1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
|
/* Construct a training alignment/test sequences benchmark from an MSA dataset.
*
* Usage:
* create-profmark <basename> <msafile> <seqdb>
* or:
* create-profmark --onlysplit <basename> <msafile>
*
* Contents:
* 1. Command line processing and configuration options
* 2. Splitting MSAs to create train/test sets (of domains)
* 3. Synthesizing positive and negative test sets (of sequences)
* 4. Top-level main()
*
* Outline:
* main
* create_config
* open_iofiles
* [for each MSA:]
* process_msa
* remove_fragments
* train_test_by_iset | train_test_by_cluster
* split_msa_by_iset | split_msa_by_cluster
* filter_msa_by_iset x2 | filter_msa_by_cluster x2
* validate_split
* synthesize_onedom_negatives | synthesize_twodom_negatives
* embed_one | embed_two
* set_random_segment x3 | set_random_segment x5
*/
#include <stdio.h>
#include <string.h>
#include "easel.h"
#include "esl_alphabet.h"
#include "esl_cluster.h"
#include "esl_composition.h"
#include "esl_distance.h"
#include "esl_getopts.h"
#include "esl_iset.h"
#include "esl_lognormal.h"
#include "esl_random.h"
#include "esl_msa.h"
#include "esl_msafile.h"
#include "esl_sq.h"
#include "esl_sqio.h"
#include "esl_vectorops.h"
/*****************************************************************
* 1. Command line processing and configuration options
*****************************************************************/
static char banner[] = "construct a benchmark profile training/test set";
static char usage[] = "[options] <basename> <msafile> <seqdb>\n (with --onlysplit, omit <seqdb>)";
#define pmSPLIT_OPTS "--cobalt,--blue,--cluster,--random" // toggle group of training/testset-separating options
#define pmSHUFFLE_OPTS "--mono,--di,--markov0,--markov1,--reverse" // toggle group of nonhomolog seq shuffling/generating options
typedef enum { pmCLUSTER = 0,
pmCOBALT = 1,
pmBLUE = 2,
pmRANDOM = 3 } PM_SPLIT;
typedef enum { pmMONOSHUFFLE = 0,
pmDISHUFFLE = 1,
pmMARKOV0 = 2,
pmMARKOV1 = 3,
pmREVERSE = 4,
pmIID = 5 } PM_SHUFFLE;
static ESL_OPTIONS options[] = {
/* name type default env range togs reqs incomp help docgroup */
{ "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "help; show brief info on version and usage", 1 },
{ "-1", eslARG_REAL, "0.25", NULL, "0<x<=1.0", NULL, NULL, NULL, "split so no train/test seq pair has > x identity", 1 },
{ "-2", eslARG_REAL, "0.50", NULL, "0<x<=1.0", NULL, NULL, NULL, "filter test seqs so no pair has > x identity", 1 },
{ "-3", eslARG_REAL, "1.0", NULL, "0<x<=1.0", NULL, NULL, NULL, "filter training seqs so no pair has > x identity", 1 },
{ "-N", eslARG_INT, "200000", NULL, "n>=0", NULL, NULL, NULL, "number of negative test seqs", 1 },
{ "-S", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "specify RNG seed (0: use a random seed)", 1 },
/* Options defining other characteristics of the benchmark */
{ "--fragthresh", eslARG_REAL, "0.5", NULL, "0<=x<=1", NULL, NULL, NULL, "exclude sequence fragments with aspan/alen < x", 2 },
{ "--mintrain", eslARG_INT, "10", NULL, "n>0", NULL, NULL, NULL, "minimum number of training domains required per input MSA", 2 },
{ "--mintest", eslARG_INT, "2", NULL, "n>0", NULL, NULL, NULL, "minimum number of test domains required per input MSA", 2 },
{ "--maxtrain", eslARG_INT, FALSE, NULL, "n>=0", NULL, NULL, NULL, "maximum number of training domains taken per input MSA", 2 },
{ "--maxtest", eslARG_INT, "10", NULL, "n>=0", NULL, NULL, NULL, "maximum number of test domains taken per input MSA", 2 },
{ "--double", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "embed two, not one domain in each positive", 2 },
/* Options controlling choice of method for splitting into testing and training sets */
{ "--cobalt", eslARG_NONE,"default", NULL, NULL, pmSPLIT_OPTS, NULL, NULL, "greedy algorithm with random order", 3 },
{ "--blue", eslARG_NONE, FALSE, NULL, NULL, pmSPLIT_OPTS, NULL, NULL, "multi-round random election process", 3 },
{ "--cluster", eslARG_NONE, FALSE, NULL, NULL, pmSPLIT_OPTS, NULL, NULL, "single linkage clustering", 3 },
{ "--random", eslARG_NONE, FALSE, NULL, NULL, pmSPLIT_OPTS, NULL, NULL, "random selection of training set", 3 },
/* Other options controlling splitting/filtering method */
{ "--bestof", eslARG_INT, NULL, NULL, "n>0", NULL, NULL, "--cluster,--firstof", "output best of n runs of an iset splitting algorithm", 4 },
{ "--firstof", eslARG_INT, NULL, NULL, "n>0", NULL, NULL, "--cluster,--bestof", "output first passing split, try at most n times", 4 },
{ "--rp", eslARG_REAL, "0.75", NULL,"0<x<=1.0", NULL, "--random", NULL, "set prob to put seq in training set with --random split", 4 },
/* Options controlling choice of method for nonhomologous segment randomization */
{ "--mono", eslARG_NONE,"default", NULL, NULL, pmSHUFFLE_OPTS, NULL, NULL, "shuffle preserving monoresidue composition", 5 },
{ "--di", eslARG_NONE, FALSE, NULL, NULL, pmSHUFFLE_OPTS, NULL, NULL, "shuffle preserving mono- and di-residue composition", 5 },
{ "--markov0", eslARG_NONE, FALSE, NULL, NULL, pmSHUFFLE_OPTS, NULL, NULL, "generate with 0th order Markov properties per input", 5 },
{ "--markov1", eslARG_NONE, FALSE, NULL, NULL, pmSHUFFLE_OPTS, NULL, NULL, "generate with 1st order Markov properties per input", 5 },
{ "--reverse", eslARG_NONE, FALSE, NULL, NULL, pmSHUFFLE_OPTS, NULL, NULL, "reverse each input", 5 },
{ "--iid", eslARG_NONE, FALSE, NULL, NULL, pmSHUFFLE_OPTS, NULL, NULL, "generate random iid sequence for negatives", 5 },
/* Options defining other characteristics of nonhomologous segments */
{ "--dmu", eslARG_REAL, "4.8", NULL, NULL, NULL, NULL, NULL, "set mu param, domain length lognormal distribution", 6 }, // [xref H12/147 for these fits]
{ "--dsigma", eslARG_REAL, "0.69", NULL, NULL, NULL, NULL, NULL, "set sigma param, domain length lognormal distribution", 6 },
{ "--smu", eslARG_REAL, "5.6", NULL, NULL, NULL, NULL, NULL, "set mu param, sequence length lognormal distribution", 6 },
{ "--ssigma", eslARG_REAL, "0.75", NULL, NULL, NULL, NULL, NULL, "set sigma param, sequence length lognormal distribution", 6 },
{ "--minDPL", eslARG_INT, "100", NULL, NULL, NULL, NULL, NULL, "minimum segment length for DP shuffling", 6 },
/* Options forcing which alphabet we're working in (normally autodetected) */
{ "--amino", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, "--dna,--rna", "<msafile> contains protein alignments", 7 },
{ "--dna", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, "--amino,--rna", "<msafile> contains DNA alignments", 7 },
{ "--rna", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, "--amino,--dna", "<msafile> contains RNA alignments", 7 },
/* Other options I will probably organize better someday */
{ "--onlysplit", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "split to .{train/test}.msa, no +/- seqs, no <seqfile> arg", 8 },
{ "--speedtest", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "don't compute expensive avgid/avgconn statistics for .tbl file", 8 },
{ 0,0,0,0,0,0,0,0,0,0 },
};
/* PM_CONFIG
*
* Don't make this const. It contains things that have dynamic state:
* RNG, open i/o files.
