an integer score matrix from a probabilistic rate matrix (WAG) */
esl_scorematrix_SetWAG(S0, lambda0/scale, t);
esl_composition_WAG(wagpi);
printf("WAG matrix calculated at t=%.3f, lambda=%.4f (/%.1f)\n", t, lambda0, scale);
/* Save the matrix, if asked */
if (mfile)
{
FILE *ofp = NULL;
if ( (ofp = fopen(mfile, "w")) == NULL) esl_fatal("failed to open %s for writing scorematrix", mfile);
ESL_DASSERT1(( S0->Kp >= 20 )); // the strcpy below is fine. The assertion tries to convince static analyzers of that.
strcpy(S0->outorder, "ARNDCQEGHILKMFPSTWYV");
esl_scorematrix_Write(ofp, S0);
fclose(ofp);
}
/* Because of integer roundoff, the actual probability basis is a little different */
esl_scorematrix_ProbifyGivenBG(S0, wagpi, wagpi, &lambda, NULL);
printf("Integer roundoff shifts implicit lambda (given wagpi's) to %.4f (/%.1f)\n", lambda*scale, scale);
printf("Scores in matrix range from %d to %d\n", esl_scorematrix_Min(S0), esl_scorematrix_Max(S0));
esl_scorematrix_RelEntropy(S0, wagpi, wagpi, lambda, &D);
printf("Relative entropy: %.3f bits\n", D);
if (yfile)
{
FILE *ofp = NULL;
if ( (ofp = fopen(yfile, "w")) == NULL) esl_fatal("failed to open XY file %s for writing\n", yfile);
yualtschul_graph_dump(ofp, S0, scale, 0.01, 1.0, 0.0001);
fclose(ofp);
printf("XY plot of Yu/Altschul rootfinding saved to : %s\n", yfile);
}
status = esl_scorematrix_Probify(S0, &P, &fi, &fj, &lambda);
printf("Yu/Altschul reverse engineering gives lambda = %.4f (/%.1f)\n", lambda*scale, scale);
//printf("fi's are: \n"); esl_vec_DDump(stdout, fi, S0->K, abc->sym);
if (status != eslOK) printf("however, the solution is INVALID!\n");
else printf("and the joint and marginals are a valid probabilistic basis.\n");
free(fj);
free(fi);
esl_scorematrix_Destroy(S0);
esl_dmatrix_Destroy(P);
esl_dmatrix_Destroy(P0);
esl_dmatrix_Destroy(Q);
esl_alphabet_Destroy(abc);
esl_getopts_Destroy(go);
return 0;
}
#endif /* eslSCOREMATRIX_EXPERIMENT */
/*------------------ end, experiment driver ---------------------*/
/*****************************************************************
* 8. Utility programs
*****************************************************************/
/* Reformat a score matrix file into Easel internal digital alphabet order, suitable for making
* one of the static data structures in our section of preloaded matrices.
*/
#ifdef eslSCOREMATRIX_UTILITY1
/*
gcc -g -Wall -o utility -I. -L. -DeslSCOREMATRIX_UTILITY1 esl_scorematrix.c -leasel -lm
./utility BLOSUM62
*/
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_scorematrix.h"
#include "esl_fileparser.h"
int
main(int argc, char **argv)
{
char *infile = argv[1];
ESL_ALPHABET *abc;
ESL_FILEPARSER *efp;
ESL_SCOREMATRIX *S;
int x,y;
abc = esl_alphabet_Create(eslAMINO);
if (esl_fileparser_Open(infile, NULL, &efp) != eslOK) esl_fatal("Failed to open %s\n", infile);
if (esl_scorematrix_Read(efp, abc, &S) != eslOK) esl_fatal("parse failed: %s", efp->errbuf);
printf(" /*");
for (y = 0; y < abc->Kp; y++)
printf(" %c ", abc->sym[y]);
printf(" */\n");
for (x = 0; x < abc->Kp; x++) {
printf(" { ");
for (y = 0; y < abc->Kp; y++)
printf("%3d, ", S->s[x][y]);
printf(" }, /* %c */\n", abc->sym[x]);
}
esl_scorematrix_Destroy(S);
esl_fileparser_Close(efp);
esl_alphabet_Destroy(abc);
return eslOK;
}
#endif /*eslSCOREMATRIX_UTILITY1*/
/* Utility 2: joint or conditional probabilities from BLOSUM62 (depending on how compiled)
*/
#ifdef eslSCOREMATRIX_UTILITY2
/*
gcc -g -Wall -o utility2 -I. -L. -DeslSCOREMATRIX_UTILITY2 esl_scorematrix.c -leasel -lm
./utility2
*/
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_dmatrix.h"
#include "esl_scorematrix.h"
int
main(int argc, char **argv)
{
ESL_ALPHABET *abc = esl_alphabet_Create(eslAMINO);
ESL_SCOREMATRIX *S = esl_scorematrix_Create(abc);
ESL_DMATRIX *Q = NULL;
double *fa = NULL;
double *fb = NULL;
double slambda;
int a,b;
esl_scorematrix_Set("BLOSUM62", S);
esl_scorematrix_Probify(S, &Q, &fa, &fb, &slambda);
#if 0
esl_scorematrix_JointToConditionalOnQuery(abc, Q); /* Q->mx[a][b] is now P(b | a) */
#endif
esl_dmatrix_Dump(stdout, Q, abc->sym, abc->sym);
esl_dmatrix_Destroy(Q);
esl_scorematrix_Destroy(S);
esl_alphabet_Destroy(abc);
return eslOK;
}
#endif /*eslSCOREMATRIX_UTILITY2*/
/*****************************************************************
* 9. Unit tests.
