File: hnswalg.h

package info (click to toggle)
hnswlib 0.4.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 432 kB
  • sloc: cpp: 2,570; python: 402; makefile: 27; sh: 11
file content (1214 lines) | stat: -rw-r--r-- 51,969 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
#pragma once

#include <cassert>
#include "visited_list_pool.h"
#include "hnswlib.h"
#include <atomic>
#include <random>
#include <stdlib.h>
#include <unordered_set>
#include <list>


namespace hnswlib {
    typedef unsigned int tableint;
    typedef unsigned int linklistsizeint;

    template<typename dist_t>
    class HierarchicalNSW : public AlgorithmInterface<dist_t> {
    public:
        static const tableint max_update_element_locks = 65536;
        HierarchicalNSW(SpaceInterface<dist_t> *s) {

        }

        HierarchicalNSW(SpaceInterface<dist_t> *s, const std::string &location, bool nmslib = false, size_t max_elements=0) {
            loadIndex(location, s, max_elements);
        }

        HierarchicalNSW(SpaceInterface<dist_t> *s, size_t max_elements, size_t M = 16, size_t ef_construction = 200, size_t random_seed = 100) :
                link_list_locks_(max_elements), element_levels_(max_elements), link_list_update_locks_(max_update_element_locks) {
            max_elements_ = max_elements;

            has_deletions_=false;
            data_size_ = s->get_data_size();
            fstdistfunc_ = s->get_dist_func();
            dist_func_param_ = s->get_dist_func_param();
            M_ = M;
            maxM_ = M_;
            maxM0_ = M_ * 2;
            ef_construction_ = std::max(ef_construction,M_);
            ef_ = 10;

            level_generator_.seed(random_seed);
            update_probability_generator_.seed(random_seed + 1);

            size_links_level0_ = maxM0_ * sizeof(tableint) + sizeof(linklistsizeint);
            size_data_per_element_ = size_links_level0_ + data_size_ + sizeof(labeltype);
            offsetData_ = size_links_level0_;
            label_offset_ = size_links_level0_ + data_size_;
            offsetLevel0_ = 0;

            data_level0_memory_ = (char *) malloc(max_elements_ * size_data_per_element_);
            if (data_level0_memory_ == nullptr)
                throw std::runtime_error("Not enough memory");

            cur_element_count = 0;

            visited_list_pool_ = new VisitedListPool(1, max_elements);



            //initializations for special treatment of the first node
            enterpoint_node_ = -1;
            maxlevel_ = -1;

            linkLists_ = (char **) malloc(sizeof(void *) * max_elements_);
            if (linkLists_ == nullptr)
                throw std::runtime_error("Not enough memory: HierarchicalNSW failed to allocate linklists");
            size_links_per_element_ = maxM_ * sizeof(tableint) + sizeof(linklistsizeint);
            mult_ = 1 / log(1.0 * M_);
            revSize_ = 1.0 / mult_;
        }

        struct CompareByFirst {
            constexpr bool operator()(std::pair<dist_t, tableint> const &a,
                                      std::pair<dist_t, tableint> const &b) const noexcept {
                return a.first < b.first;
            }
        };

        ~HierarchicalNSW() {

            free(data_level0_memory_);
            for (tableint i = 0; i < cur_element_count; i++) {
                if (element_levels_[i] > 0)
                    free(linkLists_[i]);
            }
            free(linkLists_);
            delete visited_list_pool_;
        }

        size_t max_elements_;
        size_t cur_element_count;
        size_t size_data_per_element_;
        size_t size_links_per_element_;

        size_t M_;
        size_t maxM_;
        size_t maxM0_;
        size_t ef_construction_;

        double mult_, revSize_;
        int maxlevel_;


        VisitedListPool *visited_list_pool_;
        std::mutex cur_element_count_guard_;

        std::vector<std::mutex> link_list_locks_;