*/
typedef struct {
ESL_MSAFILE *afp; // open MSA database for training/test splits
ESL_SQFILE *dbfp; // open seq database for shuffled negative segments
ESL_SSI *dbssi; // open SSI index; a less buried copy of dbfp->data.ascii.ssi. closing <dbfp> closes it.
int64_t db_nseq; // # of sequences in db; same as dbssi->nprimary
FILE *out_tbl; // summary table, columnar and whitespace-delim
FILE *out_train; // query MSAs (training sets) are written here, Stockholm format
FILE *out_test; // Usually .test.fa (FASTA) with pos/neg seqs; with --onlysplit, .test.msa.
FILE *out_postbl; // summary table for positive synthetic seqs (NULL if --onlysplit)
FILE *out_negtbl; // summary table for negative synthetic seqs (NULL if --onlysplit)
float idthresh1; // fractional id threshold for train/test split (no train/test pair > this id) (1.0 = iid random split, typical in machine learning)
float idthresh2; // ... for filtering test seqs (no test pair have > this id) (1.0 = no filtering)
float idthresh3; // ... for filtering training seqs (no train pair have > this fid) (1.0 = no filtering)
int tot_negatives; // number of synthetic negative test seqs to make
ESL_RANDOMNESS *rng; // random number generator
float fragthresh; // exclude sequences in original alignment with aspan/alen < fragthresh (default 0.5)
int min_ntrain; // minimum number of training domains per input alignment
int min_ntest; // ... of test
int max_ntrain; // maximum number of training domains per input alignment; 0=unlimited/option not turned on
int max_ntest; // ... of test
int do_double; // embed two instead of one domain in each positive
PM_SPLIT which_algo; // default: pmCOBALT; or pmBLUE | pmCLUSTER | pmRANDOM
PM_SHUFFLE which_shuf; // default: pmMONOSHUFFLE; or pmDISHUFFLE | pmMARKOV0 | pmMARKOV1 | pmREVERSE | pmIID
int do_bestof; // TRUE to take best splitting result of <ntries> runs
int do_firstof; // TRUE to take first successful split of <ntries> runs
int ntries; // (max) number of times to try to split with Cobalt, Blue, or Random, with do_bestof | do_firstof
double S_randp; // for pmRANDOM: probability of putting seq in set S
double dom_mu; // mu parameter for nonhomologous segment lognormal length distribution
double dom_sigma; // ... ditto for segment/domain sigma param
double seq_mu; // ... mu for whole nonhomologous sequence length
double seq_sigma; // ... sigma for seq length
int minDPL; // when using dishuffling option, for any shuffled segment < this length, use monoshuffling instead
int do_onlysplit; // if TRUE, only split to MSA outputs .{train/test}.msa. Don't generate pos/neg seqs.
int do_speedtest; // if TRUE, skip expensive avgid/avgconn statistics for the .tbl file, just write 0
int max_comparisons; // max # of pairwise comparisons to allow in XAvgSubsetConnectivity() before switching to sampling
ESL_ALPHABET *abc; // digital sequence alphabet
double *fq; // background residue frequencies, for iid random generation
} PM_CONFIG;
static void
cmdline_help(char *argv0, ESL_GETOPTS *go)
{
esl_banner(stdout, argv0, banner);
esl_usage (stdout, argv0, usage);
puts("\n where general options are:");
esl_opt_DisplayHelp(stdout, go, 1, 2, 80);
puts("\n options defining other characteristics of the benchmark:");
esl_opt_DisplayHelp(stdout, go, 2, 2, 80);
puts("\n options controlling choice of method for splitting:");
esl_opt_DisplayHelp(stdout, go, 3, 2, 80);
puts("\n other options controlling splitting/filtering methods:");
esl_opt_DisplayHelp(stdout, go, 4, 2, 80);
puts("\n options controlling choice of method for nonhomologous segment randomization:");
esl_opt_DisplayHelp(stdout, go, 5, 2, 80);
puts("\n other options controlling nonhomologous segments/sequences:");
esl_opt_DisplayHelp(stdout, go, 6, 2, 80);
puts("\n options to assert what alphabet we're working in (normally autodetected):");
esl_opt_DisplayHelp(stdout, go, 7, 2, 80);
puts("\n other options:");
esl_opt_DisplayHelp(stdout, go, 8, 2, 80);
exit(0);
}
static void
cmdline_failure(char *argv0, char *format, ...)
{
va_list argp;
printf("There's a problem with your command line:\n");
va_start(argp, format);
vfprintf(stderr, format, argp);
va_end(argp);
printf("\n");
esl_usage(stdout, argv0, usage);
printf("To see more help on available options, do %s -h\n\n", argv0);
exit(1);
}
static void
destroy_config(PM_CONFIG *cfg)
{
if (cfg) {
if (cfg->afp) esl_msafile_Close(cfg->afp);
if (cfg->dbfp) esl_sqfile_Close (cfg->dbfp); // this closes cfg->dbssi too
if (cfg->out_tbl) fclose(cfg->out_tbl);
if (cfg->out_train) fclose(cfg->out_train);
if (cfg->out_test) fclose(cfg->out_test);
if (cfg->out_postbl) fclose(cfg->out_postbl);
if (cfg->out_negtbl) fclose(cfg->out_negtbl);
esl_randomness_Destroy(cfg->rng);
esl_alphabet_Destroy(cfg->abc);
free(cfg->fq);
free(cfg);
}
}
static PM_CONFIG *
create_config(char *argv0, ESL_GETOPTS *go)
{
PM_CONFIG *cfg = NULL;
int status;
ESL_ALLOC(cfg, sizeof(PM_CONFIG));
cfg->afp = NULL; // input files are opened later by open_iofiles()
cfg->dbfp = NULL;
cfg->dbssi = NULL;
cfg->db_nseq = 0;
cfg->out_tbl = NULL; // output files, ditto.
cfg->out_train = NULL;
cfg->out_test = NULL;
cfg->out_postbl = NULL;
cfg->out_negtbl = NULL;
cfg->idthresh1 = esl_opt_GetReal(go, "-1");
cfg->idthresh2 = esl_opt_GetReal(go, "-2");
cfg->idthresh3 = esl_opt_GetReal(go, "-3");
cfg->tot_negatives = esl_opt_GetInteger(go, "-N");
if ((cfg->rng = esl_randomness_Create(esl_opt_GetInteger(go, "-S"))) == NULL) goto ERROR;
cfg->fragthresh = esl_opt_GetReal (go, "--fragthresh");
cfg->min_ntrain = esl_opt_GetInteger(go, "--mintrain");
cfg->min_ntest = esl_opt_GetInteger(go, "--mintest");
cfg->max_ntrain = (esl_opt_IsOn(go, "--maxtrain") ? esl_opt_GetInteger(go, "--maxtrain") : 0);
cfg->max_ntest = (esl_opt_IsOn(go, "--maxtest") ? esl_opt_GetInteger(go, "--maxtest") : 0);
cfg->do_double = esl_opt_GetBoolean(go, "--double");
if (esl_opt_GetBoolean(go, "--cobalt")) cfg->which_algo = pmCOBALT;
else if (esl_opt_GetBoolean(go, "--blue")) cfg->which_algo = pmBLUE;
else if (esl_opt_GetBoolean(go, "--cluster")) cfg->which_algo = pmCLUSTER;
else if (esl_opt_GetBoolean(go, "--random")) cfg->which_algo = pmRANDOM;
else esl_fatal("no split algorithm selected (this can't happen)");
if (esl_opt_GetBoolean(go, "--mono")) cfg->which_shuf = pmMONOSHUFFLE;
else if (esl_opt_GetBoolean(go, "--di")) cfg->which_shuf = pmDISHUFFLE;
else if (esl_opt_GetBoolean(go, "--markov0")) cfg->which_shuf = pmMARKOV0;
else if (esl_opt_GetBoolean(go, "--markov1")) cfg->which_shuf = pmMARKOV1;
else if (esl_opt_GetBoolean(go, "--reverse")) cfg->which_shuf = pmREVERSE;
else if (esl_opt_GetBoolean(go, "--iid")) cfg->which_shuf = pmIID;
else esl_fatal("no shuffle selected (this can't happen)");
if (esl_opt_IsOn(go, "--bestof")) { cfg->ntries = esl_opt_GetInteger(go, "--bestof"); cfg->do_bestof = TRUE; cfg->do_firstof = FALSE; }
else if (esl_opt_IsOn(go, "--firstof")) { cfg->ntries = esl_opt_GetInteger(go, "--firstof"); cfg->do_bestof = FALSE; cfg->do_firstof = TRUE; }
else { cfg->ntries = 1; cfg->do_bestof = FALSE; cfg->do_firstof = FALSE; }
