1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/************************************************************
* HMMER - Biological sequence analysis with profile HMMs
* Copyright (C) 1992-2003 Washington University School of Medicine
* All Rights Reserved
*
* This source code is distributed under the terms of the
* GNU General Public License. See the files COPYING and LICENSE
* for details.
************************************************************/
/* mathsupport.c
* SRE, Mon Nov 11 15:07:33 1996
*
* Miscellaneous mathematical functions.
* General functions are in the SQUID library sre_math.c.
* These functions are too HMM-specific to warrant being in the
* SQUID library.
*
*/
#include "config.h"
#include "squidconf.h"
#include <math.h>
#include <float.h>
#ifdef HMMER_THREADS
#include <pthread.h>
#endif
#include "squid.h"
#include "funcs.h"
#include "structs.h"
/* Function: Prob2Score()
*
* Purpose: Convert a probability to a scaled integer log_2 odds score.
* Round to nearest integer (i.e. note use of +0.5 and floor())
* Return the score.
*/
int
Prob2Score(float p, float null)
{
if (p == 0.0) return -INFTY;
else return (int) floor(0.5 + INTSCALE * sreLOG2(p/null));
}
/* Function: Score2Prob()
*
* Purpose: Convert an integer log_2 odds score back to a probability;
* needs the null model probability, if any, to do the conversion.
*/
float
Score2Prob(int sc, float null)
{
if (sc == -INFTY) return 0.;
else return (null * sreEXP2((float) sc / INTSCALE));
}
/* Function: Scorify()
*
* Purpose: Convert a scaled integer log-odds score to a floating
* point score for output. (could be a macro but who cares.)
*/
float
Scorify(int sc)
{
return ((float) sc / INTSCALE);
}
/* Function: PValue()
* Date: SRE, Mon Oct 27 12:21:02 1997 [Sanger Centre, UK]
*
* Purpose: Convert an HMM score to a P-value.
* We know P(S>x) is bounded by 1 / (1 + exp_2^x) for a bit score of x.
* We can also use EVD parameters for a tighter bound if we have
* them available.
*
* Args: hmm - model structure, contains EVD parameters
* sc - score in bits
*
* Returns: P value for score significance.
*/
double
PValue(struct plan7_s *hmm, float sc)
{
double pval;
double pval2;
/* the bound from Bayes */
if (sc >= sreLOG2(DBL_MAX)) pval = 0.0;
else if (sc <= -1. * sreLOG2(DBL_MAX)) pval = 1.0;
else pval = 1. / (1.+sreEXP2(sc));
/* try for a better estimate from EVD fit */
if (hmm != NULL && (hmm->flags & PLAN7_STATS))
{
pval2 = ExtremeValueP(sc, hmm->mu, hmm->lambda);
if (pval2 < pval) pval = pval2;
}
return pval;
}
/* Function: LogSum()
*
* Purpose: Returns the log of the sum of two log probabilities.
* log(exp(p1)+exp(p2)) = p1 + log(1 + exp(p2-p1)) for p1 > p2
* Note that this is in natural log space, not log_2.
*/
float
LogSum(float p1, float p2)
{
if (p1 > p2)
return (p1-p2 > 50.) ? p1 : p1 + log(1. + exp(p2-p1));
else
return (p2-p1 > 50.) ? p2 : p2 + log(1. + exp(p1-p2));
}
/* Function: ILogsum()
*
* Purpose: Return the scaled integer log probability of
* the sum of two probabilities p1 and p2, where
* p1 and p2 are also given as scaled log probabilities.
*
* log(exp(p1)+exp(p2)) = p1 + log(1 + exp(p2-p1)) for p1 > p2
*
* For speed, builds a lookup table the first time it's called.
* LOGSUM_TBL is set to 20000 by default, in config.h.
*
* Because of the one-time initialization, we have to
* be careful in a multithreaded implementation... hence
* the use of pthread_once(), which forces us to put
* the initialization routine and the lookup table outside
* ILogsum(). (Thanks to Henry Gabb at Intel for pointing
* out this problem.)
*
* Args: p1,p2 -- scaled integer log_2 probabilities to be summed
* in probability space.
*
* Return: scaled integer log_2 probability of the sum.
*/
static int ilogsum_lookup[LOGSUM_TBL];
static void
init_ilogsum(void)
{
int i;
for (i = 0; i < LOGSUM_TBL; i++)
ilogsum_lookup[i] = (int) (INTSCALE * 1.44269504 *
(log(1.+exp(0.69314718 * (float) -i/INTSCALE))));
}
int
ILogsum(int p1, int p2)
{
int diff;
#ifdef HMMER_THREADS
static pthread_once_t firsttime = PTHREAD_ONCE_INIT;
pthread_once(&firsttime, init_ilogsum);
#else
static int firsttime = 1;
if (firsttime) { init_ilogsum(); firsttime = 0; }
#endif
diff = p1-p2;
if (diff >= LOGSUM_TBL) return p1;
else if (diff <= -LOGSUM_TBL) return p2;
else if (diff > 0) return p1 + ilogsum_lookup[diff];
else return p2 + ilogsum_lookup[-diff];
}
/* Function: LogNorm()
*
* Purpose: Normalize a vector of log likelihoods, changing it
* to a probability vector. Be careful of overflowing exp().