        // Locks to prevent race condition during update/insert of an element at same time.
        // Note: Locks for additions can also be used to prevent this race condition if the querying of KNN is not exposed along with update/inserts i.e multithread insert/update/query in parallel.
        std::vector<std::mutex> link_list_update_locks_;
        tableint enterpoint_node_;


        size_t size_links_level0_;
        size_t offsetData_, offsetLevel0_;


        char *data_level0_memory_;
        char **linkLists_;
        std::vector<int> element_levels_;

        size_t data_size_;

        bool has_deletions_;


        size_t label_offset_;
        DISTFUNC<dist_t> fstdistfunc_;
        void *dist_func_param_;
        std::unordered_map<labeltype, tableint> label_lookup_;

        std::default_random_engine level_generator_;
        std::default_random_engine update_probability_generator_;

        inline labeltype getExternalLabel(tableint internal_id) const {
            labeltype return_label;
            memcpy(&return_label,(data_level0_memory_ + internal_id * size_data_per_element_ + label_offset_), sizeof(labeltype));
            return return_label;
        }

        inline void setExternalLabel(tableint internal_id, labeltype label) const {
            memcpy((data_level0_memory_ + internal_id * size_data_per_element_ + label_offset_), &label, sizeof(labeltype));
        }

        inline labeltype *getExternalLabeLp(tableint internal_id) const {
            return (labeltype *) (data_level0_memory_ + internal_id * size_data_per_element_ + label_offset_);
        }

        inline char *getDataByInternalId(tableint internal_id) const {
            return (data_level0_memory_ + internal_id * size_data_per_element_ + offsetData_);
        }

        int getRandomLevel(double reverse_size) {
            std::uniform_real_distribution<double> distribution(0.0, 1.0);
            double r = -log(distribution(level_generator_)) * reverse_size;
            return (int) r;
        }


        std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst>
        searchBaseLayer(tableint ep_id, const void *data_point, int layer) {
            VisitedList *vl = visited_list_pool_->getFreeVisitedList();
            vl_type *visited_array = vl->mass;
            vl_type visited_array_tag = vl->curV;

            std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> top_candidates;
            std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> candidateSet;

            dist_t lowerBound;
            if (!isMarkedDeleted(ep_id)) {
                dist_t dist = fstdistfunc_(data_point, getDataByInternalId(ep_id), dist_func_param_);
                top_candidates.emplace(dist, ep_id);
                lowerBound = dist;
                candidateSet.emplace(-dist, ep_id);
            } else {
                lowerBound = std::numeric_limits<dist_t>::max();
                candidateSet.emplace(-lowerBound, ep_id);
            }
            visited_array[ep_id] = visited_array_tag;

            while (!candidateSet.empty()) {
                std::pair<dist_t, tableint> curr_el_pair = candidateSet.top();
                if ((-curr_el_pair.first) > lowerBound) {
                    break;
                }
                candidateSet.pop();

                tableint curNodeNum = curr_el_pair.second;

                std::unique_lock <std::mutex> lock(link_list_locks_[curNodeNum]);

                int *data;// = (int *)(linkList0_ + curNodeNum * size_links_per_element0_);
                if (layer == 0) {
                    data = (int*)get_linklist0(curNodeNum);
                } else {
                    data = (int*)get_linklist(curNodeNum, layer);
//                    data = (int *) (linkLists_[curNodeNum] + (layer - 1) * size_links_per_element_);
                }
                size_t size = getListCount((linklistsizeint*)data);
                tableint *datal = (tableint *) (data + 1);
#ifdef USE_SSE
                _mm_prefetch((char *) (visited_array + *(data + 1)), _MM_HINT_T0);
                _mm_prefetch((char *) (visited_array + *(data + 1) + 64), _MM_HINT_T0);
                _mm_prefetch(getDataByInternalId(*datal), _MM_HINT_T0);
                _mm_prefetch(getDataByInternalId(*(datal + 1)), _MM_HINT_T0);
#endif