cfg->S_randp = esl_opt_GetReal(go, "--rp");
cfg->seq_mu = esl_opt_GetReal (go, "--smu");
cfg->seq_sigma = esl_opt_GetReal (go, "--ssigma");
cfg->dom_mu = esl_opt_GetReal (go, "--dmu");
cfg->dom_sigma = esl_opt_GetReal (go, "--dsigma");
cfg->minDPL = esl_opt_GetInteger(go, "--minDPL");
if (esl_opt_GetBoolean(go, "--amino")) cfg->abc = esl_alphabet_Create(eslAMINO);
else if (esl_opt_GetBoolean(go, "--dna")) cfg->abc = esl_alphabet_Create(eslDNA);
else if (esl_opt_GetBoolean(go, "--rna")) cfg->abc = esl_alphabet_Create(eslRNA);
else cfg->abc = NULL; // by default, we don't know alphabet until we see the open msafile
cfg->fq = NULL; // ... and therefore we won't allocate or set iid bg fq's until we're in open_iofiles
cfg->do_onlysplit = esl_opt_GetBoolean(go, "--onlysplit");
cfg->do_speedtest = esl_opt_GetBoolean(go, "--speedtest");
/* Configuration that is currently not runtime-configurable */
cfg->max_comparisons = 10000; // [xref 2022/0725-avgpid-by-sampling]
/* Configuration problems too complex to be detected by ESL_GETOPTS */
if (cfg->seq_mu < cfg->dom_mu)
cmdline_failure(argv0, "You want to set the mu for seq length larger than for domain length,\nwhen you use the --smu or --dmu options.\n");
if (cfg->do_double && cfg->min_ntest < 2)
cmdline_failure(argv0, "--double embeds two domains per synthetic positive seq; --mintest must be >= 2.\n");
return cfg;
ERROR:
destroy_config(cfg);
return NULL;
}
static void
open_iofiles(PM_CONFIG *cfg, const char *basename, const char *msafile, const char *dbfile)
{
int alifmt = eslMSAFILE_STOCKHOLM; // currently require msafile to be in Stockholm (it's a multi-MSA file)
int dbfmt = eslSQFILE_FASTA; // we currently require db to be in FASTA format, and with an SSI index
char outfile[256]; // constructed name of an output file, <basename>.suffix
int status;
/* default config has cfg->abc = NULL and we get the alphabet from the msafile;
* but alphabet may have been asserted, in which case cfg->abc is already the alphabet
*/
status = esl_msafile_Open(&(cfg->abc), msafile, /*env:*/NULL, alifmt, /*fmtdata:*/NULL, &(cfg->afp));
if (status != eslOK) esl_msafile_OpenFailure(cfg->afp, status);
/* only now are we sure that we have the alphabet set; now we can initialize cfg->fq background frequencies */
ESL_ALLOC(cfg->fq, sizeof(double) * cfg->abc->K);
if (cfg->abc->type == eslAMINO) esl_composition_SW34(cfg->fq);
else esl_vec_DSet(cfg->fq, cfg->abc->K, 1.0 / (double) cfg->abc->K);
if (! cfg->do_onlysplit)
{
/* Open the sequence file in digital mode */
status = esl_sqfile_OpenDigital(cfg->abc, dbfile, dbfmt, NULL, &(cfg->dbfp));
if (status == eslENOTFOUND) esl_fatal("No such file %s", dbfile);
else if (status == eslEFORMAT) esl_fatal("Format of seqfile %s unrecognized.", dbfile);
else if (status == eslEINVAL) esl_fatal("Can't autodetect stdin or .gz.");
else if (status != eslOK) esl_fatal("Open failed, code %d.", status);
/* Open its SSI index */
if (esl_sqfile_OpenSSI(cfg->dbfp, NULL) != eslOK) // <NULL> means no optional ssi filename; use the default <dbfile>.ssi
esl_fatal("Failed to find an SSI index %s.ssi for <seqdb>\nUse `esl-sfetch --index %s` to create the SSI index file", dbfile, dbfile);
cfg->dbssi = cfg->dbfp->data.ascii.ssi;
cfg->db_nseq = cfg->dbssi->nprimary;
}
/* Output files depend on --onlysplit
* default: .tbl .train.msa .test.fa .pos .neg
* --onlysplit: .tbl .train.msa .test.msa - -
*/
if (snprintf(outfile, 256, "%s.tbl", basename) >= 256) esl_fatal("Failed to construct output summary table file name");
if ((cfg->out_tbl = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open output summary table file %s", outfile);
if (snprintf(outfile, 256, "%s.train.msa", basename) >= 256) esl_fatal("Failed to construct output training MSA file name");
if ((cfg->out_train = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open output training MSA file %s", outfile);
if (cfg->do_onlysplit)
{
if (snprintf(outfile, 256, "%s.test.msa", basename) >= 256) esl_fatal("Failed to construct output test MSA file name");
if ((cfg->out_test = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open output test MSA file %s", outfile);
}
else
{
if (snprintf(outfile, 256, "%s.test.fa", basename) >= 256) esl_fatal("Failed to construct output test sequences file name");
if ((cfg->out_test = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open output test sequences file %s", outfile);
if (snprintf(outfile, 256, "%s.pos", basename) >= 256) esl_fatal("Failed to construct output positives table file name");
if ((cfg->out_postbl = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open output positives table file %s", outfile);
if (snprintf(outfile, 256, "%s.neg", basename) >= 256) esl_fatal("Failed to construct output negatives table file name");
if ((cfg->out_negtbl = fopen(outfile, "w")) == NULL) esl_fatal("Failed to open output negatives table file %s", outfile);
}
return;
ERROR:
esl_fatal("allocation failed");
}
/*********** end, command line processing ***********************/
/*****************************************************************
* 2. Splitting MSAs to create train/test sets (of domains)
*****************************************************************/
/* Need to pass the clustering routine two parameters -
* %id threshold and alphabet ptr - so make a structure that bundles them.
*/
typedef struct {
double t; // two seqs are linked if they have >t pairwise identity, as defined by esl_dst_XPairId(): smaller rlen as denominator
const ESL_MSA *msa;
} PM_LINK_PARAMS;
/* is_linked()
*
* This helper function gets passed to the clustering/linking routines, along
* with the <struct islinked_param_s> packet. Seq pairs with > maxid
* are defined as "linked".
*/
static int
is_linked(const void *v1, const void *v2, const void *p, int *ret_link)
{
PM_LINK_PARAMS *prm = (PM_LINK_PARAMS *) p;
int idx1 = *(int *) v1;
int idx2 = *(int *) v2;
double pid;
int status;
if ( (status = esl_dst_XPairId(prm->msa->abc, prm->msa->ax[idx1], prm->msa->ax[idx2], &pid, NULL, NULL)) != eslOK) goto ERROR;
*ret_link = (pid > prm->t ? TRUE : FALSE);
return eslOK;
ERROR:
*ret_link = FALSE;
return status;
}
/* split_msa_by_cluster()
*
* Use the cluster algorithm to split into a training/test set such
* that no train/test pair have >t pairwise identity.
*
* Input is a list of <nV> sequence indices in <V>;
* these are indices of sequences in the original <msa>.
* V[0..nV-1] = aseq indices 0..nseq-1
*
* Output is a training set <S> of <*ret_nS> sequences and a test set
* <T> of <*ret_nT> sequences. Caller provides space for <S> and <T>,
* each allocated for at least <nV> integer indices.
*
* Briefly: do single linkage clustering, using the is_linked()
* function at >t identity; assign largest cluster as training
* set S; assign all other clusters as test set T.
*
* The cluster algorithm must put all <nV> sequences into either
* the train or test sets; nS + nT = nV. Though the training
* set is the largest single cluster, the aggregated test set
* might still come out larger (nT can be >nS).
