File: bindings_test_resize.py

package info (click to toggle)
hnswlib 0.4.0-3%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 492 kB
  • sloc: cpp: 2,576; python: 402; makefile: 27; sh: 11
file content (82 lines) | stat: -rw-r--r-- 2,783 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import unittest


class RandomSelfTestCase(unittest.TestCase):
    def testRandomSelf(self):
      for idx in range(16):
        print("\n**** Index resize test ****\n")
        import hnswlib
        import numpy as np
        np.random.seed(idx)
        dim = 16
        num_elements = 10000

        # Generating sample data
        data = np.float32(np.random.random((num_elements, dim)))

        # Declaring index
        p = hnswlib.Index(space='l2', dim=dim)  # possible options are l2, cosine or ip

        # Initing index
        # max_elements - the maximum number of elements, should be known beforehand
        #     (probably will be made optional in the future)
        #
        # ef_construction - controls index search speed/build speed tradeoff
        # M - is tightly connected with internal dimensionality of the data
        #     stronlgy affects the memory consumption

        p.init_index(max_elements = num_elements//2, ef_construction = 100, M = 16)

        # Controlling the recall by setting ef:
        # higher ef leads to better accuracy, but slower search
        p.set_ef(20)

        p.set_num_threads(idx%8)  # by default using all available cores

        # We split the data in two batches:
        data1 = data[:num_elements // 2]
        data2 = data[num_elements // 2:]

        print("Adding first batch of %d elements" % (len(data1)))
        p.add_items(data1)

        # Query the elements for themselves and measure recall:
        labels, distances = p.knn_query(data1, k=1)

        items=p.get_items(list(range(len(data1))))

        # Check the recall:
        self.assertAlmostEqual(np.mean(labels.reshape(-1) == np.arange(len(data1))),1.0,3)

        # Check that the returned element data is correct:
        diff_with_gt_labels=np.max(np.abs(data1-items))
        self.assertAlmostEqual(diff_with_gt_labels, 0, delta = 1e-4)

        print("Resizing the index")
        p.resize_index(num_elements)



        print("Adding the second batch of %d elements" % (len(data2)))
        p.add_items(data2)

        # Query the elements for themselves and measure recall:
        labels, distances = p.knn_query(data, k=1)
        items=p.get_items(list(range(num_elements)))

        # Check the recall:
        self.assertAlmostEqual(np.mean(labels.reshape(-1) == np.arange(len(data))),1.0,3)

        # Check that the returned element data is correct:
        diff_with_gt_labels=np.max(np.abs(data-items))
        self.assertAlmostEqual(diff_with_gt_labels, 0, delta = 1e-4)

        # Checking that all labels are returned correcly:
        sorted_labels=sorted(p.get_ids_list())
        self.assertEqual(np.sum(~np.asarray(sorted_labels)==np.asarray(range(num_elements))),0)




if __name__ == "__main__":
    unittest.main()