*****************************************************************/
#ifdef eslSCOREMATRIX_TESTDRIVE
#include "esl_dirichlet.h"
static void
utest_ReadWrite(ESL_ALPHABET *abc, ESL_SCOREMATRIX *S)
{
char tmpfile[16] = "esltmpXXXXXX";
FILE *fp = NULL;
ESL_SCOREMATRIX *S2 = NULL;
ESL_FILEPARSER *efp = NULL;
if (esl_tmpfile_named(tmpfile, &fp) != eslOK) esl_fatal("failed to open tmp file");
if (esl_scorematrix_Write(fp, S) != eslOK) esl_fatal("failed to write test matrix");
fclose(fp);
if (esl_fileparser_Open(tmpfile, NULL, &efp) != eslOK) esl_fatal("failed to open tmpfile containing BLOSUM62 matrix");
if (esl_scorematrix_Read(efp, abc, &S2) != eslOK) esl_fatal("failed to read tmpfile containing BLOSUM62 matrix");
if (esl_scorematrix_Compare(S, S2) != eslOK) esl_fatal("the two test matrices aren't identical");
remove(tmpfile);
esl_fileparser_Close(efp);
esl_scorematrix_Destroy(S2);
return;
}
static void
utest_ProbifyGivenBG(ESL_SCOREMATRIX *S0, ESL_DMATRIX *P0, double *wagpi, double lambda0)
{
char *msg = "ProbifyGivenBG() unit test failed";
ESL_DMATRIX *P = NULL;
double sum = 0.0;
double lambda;
int a,b;
if (esl_scorematrix_ProbifyGivenBG(S0, wagpi, wagpi, &lambda, &P) != eslOK) esl_fatal(msg);
if (esl_DCompare(lambda0, lambda, 1e-3) != eslOK) esl_fatal("lambda is wrong");
for (a = 0; a < 20; a++) /* you can't just call esl_dmx_Sum(P), because P includes */
for (b = 0; b < 20; b++) /* marginalized degeneracies */
sum += P->mx[a][b];
if (esl_DCompare(sum, 1.0, 1e-9) != eslOK) esl_fatal("P doesn't sum to 1");
for (a = 0; a < 20; a++) /* for the same reason, you can't dmatrix_Compare P and P0 */
for (b = 0; b < 20; b++)
if (esl_DCompare(P0->mx[a][b], P->mx[a][b], 1e-2) != eslOK) esl_fatal("P is wrong");
esl_dmatrix_Destroy(P);
return;
}
/* The scores->pij reverse engineering engine works with scores in doubles,
* so we can separate effects of rounding to integers in standard
* score matrices.