                for (size_t j = 0; j < size; j++) {
                    tableint candidate_id = *(datal + j);
//                    if (candidate_id == 0) continue;
#ifdef USE_SSE
                    _mm_prefetch((char *) (visited_array + *(datal + j + 1)), _MM_HINT_T0);
                    _mm_prefetch(getDataByInternalId(*(datal + j + 1)), _MM_HINT_T0);
#endif
                    if (visited_array[candidate_id] == visited_array_tag) continue;
                    visited_array[candidate_id] = visited_array_tag;
                    char *currObj1 = (getDataByInternalId(candidate_id));

                    dist_t dist1 = fstdistfunc_(data_point, currObj1, dist_func_param_);
                    if (top_candidates.size() < ef_construction_ || lowerBound > dist1) {
                        candidateSet.emplace(-dist1, candidate_id);
#ifdef USE_SSE
                        _mm_prefetch(getDataByInternalId(candidateSet.top().second), _MM_HINT_T0);
#endif

                        if (!isMarkedDeleted(candidate_id))
                            top_candidates.emplace(dist1, candidate_id);

                        if (top_candidates.size() > ef_construction_)
                            top_candidates.pop();

                        if (!top_candidates.empty())
                            lowerBound = top_candidates.top().first;
                    }
                }
            }
            visited_list_pool_->releaseVisitedList(vl);

            return top_candidates;
        }

        mutable std::atomic<long> metric_distance_computations;
        mutable std::atomic<long> metric_hops;

        template <bool has_deletions, bool collect_metrics=false>
        std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst>
        searchBaseLayerST(tableint ep_id, const void *data_point, size_t ef) const {
            VisitedList *vl = visited_list_pool_->getFreeVisitedList();
            vl_type *visited_array = vl->mass;
            vl_type visited_array_tag = vl->curV;

            std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> top_candidates;
            std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> candidate_set;

            dist_t lowerBound;
            if (!has_deletions || !isMarkedDeleted(ep_id)) {
                dist_t dist = fstdistfunc_(data_point, getDataByInternalId(ep_id), dist_func_param_);
                lowerBound = dist;
                top_candidates.emplace(dist, ep_id);
                candidate_set.emplace(-dist, ep_id);
            } else {
                lowerBound = std::numeric_limits<dist_t>::max();
                candidate_set.emplace(-lowerBound, ep_id);
            }

            visited_array[ep_id] = visited_array_tag;

            while (!candidate_set.empty()) {

                std::pair<dist_t, tableint> current_node_pair = candidate_set.top();

                if ((-current_node_pair.first) > lowerBound) {
                    break;
                }
                candidate_set.pop();

                tableint current_node_id = current_node_pair.second;
                int *data = (int *) get_linklist0(current_node_id);
                size_t size = getListCount((linklistsizeint*)data);
//                bool cur_node_deleted = isMarkedDeleted(current_node_id);
                if(collect_metrics){
                    metric_hops++;
                    metric_distance_computations+=size;
                }

#ifdef USE_SSE
                _mm_prefetch((char *) (visited_array + *(data + 1)), _MM_HINT_T0);
                _mm_prefetch((char *) (visited_array + *(data + 1) + 64), _MM_HINT_T0);
                _mm_prefetch(data_level0_memory_ + (*(data + 1)) * size_data_per_element_ + offsetData_, _MM_HINT_T0);
                _mm_prefetch((char *) (data + 2), _MM_HINT_T0);
#endif

                for (size_t j = 1; j <= size; j++) {
                    int candidate_id = *(data + j);
//                    if (candidate_id == 0) continue;
#ifdef USE_SSE
                    _mm_prefetch((char *) (visited_array + *(data + j + 1)), _MM_HINT_T0);
                    _mm_prefetch(data_level0_memory_ + (*(data + j + 1)) * size_data_per_element_ + offsetData_,
                                 _MM_HINT_T0);////////////
#endif
                    if (!(visited_array[candidate_id] == visited_array_tag)) {