* Implementation adapted from Graeme Mitchison.
*
* Args: vec - vector destined to become log probabilities
* n - length of vec
*/
void
LogNorm(float *vec, int n)
{
int x;
float max = -1.0e30;
float denom = 0.;
for (x = 0; x < n; x++)
if (vec[x] > max) max = vec[x];
for (x = 0; x < n; x++)
if (vec[x] > max - 50.)
denom += exp(vec[x] - max);
for (x = 0; x < n; x++)
if (vec[x] > max - 50.)
vec[x] = exp(vec[x] - max) / denom;
else
vec[x] = 0.0;
}
/* Function: Logp_cvec()
*
* Purpose: Calculates ln P(cvec|dirichlet), the log probability of a
* count vector given a Dirichlet distribution. Adapted
* from an implementation by Graeme Mitchison.
*
* Args: cvec - count vector
* n - length of cvec
* alpha - Dirichlet alpha terms
*
* Return: log P(cvec|dirichlet)
*/
float
Logp_cvec(float *cvec, int n, float *alpha)
{
float lnp; /* log likelihood of P(cvec | Dirichlet) */
float sum1, sum2, sum3;
int x;
sum1 = sum2 = sum3 = lnp = 0.0;
for (x = 0; x < n; x++)
{
sum1 += cvec[x] + alpha[x];
sum2 += alpha[x];
sum3 += cvec[x];
lnp += Gammln(alpha[x] + cvec[x]);
lnp -= Gammln(cvec[x] + 1.);
lnp -= Gammln(alpha[x]);
}
lnp -= Gammln(sum1);
lnp += Gammln(sum2);
lnp += Gammln(sum3 + 1.);
return lnp;
}
/* Function: SampleDirichlet()
*
* Purpose: Given a Dirichlet distribution defined by
* a vector of n alpha terms, sample of probability
* distribution of dimension n.
*
* This code was derived from source provided
* by Betty Lazareva, from Gary Churchill's group.
*
* Args: alpha - vector of Dirichlet alphas components
* n - number of components
* ret_p - RETURN: sampled probability vector.
*
* Return: (void)
* ret_p, an n-dimensional array alloced by the caller,
* is filled.
*/
void
SampleDirichlet(float *alpha, int n, float *p)
{
int x;
for (x = 0; x < n; x++)
p[x] = SampleGamma(alpha[x]);
FNorm(p, n);
}
/* Function: SampleGamma()
*
* Purpose: Return a random deviate distributed as Gamma(alpha, 1.0).
* Uses two different accept/reject algorithms, one
* for 0<alpha<1, the other for 1<=alpha.
*
* Code modified from source provided by Betty Lazareva
* and Gary Churchill.
*
* Args: alpha - order of gamma function
*
* Return: the gamma-distributed deviate.
*/
float
SampleGamma(float alpha)
{
float U,V,X,W,lambda;
if (alpha >= 1.0)
{
/*CONSTCOND*/ while (1)
{
lambda = sqrt(2.0*alpha -1.0);
U = sre_random();
V = U/(1-U);
X = alpha * pow(V, 1/lambda);
W = .25*exp(-X+alpha)*pow(V,1.0+alpha/lambda)*pow(1.0+1.0/V, 2.0);
if (sre_random() <= W)
return X;
}
}
else if (alpha > 0.0)
{
/*CONSTCOND*/ while (1)
{
U = sre_random();
V = U*(1+ alpha/exp(1.0));
if (V > 1.0)
{
X = -log( (1-V+alpha/exp(1.0))/alpha);
if (sre_random() <= pow(X, alpha-1.0))
return X;
}
else
{
X = pow(V,1.0/alpha);
if (sre_random() <= exp(-X))
return X;
}
}
}
Die("Invalid argument alpha < 0.0 to SampleGamma()");
/*NOTREACHED*/
return 0.0;
}
/* Function: P_PvecGivenDirichlet()
*
* Purpose: Calculate the log probability of a probability
* vector given a single Dirichlet component, alpha.
* Follows Sjolander (1996) appendix, lemma 2.
*
* Return: log P(p | alpha)
*/
float
P_PvecGivenDirichlet(float *p, int n, float *alpha)
{
float sum; /* for Gammln(|alpha|) in Z */
float logp; /* RETURN: log P(p|alpha) */
int x;
sum = logp = 0.0;
for (x = 0; x < n; x++)
if (p[x] > 0.0) /* any param that is == 0.0 doesn't exist */
{
logp += (alpha[x]-1.0) * log(p[x]);
logp -= Gammln(alpha[x]);
sum += alpha[x];
}
logp += Gammln(sum);
return logp;
}
|