*/
static void
utest_yualtschul(ESL_DMATRIX *P0, double *wagpi)
{
char *msg = "reverse engineering engine test failed";
ESL_DMATRIX *S = NULL; /* original score matrix, in double form, not rounded to ints (calculated from P, fi, fj) */
ESL_DMATRIX *P = NULL; /* backcalculated P_ij joint probabilities */
double *fi = NULL; /* backcalculated f_i query composition */
double *fj = NULL; /* backcalculated f'_j target composition */
double lambda0; /* true lambda */
double lambda; /* backcalculated lambda */
double sum = 0.0;
int i,j;
/* Allocations */
if (( S = esl_dmatrix_Create(20, 20)) == NULL) esl_fatal(msg);
if (( P = esl_dmatrix_Create(20, 20)) == NULL) esl_fatal(msg);
if ((fi = malloc(sizeof(double) * 20)) == NULL) esl_fatal(msg);
if ((fj = malloc(sizeof(double) * 20)) == NULL) esl_fatal(msg);
/* Make a WAG-based score matrix in double-precision, without rounding to integers */
lambda0 = 0.3;
for (i = 0; i < 20; i++)
for (j = 0; j < 20; j++)
S->mx[i][j] = log(P0->mx[i][j] / (wagpi[i] * wagpi[j])) / lambda0;
/* Reverse engineer it in double precision */
if ( yualtschul_engine(S, P, fi, fj, &lambda) != eslOK) esl_fatal("reverse engineering engine failed");
/* Validate the solution (expect more accuracy from this than from integer scores) */
if (esl_DCompare(lambda0, lambda, 1e-4) != eslOK) esl_fatal("failed to get right lambda");
for (i = 0; i < 20; i++) /* you can't just call esl_dmx_Sum(P), because P includes */
for (j = 0; j < 20; j++) /* marginalized degeneracies */
sum += P->mx[i][j];
if (esl_DCompare(sum, 1.0, 1e-6) != eslOK) esl_fatal("reconstructed P doesn't sum to 1");
for (i = 0; i < 20; i++) /* for the same reason, you can't dmatrix_Compare P and P0 */
for (j = 0; j < 20; j++)
if (esl_DCompare(P0->mx[i][j], P->mx[i][j], 1e-2) != eslOK) esl_fatal("failed to recover correct P_ij");
for (i = 0; i < 20; i++)
{
if (esl_DCompare(fi[i], fj[i], 1e-6) != eslOK) esl_fatal("background fi, fj not the same");
if (esl_DCompare(wagpi[i], fi[i], 1e-3) != eslOK) esl_fatal("failed to reconstruct WAG backgrounds");
}
free(fj);
free(fi);
esl_dmatrix_Destroy(S);
esl_dmatrix_Destroy(P);
return;
}
/* utest_Probify()
* This tests Probify on a matrix that was calculated from probabilities in the first
* place. It verifies that the reconstructed Pij matrix matches the original Pij's
* that the score matrix was built from.
*/
static void
utest_Probify(ESL_SCOREMATRIX *S0, ESL_DMATRIX *P0, double *wagpi, double lambda0)
{
ESL_DMATRIX *P = NULL;
double *fi = NULL;
double *fj = NULL;
double lambda; /* reconstructed lambda */
double sum = 0.0;
int i,j;
if (esl_scorematrix_Probify(S0, &P, &fi, &fj, &lambda) != eslOK) esl_fatal("reverse engineering failed");
/* Validate the solution, gingerly (we expect significant error due to integer roundoff) */
if (esl_DCompare(lambda0, lambda, 0.01) != eslOK) esl_fatal("failed to get right lambda");
for (i = 0; i < 20; i++) /* you can't just call esl_dmx_Sum(P), because P includes */
for (j = 0; j < 20; j++) /* marginalized degeneracies */
sum += P->mx[i][j];
if (esl_DCompare(sum, 1.0, 1e-6) != eslOK) esl_fatal("reconstructed P doesn't sum to 1");
for (i = 0; i < 20; i++) /* for the same reason, you can't dmatrix_Compare P and P0 */
for (j = 0; j < 20; j++)
if (esl_DCompare(P0->mx[i][j], P->mx[i][j], 0.1) != eslOK) esl_fatal("failed to recover correct P_ij");
free(fj);
free(fi);
esl_dmatrix_Destroy(P);
return;
}
/* utest_ProbifyBLOSUM()
* This tests Probify on a score matrix where the original Pij's are treated as
* unknown. It verifies that if you create a new score matrix from the reconstructed
* Pij's, you get the original score matrix back. BLOSUM62 makes a good example,
* hence the name.