                        visited_array[candidate_id] = visited_array_tag;

                        char *currObj1 = (getDataByInternalId(candidate_id));
                        dist_t dist = fstdistfunc_(data_point, currObj1, dist_func_param_);

                        if (top_candidates.size() < ef || lowerBound > dist) {
                            candidate_set.emplace(-dist, candidate_id);
#ifdef USE_SSE
                            _mm_prefetch(data_level0_memory_ + candidate_set.top().second * size_data_per_element_ +
                                         offsetLevel0_,///////////
                                         _MM_HINT_T0);////////////////////////
#endif

                            if (!has_deletions || !isMarkedDeleted(candidate_id))
                                top_candidates.emplace(dist, candidate_id);

                            if (top_candidates.size() > ef)
                                top_candidates.pop();

                            if (!top_candidates.empty())
                                lowerBound = top_candidates.top().first;
                        }
                    }
                }
            }

            visited_list_pool_->releaseVisitedList(vl);
            return top_candidates;
        }

        void getNeighborsByHeuristic2(
                std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> &top_candidates,
        const size_t M) {
            if (top_candidates.size() < M) {
                return;
            }

            std::priority_queue<std::pair<dist_t, tableint>> queue_closest;
            std::vector<std::pair<dist_t, tableint>> return_list;
            while (top_candidates.size() > 0) {
                queue_closest.emplace(-top_candidates.top().first, top_candidates.top().second);
                top_candidates.pop();
            }

            while (queue_closest.size()) {
                if (return_list.size() >= M)
                    break;
                std::pair<dist_t, tableint> curent_pair = queue_closest.top();
                dist_t dist_to_query = -curent_pair.first;
                queue_closest.pop();
                bool good = true;

                for (std::pair<dist_t, tableint> second_pair : return_list) {
                    dist_t curdist =
                            fstdistfunc_(getDataByInternalId(second_pair.second),
                                         getDataByInternalId(curent_pair.second),
                                         dist_func_param_);;
                    if (curdist < dist_to_query) {
                        good = false;
                        break;
                    }
                }
                if (good) {
                    return_list.push_back(curent_pair);
                }
            }

            for (std::pair<dist_t, tableint> curent_pair : return_list) {
                top_candidates.emplace(-curent_pair.first, curent_pair.second);
            }
        }


        linklistsizeint *get_linklist0(tableint internal_id) const {
            return (linklistsizeint *) (data_level0_memory_ + internal_id * size_data_per_element_ + offsetLevel0_);
        };

        linklistsizeint *get_linklist0(tableint internal_id, char *data_level0_memory_) const {
            return (linklistsizeint *) (data_level0_memory_ + internal_id * size_data_per_element_ + offsetLevel0_);
        };

        linklistsizeint *get_linklist(tableint internal_id, int level) const {
            return (linklistsizeint *) (linkLists_[internal_id] + (level - 1) * size_links_per_element_);
        };

        linklistsizeint *get_linklist_at_level(tableint internal_id, int level) const {
            return level == 0 ? get_linklist0(internal_id) : get_linklist(internal_id, level);
        };

        tableint mutuallyConnectNewElement(const void *data_point, tableint cur_c,
                                       std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> &top_candidates,
        int level, bool isUpdate) {
            size_t Mcurmax = level ? maxM_ : maxM0_;
            getNeighborsByHeuristic2(top_candidates, M_);
            if (top_candidates.size() > M_)
                throw std::runtime_error("Should be not be more than M_ candidates returned by the heuristic");

            std::vector<tableint> selectedNeighbors;
            selectedNeighbors.reserve(M_);
            while (top_candidates.size() > 0) {
                selectedNeighbors.push_back(top_candidates.top().second);
                top_candidates.pop();
            }

            tableint next_closest_entry_point = selectedNeighbors[0];