*/
static int
split_msa_by_cluster(const ESL_MSA *msa, const int *V, int nV, double t, int *S, int *ret_nS, int *T, int *ret_nT)
{
PM_LINK_PARAMS prm;
int *wrk = NULL; // esl_cluster_SingleLinkage() requires an allocated tmp workspace of at least 2*nV ints
int *assignment = NULL; // .. and it returns cluster assignment[0..nV-1] = 0..nc-1
int *nin = NULL; // # of seqs in each cluster; nin[0..nc-1]
int nS = 0; // size of training set
int nT = 0; // size of test set
int nc; // number of single-linkage clusters
int ctrain; // which cluster we assign as the training set, [0..nc-1]
int i;
int status;
ESL_ALLOC(wrk, 2 * nV * sizeof(int));
ESL_ALLOC(assignment, nV * sizeof(int));
prm.t = t;
prm.msa = msa;
/* esl_cluster_SingleLinkage() is written generally enough that we
* can use V itself, the list of vertex indices, as the objects to
* be clustered. We just need to keep straight that the output is
* assignment[0..nV-1].
*/
if (( status = esl_cluster_SingleLinkage(V, nV, sizeof(int), is_linked, &prm, wrk, assignment, &nc)) != eslOK) goto ERROR;
ESL_ALLOC(nin, sizeof(int) * nc);
esl_vec_ISet(nin, nc, 0);
for (i = 0; i < nV; i++) nin[assignment[i]]++; // nin[0..nc-1] is the size of each single linkage cluster
ctrain = esl_vec_IArgMax(nin, nc); // make the biggest cluster the training set
for (i = 0; i < nV; i++)
if (assignment[i] == ctrain) S[nS++] = V[i]; else T[nT++] = V[i];
free(nin); free(assignment); free(wrk);
*ret_nS = nS;
*ret_nT = nT;
return eslOK;
ERROR:
free(nin); free(assignment); free(wrk);
*ret_nS = 0;
*ret_nT = 0;
return status;
}
/* filter_msa_by_cluster()
* As above, but here we filter instead of split: remove seqs from <V> to get a
* subset <S> such that no pair has >t identity. For each single linkage cluster,
* choose one random sequence.
*/
static int
filter_msa_by_cluster(ESL_RANDOMNESS *rng, const ESL_MSA *msa, const int *V, int nV, double t, int *S, int *ret_nS)
{
PM_LINK_PARAMS prm;
int *wrk = NULL;
int *assignment = NULL;
int *nin = NULL;
int nc;
int i,c,which;
int nS = 0;
int status;
ESL_ALLOC(wrk, 2 * nV * sizeof(int));
ESL_ALLOC(assignment, nV * sizeof(int));
prm.t = t;
prm.msa = msa;
if (( status = esl_cluster_SingleLinkage(V, nV, sizeof(int), is_linked, &prm, wrk, assignment, &nc)) != eslOK) goto ERROR;
ESL_ALLOC(nin, sizeof(int) * nc);
esl_vec_ISet(nin, nc, 0);
for (i = 0; i < nV; i++) nin[assignment[i]]++;
for (c = 0; c < nc; c++)
{
which = esl_rnd_Roll(rng, nin[c]); // pick one random representative per cluster.
for (i = 0; i < nV; i++)
if (assignment[i] == c) { if (which > 0) which--; else { S[nS++] = V[i]; break; } }
}
free(nin); free(assignment); free(wrk);
*ret_nS = nS;
return eslOK;
ERROR:
free(nin); free(assignment); free(wrk);
*ret_nS = 0;
return status;
}
/* split_msa_by_iset()
* As above, but now using one of the other splitting algorithms from Sam's iset paper.
*/
static int
split_msa_by_iset(ESL_RANDOMNESS *rng, const ESL_MSA *msa, const int *V, int nV,
int which_algo, double t, double S_randp,
int *S, int *ret_nS, int *T, int *ret_nT)
{
PM_LINK_PARAMS prm;
int *wrk = NULL;
int *assignment = NULL;
int nS = 0;
int nT = 0;
int i;
int status;
ESL_ALLOC(wrk, 4 * nV * sizeof(int));
ESL_ALLOC(assignment, nV * sizeof(int));
prm.t = t;
prm.msa = msa;
switch (which_algo) {
case pmBLUE: status = esl_iset_biBlue (rng, V, nV, sizeof(int), is_linked, &prm, wrk, assignment); break;
case pmCOBALT: status = esl_iset_biCobalt(rng, V, nV, sizeof(int), is_linked, &prm, wrk, assignment); break;
case pmRANDOM: status = esl_iset_biRandom(rng, S_randp, V, nV, sizeof(int), is_linked, &prm, assignment); break;
default: ESL_XEXCEPTION(eslEINVAL, "no such iset algorithm");
}
for (i = 0; i < nV; i++)
if (assignment[i] == 1) S[nS++] = V[i];
else if (assignment[i] == 2) T[nT++] = V[i];
free(assignment); free(wrk);
*ret_nS = nS;
*ret_nT = nT;
return eslOK;
ERROR:
free(assignment); free(wrk);
*ret_nS = *ret_nT = 0;
return status;
}
/* filter_msa_by_iset()
* As above, but using one of the iset algorithms to filter a set.
*/
static int
filter_msa_by_iset(ESL_RANDOMNESS *rng, const ESL_MSA *msa, const int *V, int nV,
int which_algo, double t,
int *S, int *ret_nS)
{
PM_LINK_PARAMS prm;
int *wrk = NULL;
int *assignment = NULL;
int nS = 0;
int i;
int status;
ESL_ALLOC(wrk, 4 * nV * sizeof(int));
ESL_ALLOC(assignment, nV * sizeof(int));
prm.t = t;
prm.msa = msa;
switch (which_algo) {
case pmCOBALT: esl_iset_monoCobalt(rng, V, nV, sizeof(int), is_linked, &prm, wrk, assignment); break;
case pmBLUE: esl_iset_monoBlue (rng, V, nV, sizeof(int), is_linked, &prm, wrk, assignment); break;
case pmRANDOM: esl_iset_monoCobalt(rng, V, nV, sizeof(int), is_linked, &prm, wrk, assignment); break; // yes, Cobalt. We have no monoRandom() filter; Cobalt essentially is one.
default: ESL_XEXCEPTION(eslEINVAL, "no such iset algorithm");
}
for (i = 0; i < nV; i++)
if (assignment[i] == 1) S[nS++] = V[i];
*ret_nS = nS;
free(wrk); free(assignment);
return eslOK;
ERROR:
*ret_nS = 0;
free(wrk); free(assignment);
return status;
}
/* train_test_by_cluster()
*
* Main routine for using our older algorithm (called Cluster in
* [Petti22]) to split an input sequence alignment into a training and
* test set.
*
* We may have already removed some seqs from the input MSA <msa>,
* so the input is defined as a subset <V> relative to <msa>, a list
* of sequence indices: V[i=0..nV-1] = 0..nseq-1.
*
* First we construct a split of V to sets S and T such that no
* sequence in S has >= idthresh1 fractional pairwise identity to any
* sequence in T. We do a single linkage clustering at >= idthresh1
* and define the largest cluster as S, and the rest as T.
*
* Then we filter T to remove closely related test sequences, such that no
* pair of test sequences has >= idthresh2. We do a single linkage clustering
* at idthresh2 and randomly choose one representative of each cluster.
*
* Optionally, we also filter S, at idthresh3.
*
* The result is the two sets S and T, defined as subset lists as in V, of
* size nS and nT. Caller provides allocated space for S and T sufficient
* to hold up to <nseq> indices.
*
* <cfg> bundles configuration options:
* rng : random number generator
* idthresh1 : defines the training/test set split of V into S,T
* idthresh2 : defines filtering of test set T to remove similar seqs; no pair > idthresh2 (1.0 = no filtering)
* idthresh3 : ditto for training set S
*
* Returns:
* <eslOK> on success and <S> contains a list of <nS> indices in
* the training set; ditto <T>, <nT> for test set.
*
* <eslFAIL> if we fail to identify a successful split that
* satisfies the minimum training and test set sizes (default 1, but
* may be optionally configured higher). Now <nS> and <nT> are
* both set to 0.