*/
static void
utest_ProbifyBLOSUM(ESL_SCOREMATRIX *BL62)
{
char *msg = "failure in ProbifyBLOSUM() unit test";
ESL_DMATRIX *P = NULL;
double *fi = NULL;
double *fj = NULL;
double lambda;
ESL_SCOREMATRIX *S2 = NULL;
if (( S2 = esl_scorematrix_Clone(BL62)) == NULL) esl_fatal(msg);
if (esl_scorematrix_Probify(BL62, &P, &fi, &fj, &lambda) != eslOK) esl_fatal(msg);
if (esl_scorematrix_SetFromProbs(S2, lambda, P, fi, fj) != eslOK) esl_fatal(msg);
if (esl_scorematrix_CompareCanon(BL62, S2) != eslOK) esl_fatal(msg);
free(fj);
free(fi);
esl_scorematrix_Destroy(S2);
esl_dmatrix_Destroy(P);
return;
}
#endif /*eslSCOREMATRIX_TESTDRIVE*/
/*****************************************************************
* 10. Test driver.
*****************************************************************/
/*
gcc -g -Wall -I. -L. -o test -DeslSCOREMATRIX_TESTDRIVE esl_scorematrix.c -leasel -lm
./test
*/
#ifdef eslSCOREMATRIX_TESTDRIVE
#include "easel.h"
#include "esl_scorematrix.h"
int
main(int argc, char **argv)
{
ESL_ALPHABET *abc = NULL; /* amino acid alphabet */
ESL_SCOREMATRIX *BL62= NULL; /* BLOSUM62 matrix */
ESL_SCOREMATRIX *S0 = NULL; /* original score matrix (calculated from P, fi, fj) */
ESL_DMATRIX *P0 = NULL; /* original P_ij joint probabilities */
ESL_DMATRIX *Q = NULL; /* WAG rate matrix */
double lambda0; /* true lambda used to construct S */
double t;
int i,j;
static double wagpi[20];
/* Allocations */
if ((abc = esl_alphabet_Create(eslAMINO)) == NULL) esl_fatal("allocation of alphabet failed");
if ((BL62= esl_scorematrix_Create(abc)) == NULL) esl_fatal("allocation of BLOSUM62 failed");
if ((S0 = esl_scorematrix_Create(abc)) == NULL) esl_fatal("allocation of scorematrix failed");
if ((P0 = esl_dmatrix_Create(abc->K, abc->K)) == NULL) esl_fatal("P allocation failed");
if ((Q = esl_dmatrix_Create(abc->K, abc->K)) == NULL) esl_fatal("Q allocation failed");
/* Make a BLOSUM matrix */
if ( esl_scorematrix_Set("BLOSUM62", BL62) != eslOK) esl_fatal("failed to set a BLOSUM matrix");
/* Make a WAG-based score matrix with small lambda. */
lambda0 = 0.00635;
t = 2.0;
esl_scorematrix_SetWAG(S0, lambda0, t);
esl_composition_WAG(wagpi);
/* Redo some calculations to get the known probabilistic basis of that S */
if ( esl_rmx_SetWAG(Q, wagpi) != eslOK) esl_fatal("failed to set WAG");
if ( esl_dmx_Exp(Q, t, P0) != eslOK) esl_fatal("failed to exponentiate WAG");
for (i = 0; i < 20; i++)
for (j = 0; j < 20; j++)
P0->mx[i][j] *= wagpi[i]; /* P_ij = P(j|i) pi_i */
/* The unit test battery
*/
utest_ReadWrite(abc, BL62);
utest_ReadWrite(abc, S0);
utest_ProbifyGivenBG(S0, P0, wagpi, lambda0);
utest_yualtschul(P0, wagpi);
utest_Probify(S0, P0, wagpi, lambda0);
utest_ProbifyBLOSUM(BL62);
esl_dmatrix_Destroy(Q);
esl_dmatrix_Destroy(P0);
esl_scorematrix_Destroy(BL62);
esl_scorematrix_Destroy(S0);
esl_alphabet_Destroy(abc);
return 0;
}
#endif /*eslSCOREMATRIX_TESTDRIVE*/
/*****************************************************************
* 11. Example program
*****************************************************************/
#ifdef eslSCOREMATRIX_EXAMPLE
/*::cexcerpt::scorematrix_example::begin::*/
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_fileparser.h"
#include "esl_getopts.h"
#include "esl_dmatrix.h"
#include "esl_vectorops.h"
#include "esl_scorematrix.h"
static ESL_OPTIONS options[] = {
/* name type default env range toggles reqs incomp help docgroup*/
{ "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 },
{ "--dna", eslARG_NONE, FALSE, NULL, NULL, "--dna,--amino", NULL, NULL, "use DNA alphabet", 0 },