            {
                linklistsizeint *ll_cur;
                if (level == 0)
                    ll_cur = get_linklist0(cur_c);
                else
                    ll_cur = get_linklist(cur_c, level);

                if (*ll_cur && !isUpdate) {
                    throw std::runtime_error("The newly inserted element should have blank link list");
                }
                setListCount(ll_cur,selectedNeighbors.size());
                tableint *data = (tableint *) (ll_cur + 1);
                for (size_t idx = 0; idx < selectedNeighbors.size(); idx++) {
                    if (data[idx] && !isUpdate)
                        throw std::runtime_error("Possible memory corruption");
                    if (level > element_levels_[selectedNeighbors[idx]])
                        throw std::runtime_error("Trying to make a link on a non-existent level");

                    data[idx] = selectedNeighbors[idx];

                }
            }

            for (size_t idx = 0; idx < selectedNeighbors.size(); idx++) {

                std::unique_lock <std::mutex> lock(link_list_locks_[selectedNeighbors[idx]]);

                linklistsizeint *ll_other;
                if (level == 0)
                    ll_other = get_linklist0(selectedNeighbors[idx]);
                else
                    ll_other = get_linklist(selectedNeighbors[idx], level);

                size_t sz_link_list_other = getListCount(ll_other);

                if (sz_link_list_other > Mcurmax)
                    throw std::runtime_error("Bad value of sz_link_list_other");
                if (selectedNeighbors[idx] == cur_c)
                    throw std::runtime_error("Trying to connect an element to itself");
                if (level > element_levels_[selectedNeighbors[idx]])
                    throw std::runtime_error("Trying to make a link on a non-existent level");

                tableint *data = (tableint *) (ll_other + 1);

                bool is_cur_c_present = false;
                if (isUpdate) {
                    for (size_t j = 0; j < sz_link_list_other; j++) {
                        if (data[j] == cur_c) {
                            is_cur_c_present = true;
                            break;
                        }
                    }
                }

                // If cur_c is already present in the neighboring connections of `selectedNeighbors[idx]` then no need to modify any connections or run the heuristics.
                if (!is_cur_c_present) {
                    if (sz_link_list_other < Mcurmax) {
                        data[sz_link_list_other] = cur_c;
                        setListCount(ll_other, sz_link_list_other + 1);
                    } else {
                        // finding the "weakest" element to replace it with the new one
                        dist_t d_max = fstdistfunc_(getDataByInternalId(cur_c), getDataByInternalId(selectedNeighbors[idx]),
                                                    dist_func_param_);
                        // Heuristic:
                        std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> candidates;
                        candidates.emplace(d_max, cur_c);

                        for (size_t j = 0; j < sz_link_list_other; j++) {
                            candidates.emplace(
                                    fstdistfunc_(getDataByInternalId(data[j]), getDataByInternalId(selectedNeighbors[idx]),
                                                 dist_func_param_), data[j]);
                        }

                        getNeighborsByHeuristic2(candidates, Mcurmax);

                        int indx = 0;
                        while (candidates.size() > 0) {
                            data[indx] = candidates.top().second;
                            candidates.pop();
                            indx++;
                        }

                        setListCount(ll_other, indx);
                        // Nearest K:
                        /*int indx = -1;
                        for (int j = 0; j < sz_link_list_other; j++) {
                            dist_t d = fstdistfunc_(getDataByInternalId(data[j]), getDataByInternalId(rez[idx]), dist_func_param_);
                            if (d > d_max) {
                                indx = j;
                                d_max = d;
                            }
                        }
                        if (indx >= 0) {
                            data[indx] = cur_c;
                        } */
                    }
                }
            }

            return next_closest_entry_point;
        }

        std::mutex global;
        size_t ef_;

        void setEf(size_t ef) {
            ef_ = ef;
        }


        std::priority_queue<std::pair<dist_t, tableint>> searchKnnInternal(void *query_data, int k) {
            std::priority_queue<std::pair<dist_t, tableint  >> top_candidates;
            if (cur_element_count == 0) return top_candidates;
            tableint currObj = enterpoint_node_;
            dist_t curdist = fstdistfunc_(query_data, getDataByInternalId(enterpoint_node_), dist_func_param_);