*
* Throws:
* <eslEMEM> on allocation failure
*/
static int
train_test_by_cluster(const PM_CONFIG *cfg, const ESL_MSA *msa, const int *V, int nV,
int *S, int *ret_nS, int *T, int *ret_nT)
{
int *pre_S = NULL;
int *pre_T = NULL;
int pre_nS, pre_nT;
int nS, nT;
int status;
if (nV < cfg->min_ntrain + cfg->min_ntest) { status = eslFAIL; goto ERROR; }
ESL_ALLOC(pre_S, sizeof(int) * nV);
ESL_ALLOC(pre_T, sizeof(int) * nV);
if (( status = split_msa_by_cluster (msa, V, nV, cfg->idthresh1, pre_S, &pre_nS, pre_T, &pre_nT)) != eslOK) goto ERROR;
if (pre_nS < cfg->min_ntrain || pre_nT < cfg->min_ntest) { status = eslFAIL; goto ERROR; }
if (cfg->idthresh2 < 1.0) {
if (( status = filter_msa_by_cluster(cfg->rng, msa, pre_T, pre_nT, cfg->idthresh2, T, &nT)) != eslOK) goto ERROR;
if (nT < cfg->min_ntest) { status = eslFAIL; goto ERROR; }
} else {
esl_vec_ICopy(pre_T, pre_nT, T);
nT = pre_nT;
}
if (cfg->idthresh3 < 1.0) {
if (( status = filter_msa_by_cluster(cfg->rng, msa, pre_S, pre_nS, cfg->idthresh3, S, &nS)) != eslOK) goto ERROR;
if (nS < cfg->min_ntrain) { status = eslFAIL; goto ERROR; }
} else {
esl_vec_ICopy(pre_S, pre_nS, S);
nS = pre_nS;
}
free(pre_S); free(pre_T);
*ret_nS = nS;
*ret_nT = nT;
return eslOK;
ERROR:
free(pre_S); free(pre_T);
*ret_nS = 0;
*ret_nT = 0;
return status;
}
static int
train_test_by_iset(PM_CONFIG *cfg, const ESL_MSA *msa, const int *V, int nV,
int *S, int *ret_nS, int *T, int *ret_nT, int *ret_ntries)
{
double best_score = -eslINFINITY;
double score;
int *pre_S = NULL;
int *pre_T = NULL;
int *try_S = NULL;
int *try_T = NULL;
int pre_nS, pre_nT;
int try_nS, try_nT;
int nS, nT;
int trial = 0;
int status;
if (nV < cfg->min_ntrain + cfg->min_ntest) { status = eslFAIL; goto ERROR; } // doomed from the start; this MSA too small
ESL_ALLOC(pre_S, sizeof(int) * nV);
ESL_ALLOC(pre_T, sizeof(int) * nV);
ESL_ALLOC(try_S, sizeof(int) * nV);
ESL_ALLOC(try_T, sizeof(int) * nV);
while (trial < cfg->ntries)
{
trial++;
if (( status = split_msa_by_iset (cfg->rng, msa, V, nV, cfg->which_algo, cfg->idthresh1, cfg->S_randp, pre_S, &pre_nS, pre_T, &pre_nT)) != eslOK) goto ERROR;
if (pre_nS < cfg->min_ntrain || pre_nT < cfg->min_ntest) continue;
if (cfg->idthresh2 < 1.0) {
if (( status = filter_msa_by_iset(cfg->rng, msa, pre_T, pre_nT, cfg->which_algo, cfg->idthresh2, try_T, &try_nT)) != eslOK) goto ERROR;
if (try_nT < cfg->min_ntest) continue;
} else {
esl_vec_ICopy(pre_T, pre_nT, try_T);
try_nT = pre_nT;
}
if (cfg->idthresh3 < 1.0) {
if (( status = filter_msa_by_iset(cfg->rng, msa, pre_S, pre_nS, cfg->which_algo, cfg->idthresh3, try_S, &try_nS)) != eslOK) goto ERROR;
if (try_nS < cfg->min_ntrain) continue;
} else {
esl_vec_ICopy(pre_S, pre_nS, try_S);
try_nS = pre_nS;
}
if ( ( score = log((double) try_nS) + log((double) try_nT)) > best_score) // 2 log(geometric mean); robust to overflow of ntrain*ntest
{
best_score = score; // best_score is >= 0 because ntrain,ntest >= 0 (because min_n{train,test} >= 1)
nS = try_nS; esl_vec_ICopy(try_S, try_nS, S);
nT = try_nT; esl_vec_ICopy(try_T, try_nT, T);
if (cfg->do_firstof) break;
}
}
if (best_score == -eslINFINITY) { status = eslFAIL; goto ERROR; }
free(pre_S); free(pre_T); free(try_S); free(try_T);
*ret_nS = nS;
*ret_nT = nT;
*ret_ntries = trial;
return eslOK;
ERROR:
free(pre_S); free(pre_T); free(try_S); free(try_T);
*ret_nS = 0;
*ret_nT = 0;
*ret_ntries = trial;
return status;
}
/****************** end, splitting MSAs **************************/
/*****************************************************************
* 3. Synthesizing positive and negative test sets (of sequences)
*****************************************************************/
static void
embed_two(ESL_RANDOMNESS *rng, int L, int d1n, int d2n, int *ret_L1, int *ret_L2, int *ret_L3)
{
int i,j;
/* L' = L - d1n - d2n; the total length of nonhomologous sequence.
* Choose i,j points in that sequence to insert our two domains after.
*/
i = esl_rnd_Roll(rng, L - d1n - d2n + 1 ); // i = 0..L'
j = esl_rnd_Roll(rng, L - d1n - d2n + 1 ); // j = 0..L'
if (i > j) ESL_SWAP(i, j, int);
/* now 1 .. i = random region 1 (if i==0, there's none);
* i+1 .. i+d1n = domain 1
* i+d1n+1 .. j+d1n = random region 2 (if i==j, there's none);
* j+d1n+1 .. j+d1n+d2n = domain 2
* j+d1n+d2n+1 .. L = random region 3 (if j == L' (L-d1n-d2n), there's none);
*/
*ret_L1 = i;
*ret_L2 = j-i;
*ret_L3 = L - d1n - d2n - j;
}
static void
embed_one(ESL_RANDOMNESS *rng, int L, int d1n, int *ret_L1, int *ret_L2)
{
int i;
i = esl_rnd_Roll(rng, L - d1n + 1 ); // i = 0..L'
/* now 1 .. i = random region 1 (if i==0, there's none);
* i+1 .. i+d1n = domain 1
* i+d1n+1 .. L = random region 2 (if i==L', there's none)
*/
*ret_L1 = i;
*ret_L2 = L - d1n - i;
}
static void
set_random_segment(const PM_CONFIG *cfg, FILE *logfp, int W, ESL_DSQ *dsqp)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
int db_dependent = TRUE; // some choices for randomization don't need a source db seq, such as i.i.d. generation
char *pkey = NULL; // name of db seq we'll grab segment from
int64_t which; // index of db seq we'll grab a segment from; 0..db_nseq-1
off_t rec_offset; // byte offset of that db seq in dbfile
int64_t L; // db seq length. int64_t because be prepared for full chromosomes, for a DNA-based benchmark.
int64_t i,j,ip; // ... likewise for subseq coords in it
ESL_DSQ x; // shuffling routines expect complete dsq with sentinels; we have to hack sentinels in, then replace them
int n; // when we're having to concat the source: length of one copied chunk
int pos; // ... position to copy next chunk to
if (db_dependent)
{
/* Select by random <which> index number, and look up length
* before we fetch any sequence
*/
which = esl_rnd_Roll(cfg->rng, cfg->db_nseq);
esl_ssi_FindNumber(cfg->dbssi, which, NULL /*opt_fh*/, &rec_offset, NULL /*opt_doff*/, &L, &pkey);
/* Possible future optimization: we have the record and data
* offsets; we could go ahead and position the disk, we don't
* need to look up offsets again with
* esl_sqio_Fetch{Subseq}(). But we don't currently have a
* ReadSubseq() to use with pre-positioning.