{ "--amino", eslARG_NONE, "TRUE", NULL, NULL, "--dna,--amino", NULL, NULL, "use protein alphabet", 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static char usage[] = "[-options] <mxfile>";
static char banner[] = "example of using easel scorematrix routines";
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 1, argc, argv, banner, usage);
char *scorefile = esl_opt_GetArg(go, 1);
ESL_ALPHABET *abc = NULL;
ESL_FILEPARSER *efp = NULL;
ESL_SCOREMATRIX *S = NULL;
ESL_DMATRIX *P1 = NULL; /* implicit probability basis, bg unknown */
ESL_DMATRIX *P2 = NULL; /* implicit probability basis, bg known */
double *fi = NULL;
double *fj = NULL;
double lambda, D, E;
int vstatus;
if (esl_opt_GetBoolean(go, "--dna")) abc = esl_alphabet_Create(eslDNA);
else if (esl_opt_GetBoolean(go, "--amino")) abc = esl_alphabet_Create(eslAMINO);
/* Input a score matrix from a file. */
if ( esl_fileparser_Open(scorefile, NULL, &efp) != eslOK) esl_fatal("failed to open score file %s", scorefile);
if ( esl_scorematrix_Read(efp, abc, &S) != eslOK) esl_fatal("failed to read matrix from %s:\n %s", scorefile, efp->errbuf);
esl_fileparser_Close(efp);
/* Try to reverse engineer it to get implicit probabilistic model. This may fail! */
vstatus = esl_scorematrix_Probify(S, &P1, &fi, &fj, &lambda);
if (vstatus == eslOK)
{ /* Print some info, and the joint probabilities. */
esl_scorematrix_RelEntropy (S, fi, fj, lambda, &D);
esl_scorematrix_ExpectedScore(S, fi, fj, &E);
printf("By Yu/Altschul (2003,2005) procedure:\n");
printf("Lambda = %.4f\n", lambda);
printf("Relative entropy = %.4f bits\n", D);
printf("Expected score = %.4f bits\n", E * lambda * eslCONST_LOG2R);
printf("p_ij's are:\n"); esl_dmatrix_Dump(stdout, P1, abc->sym, abc->sym);
printf("fi's are:\n"); esl_vec_DDump(stdout, fi, S->K, abc->sym);
printf("fj's are:\n"); esl_vec_DDump(stdout, fj, S->K, abc->sym);
printf("============================================================\n\n");
}
else
{
printf("Yu/Altschul procedure FAILS to find a valid implicit probability basis!\n");
printf("Lambda = %.4f\n", lambda);
printf("p_ij's are:\n"); esl_dmatrix_Dump(stdout, P1, abc->sym, abc->sym);
printf("fi's are:\n"); esl_vec_DDump(stdout, fi, S->K, abc->sym);
printf("fj's are:\n"); esl_vec_DDump(stdout, fj, S->K, abc->sym);
printf("============================================================\n\n");
esl_composition_BL62(fi); esl_composition_BL62(fj);
}
/* Now reverse engineer it again, this time using "known" background probs */
esl_scorematrix_ProbifyGivenBG(S, fi, fj, &lambda, &P2);
esl_scorematrix_RelEntropy (S, fi, fj, lambda, &D);
esl_scorematrix_ExpectedScore(S, fi, fj, &E);
printf("By solving for lambda from given background frequencies:\n");
printf("Lambda = %.4f\n", lambda);
printf("Relative entropy = %.4f bits\n", D);
printf("Expected score = %.4f bits\n", E * lambda * eslCONST_LOG2R);
printf("p_ij's are:\n"); esl_dmatrix_Dump(stdout, P2, abc->sym, abc->sym);
printf("fi's are:\n"); esl_vec_DDump(stdout, fi, S->K, abc->sym);
printf("fj's are:\n"); esl_vec_DDump(stdout, fj, S->K, abc->sym);
printf("============================================================\n\n");
/* Now recalculate a score matrix from the probabilistic basis */
printf("Before:\n");
esl_scorematrix_Write(stdout, S);
printf("After:\n");
esl_scorematrix_SetFromProbs(S, lambda, P2, fi, fj);
esl_scorematrix_Write(stdout, S);
free(fi); free(fj);
esl_dmatrix_Destroy(P1); esl_dmatrix_Destroy(P2);
esl_scorematrix_Destroy(S);
esl_alphabet_Destroy(abc);
esl_getopts_Destroy(go);
return 0;
}
/*::cexcerpt::scorematrix_example::end::*/
#endif /*eslSCOREMATRIX_EXAMPLE*/
|