*/
if (L >= W) // our source db sequence is long enough to take a subseq of length W from it
{
i = 1 + esl_rnd_Roll(cfg->rng, L-W+1); // i is 1..L-W+1
j = i + W - 1; // j is W..L
esl_sqio_FetchSubseq(cfg->dbfp, pkey, i,j, sq);
esl_sq_ConvertDegen2X(sq);
memcpy(dsqp, sq->dsq+1, sizeof(ESL_DSQ) * W);
}
else // our source db sequence is too short; concatenate it before taking subseq of length W
{
esl_sqio_Fetch(cfg->dbfp, pkey, sq);
esl_sq_ConvertDegen2X(sq);
ESL_DASSERT1(( sq->n == L ));
i = ip = 1 + esl_rnd_Roll(cfg->rng, L); // i is 1..L; first window is L-i+1 long. ip is our tmp stepping var; i is for the logfile.
pos = 0;
while (pos < W)
{
n = ESL_MIN(L-ip+1, W-pos); // L-i+1 is the max len we can copy from sq; W-pos+1 is how much we still need
memcpy(dsqp+pos, sq->dsq+ip, sizeof(ESL_DSQ) * n);
pos += n;
j = ip + n - 1;
ip = 1;
}
}
} // now dsqp points (directly) to W residues sampled from the seq db; they're not shuffled yet
if (logfp)
fprintf(logfp, " %-32s %6" PRId64 " %6" PRId64 " %6" PRId64 " %c", pkey, L, i, j, (L >= W ? '.' : 'c'));
/* esl_randomseq routines expect complete dsq's with sentinels, but
* here <dsqp> is usually pointing into the middle of a longer
* dsq. Hack sentinels on its edges at -1 and W+1, remembering
* whatever's there; put original positions back when we're done.
* Since we're making the seq left to right, we only need to replace at -1.
*/
x = dsqp[-1]; dsqp[-1] = dsqp[W] = eslDSQ_SENTINEL;
if (cfg->which_shuf == pmMONOSHUFFLE) esl_rsq_XShuffle (cfg->rng, dsqp-1, W, dsqp-1);
else if (cfg->which_shuf == pmDISHUFFLE) {
if (W < cfg->minDPL) esl_rsq_XShuffle (cfg->rng, dsqp-1, W, dsqp-1);
else esl_rsq_XShuffleDP(cfg->rng, dsqp-1, W, cfg->abc->Kp, dsqp-1);
}
else if (cfg->which_shuf == pmMARKOV0) esl_rsq_XMarkov0 (cfg->rng, dsqp-1, W, cfg->abc->Kp, dsqp-1);
else if (cfg->which_shuf == pmMARKOV1) esl_rsq_XMarkov1 (cfg->rng, dsqp-1, W, cfg->abc->Kp, dsqp-1);
else if (cfg->which_shuf == pmREVERSE) esl_rsq_XReverse ( dsqp-1, W, dsqp-1);
else if (cfg->which_shuf == pmIID) esl_rsq_xIID (cfg->rng, cfg->fq, cfg->abc->K, W, dsqp-1);
dsqp[-1] = x;
esl_sq_Destroy(sq);
if (pkey) free(pkey);
}
static void
set_homologous_segment(FILE *logfp, const ESL_MSA *msa, int idx, ESL_DSQ *dsqp)
{
int apos;
int rlen = 0;
for (apos = 1; msa->ax[idx][apos] != eslDSQ_SENTINEL; apos++)
if (! esl_abc_XIsGap(msa->abc, msa->ax[idx][apos]))
{
*dsqp++ = msa->ax[idx][apos];
rlen++;
}
if (logfp)
fprintf(logfp, " %-32s %6d %6d %6d .", msa->sqname[idx], rlen, 1, rlen);
// all embedded segments are full length, so "<rlen> 1 <rlen>" output is redundant
// but in future, we might embed partial length homologous segments,
// to test local alignment
}
static void
synthesize_twodom_positives(const PM_CONFIG *cfg, const ESL_MSA *msa, const int *T, int nT, int *tot_npos)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
int i = 0; // counter over positive test seqs we create
int L; // total sequence length
int d1n, d2n; // lengths of embedded homologous test domains
int L1,L2,L3; // lengths of nonhomologous segments
#if eslDEBUGLEVEL >= 1
char errbuf[eslERRBUFSIZE];
#endif
while (i < nT-1) // while we have at least two domains in the test set to embed...
{
d1n = esl_abc_dsqrlen(msa->abc, msa->ax[T[i]]);
d2n = esl_abc_dsqrlen(msa->abc, msa->ax[T[i+1]]);
do {
L = (int) ceil(esl_lognormal_Sample(cfg->rng, cfg->seq_mu, cfg->seq_sigma));
} while (d1n+d2n > L);
embed_two(cfg->rng, L, d1n, d2n, &L1, &L2, &L3);
esl_sq_GrowTo(sq, L);
(*tot_npos)++;
esl_sq_FormatName(sq, "%s/%d/%d-%d/%d-%d", msa->name, *tot_npos, L1+1, L1+d1n, L1+d1n+L2+1, L1+d1n+L2+d2n);
esl_sq_FormatDesc(sq, "domains: %s %s", msa->sqname[T[i]], msa->sqname[T[i+1]]);
sq->n = L;
sq->dsq[0] = sq->dsq[L+1] = eslDSQ_SENTINEL;
fprintf(cfg->out_postbl, "%-40s %5d %5d %5d %5d %5d %5d", sq->name, (int) sq->n, L1, d1n, L2, d2n, L3);
set_random_segment (cfg, cfg->out_postbl, L1, sq->dsq+1);
set_homologous_segment( cfg->out_postbl, msa, T[i], sq->dsq+1+L1);
set_random_segment (cfg, cfg->out_postbl, L2, sq->dsq+1+L1+d1n);
set_homologous_segment( cfg->out_postbl, msa, T[i+1], sq->dsq+1+L1+d1n+L2);
set_random_segment (cfg, cfg->out_postbl, L3, sq->dsq+1+L1+d1n+L2+d2n);
fprintf(cfg->out_postbl, "\n");
esl_sqio_Write(cfg->out_test, sq, eslSQFILE_FASTA, FALSE);
#if eslDEBUGLEVEL >= 1
if ( esl_sq_Validate(sq, errbuf) != eslOK) esl_fatal(errbuf);
#endif
esl_sq_Reuse(sq);
i += 2;
}
esl_sq_Destroy(sq);
}
static void
synthesize_twodom_negatives(const PM_CONFIG *cfg)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
int L;
int L1,L2,L3,d1n,d2n;
int nneg;
#if eslDEBUGLEVEL >= 1
char errbuf[eslERRBUFSIZE];
#endif
for (nneg = 1; nneg <= cfg->tot_negatives; nneg++)
{
do {
L = (int) ceil( esl_lognormal_Sample(cfg->rng, cfg->seq_mu, cfg->seq_sigma) ); // ceil() to make it an integer >= 1
d1n = (int) ceil( esl_lognormal_Sample(cfg->rng, cfg->dom_mu, cfg->dom_sigma) );
d2n = (int) ceil( esl_lognormal_Sample(cfg->rng, cfg->dom_mu, cfg->dom_sigma) );
} while (d1n+d2n > L);
embed_two(cfg->rng, L, d1n, d2n, &L1, &L2, &L3);
esl_sq_GrowTo(sq, L);
esl_sq_FormatName(sq, "decoy%d", nneg);
esl_sq_FormatDesc(sq, "L=%d in segments %d/%d/%d/%d/%d", L, L1, d1n, L2, d2n, L3);
sq->n = L;
sq->dsq[0] = sq->dsq[L+1] = eslDSQ_SENTINEL;
fprintf(cfg->out_negtbl, "%-15s %5d %5d %5d %5d %5d %5d", sq->name, (int) sq->n, L1, d1n, L2, d2n, L3);
set_random_segment(cfg, cfg->out_negtbl, L1, sq->dsq+1);
set_random_segment(cfg, cfg->out_negtbl, d1n, sq->dsq+1+L1);
set_random_segment(cfg, cfg->out_negtbl, L2, sq->dsq+1+L1+d1n);
set_random_segment(cfg, cfg->out_negtbl, d2n, sq->dsq+1+L1+d1n+L2);
set_random_segment(cfg, cfg->out_negtbl, L3, sq->dsq+1+L1+d1n+L2+d2n);
fprintf(cfg->out_negtbl, "\n");
esl_sqio_Write(cfg->out_test, sq, eslSQFILE_FASTA, FALSE);
#if eslDEBUGLEVEL >= 1
if ( esl_sq_Validate(sq, errbuf) != eslOK) esl_fatal(errbuf);
#endif
esl_sq_Reuse(sq);
}
esl_sq_Destroy(sq);
}
/* synthesize_onedom_positives()
* Embed one test domain per test sequence, and write them to the .fa file.
*
* In:
* cfg - command line configuration options
* msa - original MSA from input file
* T - array of indices of test subset of domains in <msa>
* nT - number of test domains in <T>
*
* Out:
* Synthetic positive test seqs written to cfg->out_test file
* Tabular info about them written to cfg->out_postbl file
*
* <*totpos> is a running total of the # of positive test seqs we've
* made so far, over all MSAs. This is used as part of the construction
* of the name of a positive test seq.
*/
static void
synthesize_onedom_positives(const PM_CONFIG *cfg, const ESL_MSA *msa, const int *T, int nT, int *tot_npos)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
int i = 0; // counter over positive test seqs we create
int L; // total sequence length
int d1n; // length of embedded homologous test domain
int L1,L2; // lengths of nonhomologous segments
#if eslDEBUGLEVEL >= 1
char errbuf[eslERRBUFSIZE];
#endif
for (i = 0; i < nT; i++)
{
d1n = esl_abc_dsqrlen(msa->abc, msa->ax[T[i]]);
do {
L = (int) ceil(esl_lognormal_Sample(cfg->rng, cfg->seq_mu, cfg->seq_sigma));
} while (d1n > L);
embed_one(cfg->rng, L, d1n, &L1, &L2);
esl_sq_GrowTo(sq, L);
(*tot_npos)++;
esl_sq_FormatName(sq, "%s/%d/%d-%d", msa->name, *tot_npos, L1+1, L1+d1n);
esl_sq_FormatDesc(sq, "domain: %s", msa->sqname[T[i]]);
sq->n = L;
sq->dsq[0] = sq->dsq[L+1] = eslDSQ_SENTINEL;
fprintf(cfg->out_postbl, "%-40s %5d %5d %5d %5d", sq->name, (int) sq->n, L1, d1n, L2);
set_random_segment (cfg, cfg->out_postbl, L1, sq->dsq+1);
set_homologous_segment( cfg->out_postbl, msa, T[i], sq->dsq+1+L1);
set_random_segment (cfg, cfg->out_postbl, L2, sq->dsq+1+L1+d1n);
fprintf(cfg->out_postbl, "\n");
esl_sqio_Write(cfg->out_test, sq, eslSQFILE_FASTA, FALSE);
#if eslDEBUGLEVEL >= 1
if ( esl_sq_Validate(sq, errbuf) != eslOK) esl_fatal(errbuf);
#endif
esl_sq_Reuse(sq);
}
esl_sq_Destroy(sq);
}
static void
synthesize_onedom_negatives(const PM_CONFIG *cfg)
{
ESL_SQ *sq = esl_sq_CreateDigital(cfg->abc);
int L,L1,L2,d1n;
int nneg;
#if eslDEBUGLEVEL >= 1
char errbuf[eslERRBUFSIZE];
#endif
for (nneg = 1; nneg <= cfg->tot_negatives; nneg++)
{
do {
L = (int) ceil( esl_lognormal_Sample(cfg->rng, cfg->seq_mu, cfg->seq_sigma) ); // ceil() to make it an integer >= 1
d1n = (int) ceil( esl_lognormal_Sample(cfg->rng, cfg->dom_mu, cfg->dom_sigma) );
} while (d1n > L);
embed_one(cfg->rng, L, d1n, &L1, &L2);
esl_sq_GrowTo(sq, L);
esl_sq_FormatName(sq, "decoy%d", nneg);
esl_sq_FormatDesc(sq, "L=%d in segments %d/%d/%d", L, L1, d1n, L2);
sq->n = L;
sq->dsq[0] = sq->dsq[L+1] = eslDSQ_SENTINEL;
fprintf(cfg->out_negtbl, "%-15s %5d %5d %5d %5d", sq->name, (int) sq->n, L1, d1n, L2);
set_random_segment(cfg, cfg->out_negtbl, L1, sq->dsq+1);
set_random_segment(cfg, cfg->out_negtbl, d1n, sq->dsq+1+L1);
set_random_segment(cfg, cfg->out_negtbl, L2, sq->dsq+1+L1+d1n);
fprintf(cfg->out_negtbl, "\n");
esl_sqio_Write(cfg->out_test, sq, eslSQFILE_FASTA, FALSE);
#if eslDEBUGLEVEL >= 1
if ( esl_sq_Validate(sq, errbuf) != eslOK) esl_fatal(errbuf);
#endif
esl_sq_Reuse(sq);
}
esl_sq_Destroy(sq);
}
/************** end, synthesizing pos/neg seqs ******************/
/*****************************************************************
* 4. Top-level main()
*****************************************************************/
/* remove_fragments()
*
* Fragments are defined as those with aspan/alen < fragthresh, where aspan
* is # of alignment columns from leftmost to rightmost residue.
*
* Caller provides an array <V> allocated for up to <msa->nseq>
* sequences; upon return, this is a sorted list of the indices
* <0..nseq-1> for <nV> sequences that aren't fragments.
*
* (It's more efficient to do alignment membership using sparse sets
* such as <V> relative to the original MSA, as opposed to extracting
* new alignments of subsets.)
*
* <fragthresh> = 0 : no fragments removed; all seqs defined as "full length"
* <fragthresh> = 1 : all except fully spanning seqs are fragments
* There's no way to set <fragthresh> such that all seqs are fragments.
*
* This function essentially just translates the ESL_BITFIELD output
* of esl_msa_MarkFragments() (which defines the fragment rule) to
* our sparse set in <V>.
*/
static void
remove_fragments(const ESL_MSA *msa, float fragthresh, int *V, int *ret_nV)
{
ESL_BITFIELD *fragassign = NULL;
int i, nV;
int status;
if (( status = esl_msa_MarkFragments(msa, fragthresh, &fragassign)) != eslOK) esl_fatal("esl_msa_MarkFragments() failed unexpectedly");
for (i = 0, nV = 0; i < msa->nseq; i++)
if (! esl_bitfield_IsSet(fragassign, i)) V[nV++] = i;
esl_bitfield_Destroy(fragassign);
*ret_nV = nV;
}
#if eslDEBUGLEVEL >= 1 // validate_split is expensive, and only compiled & used when debugging code
/* validate_split()
*
* Check the result of splitting <msa> into training and test sets <S>
* and <T>, of size <nS> and <nT>. If something's wrong with them, exit
* with an informative esl_fatal() error message.
*/
static void
validate_split(PM_CONFIG *cfg, const ESL_MSA *msa, const int *S, int nS, const int *T, int nT)
{
int i,j;
double pid;
/* Training and test set are disjoint, and no sequence in training
* set has > idthresh1 identity to any test sequence.
*/
for (i = 0; i < nS; i++)
for (j = 0; j < nT; j++)
{
if (S[i] == T[j]) // self comparison would have given 100% identity anyway, but may as well check
esl_fatal("training/test sets for %s not disjoint: %d in both (%s)", msa->name, S[i], msa->sqname[S[i]]);
esl_dst_XPairId(cfg->abc, msa->ax[S[i]], msa->ax[T[j]], &pid, /*opt_nid=*/NULL, /*opt_n=*/NULL); // deliberately not using is_linked(), to doublecheck
if (pid > cfg->idthresh1)
esl_fatal("training/test set for %s have a pair at %.3f identity: %d and %d (%s and %s)",
msa->name, pid, S[i], T[j], msa->sqname[S[i]], msa->sqname[T[j]]);
}
/* Test set obeys size thresholds, has no duplicates, and if idthresh2 is set, no pair > idthresh2 */
if (cfg->min_ntest > 0 && nT < cfg->min_ntest) esl_fatal("test set for %s too small (%d < %d)", msa->name, nT, cfg->min_ntest);
if (cfg->max_ntest > 0 && nT > cfg->max_ntest) esl_fatal("test set for %s too large (%d > %d)", msa->name, nT, cfg->max_ntest);
for (i = 0; i < nT; i++)
for (j = i+1; j < nT; j++)
{
if (T[i] == T[j])
esl_fatal("test set for %s has a duplicate: %d appears twice (%s)", msa->name, T[i], msa->sqname[T[i]]);
esl_dst_XPairId(cfg->abc, msa->ax[T[i]], msa->ax[T[j]], &pid, /*opt_nid=*/NULL, /*opt_n=*/NULL);
if (cfg->idthresh2 < 1.0 && pid > cfg->idthresh2)
esl_fatal("test set for %s contains a pair at %.3f identity: %d and %d (%s and %s)",
msa->name, pid, T[i], T[j], msa->sqname[T[i]], msa->sqname[T[j]]);
}
/* Same, for training set and idthresh3 */
if (cfg->min_ntrain > 0 && nS < cfg->min_ntrain) esl_fatal("training set for %s too small (%d < %d)", msa->name, nS, cfg->min_ntrain);
if (cfg->max_ntrain > 0 && nS > cfg->max_ntrain) esl_fatal("training set for %s too large (%d > %d)", msa->name, nS, cfg->max_ntrain);
for (i = 0; i < nS; i++)
for (j = i+1; j < nS; j++)
{
if (S[i] == S[j])
esl_fatal("training set for %s has a duplicate: %d appears twice (%s)", msa->name, S[i], msa->sqname[S[i]]);
esl_dst_XPairId(cfg->abc, msa->ax[S[i]], msa->ax[S[j]], &pid, /*opt_nid=*/NULL, /*opt_n=*/NULL);
if (cfg->idthresh3 < 1.0 && pid > cfg->idthresh3)
esl_fatal("training set for %s contains a pair at %.3f identity: %d and %d (%s and %s)",
msa->name, pid, S[i], S[j], msa->sqname[S[i]], msa->sqname[S[j]]);
}
}
#endif //eslDEBUGLEVEL >= 1
/* write_msa_subset()
* Extract a smaller MSA from <msa>, containing the sequences identified
* by a list <S> of <nS> indices; write it in Stockholm format to <ofp>.
*
* This is essentially a translation layer to existing esl_msa functions.
* If we need to, we could extract and write more efficiently, without
* the indirections.
*/
static void
write_msa_subset(FILE *ofp, const ESL_MSA *msa, const int *S, int nS)
{
ESL_MSA *submsa = NULL;
int *useme = malloc(sizeof(int) * msa->nseq);
int i;
int status;
if (useme == NULL) esl_fatal("allocation failed");
esl_vec_ISet(useme, msa->nseq, FALSE);
for (i = 0; i < nS; i++) useme[S[i]] = TRUE;
if ((status = esl_msa_SequenceSubset(msa, useme, &submsa)) != eslOK) esl_fatal("esl_msa_SequenceSubset() failed unexpectedly");
if ((status = esl_msa_MinimGaps(submsa, /*errbuf=*/NULL, /*textgaps=*/NULL, /*consider_rf=*/FALSE)) != eslOK) esl_fatal("esl_msa_MinimGaps() failed unexpectedly");
if ((status = esl_msafile_Write(ofp, submsa, eslMSAFILE_STOCKHOLM)) != eslOK) esl_fatal("failed to write MSA to its output file");
free(useme);
esl_msa_Destroy(submsa);
}
/* process_msa()
*
* <msa> may be modified here: non-IUPAC residue symbols are converted in-place to X.
*/
static void
process_msa(PM_CONFIG *cfg, ESL_MSA *msa, int *tot_npos)
{
int *V = NULL; // set of non-fragment seqs in input MSA; as an ordered list of nV indices 0..nseq-1
int *S = NULL; // ... training set
int *T = NULL; // ... test set
int nV, nS, nT;
double avgid = 0.0; // average pairwise identity in MSA (after fragment removal)
double avgconn = 0.0; // average pairwise connectivity at idthresh1
int ntries = 1; // with randomized iset algorithms and --bestof or (especially) --firstof, how many tries we made at splitting
int prv_npos = *tot_npos; // remember previous total number of synthetic positive seqs created
int split_success;
int status;
ESL_ALLOC(V, sizeof(int) * msa->nseq);
nV = 0;
esl_msa_ConvertDegen2X(msa); // some programs we'd want to benchmark can't handle IUPAC degeneracy coding
remove_fragments(msa, cfg->fragthresh, V, &nV);
ESL_ALLOC(S, sizeof(int) * nV);
ESL_ALLOC(T, sizeof(int) * nV);
nS = nT = 0;
/* Calculate avg pid and avg connectivity for summary stats output in .tbl file.
* Generally useful, but expensive. With the --speedtest speed benchmarking option,
* skip it and leave avgid/avgconn as 0.0 in the .tbl file.
*/
if (!cfg->do_speedtest && nV > 1)
esl_dst_XAvgSubsetConnectivity(msa->abc, msa->ax, msa->nseq, V, nV,
cfg->max_comparisons, cfg->idthresh1, &avgid, &avgconn);
if (cfg->which_algo == pmCLUSTER) status = train_test_by_cluster(cfg, msa, V, nV, S, &nS, T, &nT);
else status = train_test_by_iset (cfg, msa, V, nV, S, &nS, T, &nT, &ntries);
if (status == eslOK) split_success = TRUE;
else if (status == eslFAIL) split_success = FALSE;
else esl_fatal("unexpected error in train/test splitting");
esl_vec_IShuffle(cfg->rng, S, nS); if (cfg->max_ntrain) nS = ESL_MIN(nS, cfg->max_ntrain); // because we just shuffled, downsampling is simple
esl_vec_IShuffle(cfg->rng, T, nT); if (cfg->max_ntest) nT = ESL_MIN(nT, cfg->max_ntest);
#if eslDEBUGLEVEL >= 1 // validation is expensive too; only do it in debugging code, not production
if (split_success) validate_split(cfg, msa, S, nS, T, nT);
#endif
if (cfg->do_onlysplit)
{
if (split_success && ! cfg->do_speedtest) {
write_msa_subset(cfg->out_train, msa, S, nS);
write_msa_subset(cfg->out_test, msa, T, nT);
}
}
else if (split_success)
{
write_msa_subset(cfg->out_train, msa, S, nS);
if (cfg->do_double) synthesize_twodom_positives(cfg, msa, T, nT, tot_npos);
else synthesize_onedom_positives(cfg, msa, T, nT, tot_npos);
}
fprintf(cfg->out_tbl, "%-20s %6d %6" PRId64 " %6d %3.0f%% %3.0f%% %3d %4s %6d %6d %6d\n",
msa->name, msa->nseq, msa->alen, msa->nseq-nV, 100.*avgid, 100.*avgconn, ntries,
(split_success ? "ok" : "FAIL"), nS, nT, *tot_npos - prv_npos);
free(V); free(S); free(T);
return;
ERROR:
esl_fatal("allocation failed");
}
int
main(int argc, char **argv)
{
ESL_GETOPTS *go = NULL; // command line configuration
PM_CONFIG *cfg = NULL; // program configuration, all bundled up
char *basename = NULL;
char *msafile = NULL;
char *dbfile = NULL;
ESL_MSA *msa = NULL;
int tot_npos = 0; // running count of total # of true positives synthesized, over all MSAs
int status;
go = esl_getopts_Create(options);
if (esl_opt_ProcessCmdline(go, argc, argv) != eslOK) cmdline_failure(argv[0], "Failed to parse command line: %s\n", go->errbuf);
if (esl_opt_VerifyConfig(go) != eslOK) cmdline_failure(argv[0], "Error in command line configuration: %s\n", go->errbuf);
if (esl_opt_GetBoolean(go, "-h")) cmdline_help (argv[0], go);
if (( esl_opt_GetBoolean(go, "--onlysplit") && esl_opt_ArgNumber(go) != 2) ||
(! esl_opt_GetBoolean(go, "--onlysplit") && esl_opt_ArgNumber(go) != 3))
cmdline_failure(argv[0], "Incorrect number of command line arguments.\n");
cfg = create_config(argv[0], go);
basename = esl_opt_GetArg(go, 1);
msafile = esl_opt_GetArg(go, 2);
if (! cfg->do_onlysplit) dbfile = esl_opt_GetArg(go, 3);
open_iofiles(cfg, basename, msafile, dbfile);
esl_getopts_Destroy(go);
while (( status = esl_msafile_Read(cfg->afp, &msa)) == eslOK)
{
process_msa(cfg, msa, &tot_npos); // table output is from process_msa().
esl_msa_Destroy(msa);
}
if (status != eslEOF) esl_msafile_ReadFailure(cfg->afp, status);
if (! cfg->do_onlysplit) {
if (cfg->do_double) synthesize_twodom_negatives(cfg);
else synthesize_onedom_negatives(cfg);
}
destroy_config(cfg); // includes closing io files
return eslOK;
}
|