            for (size_t level = maxlevel_; level > 0; level--) {
                bool changed = true;
                while (changed) {
                    changed = false;
                    int *data;
                    data = (int *) get_linklist(currObj,level);
                    int size = getListCount(data);
                    tableint *datal = (tableint *) (data + 1);
                    for (int i = 0; i < size; i++) {
                        tableint cand = datal[i];
                        if (cand < 0 || cand > max_elements_)
                            throw std::runtime_error("cand error");
                        dist_t d = fstdistfunc_(query_data, getDataByInternalId(cand), dist_func_param_);

                        if (d < curdist) {
                            curdist = d;
                            currObj = cand;
                            changed = true;
                        }
                    }
                }
            }

            if (has_deletions_) {
                std::priority_queue<std::pair<dist_t, tableint  >> top_candidates1=searchBaseLayerST<true>(currObj, query_data,
                                                                                                           ef_);
                top_candidates.swap(top_candidates1);
            }
            else{
                std::priority_queue<std::pair<dist_t, tableint  >> top_candidates1=searchBaseLayerST<false>(currObj, query_data,
                                                                                                            ef_);
                top_candidates.swap(top_candidates1);
            }

            while (top_candidates.size() > k) {
                top_candidates.pop();
            }
            return top_candidates;
        };

        void resizeIndex(size_t new_max_elements){
            if (new_max_elements<cur_element_count)
                throw std::runtime_error("Cannot resize, max element is less than the current number of elements");


            delete visited_list_pool_;
            visited_list_pool_ = new VisitedListPool(1, new_max_elements);



            element_levels_.resize(new_max_elements);

            std::vector<std::mutex>(new_max_elements).swap(link_list_locks_);

            // Reallocate base layer
            char * data_level0_memory_new = (char *) malloc(new_max_elements * size_data_per_element_);
            if (data_level0_memory_new == nullptr)
                throw std::runtime_error("Not enough memory: resizeIndex failed to allocate base layer");
            memcpy(data_level0_memory_new, data_level0_memory_,cur_element_count * size_data_per_element_);
            free(data_level0_memory_);
            data_level0_memory_=data_level0_memory_new;

            // Reallocate all other layers
            char ** linkLists_new = (char **) malloc(sizeof(void *) * new_max_elements);
            if (linkLists_new == nullptr)
                throw std::runtime_error("Not enough memory: resizeIndex failed to allocate other layers");
            memcpy(linkLists_new, linkLists_,cur_element_count * sizeof(void *));
            free(linkLists_);
            linkLists_=linkLists_new;

            max_elements_=new_max_elements;

        }

        void saveIndex(const std::string &location) {
            std::ofstream output(location, std::ios::binary);
            std::streampos position;

            writeBinaryPOD(output, offsetLevel0_);
            writeBinaryPOD(output, max_elements_);
            writeBinaryPOD(output, cur_element_count);
            writeBinaryPOD(output, size_data_per_element_);
            writeBinaryPOD(output, label_offset_);
            writeBinaryPOD(output, offsetData_);
            writeBinaryPOD(output, maxlevel_);
            writeBinaryPOD(output, enterpoint_node_);
            writeBinaryPOD(output, maxM_);

            writeBinaryPOD(output, maxM0_);
            writeBinaryPOD(output, M_);
            writeBinaryPOD(output, mult_);
            writeBinaryPOD(output, ef_construction_);

            output.write(data_level0_memory_, cur_element_count * size_data_per_element_);

            for (size_t i = 0; i < cur_element_count; i++) {
                unsigned int linkListSize = element_levels_[i] > 0 ? size_links_per_element_ * element_levels_[i] : 0;
                writeBinaryPOD(output, linkListSize);
                if (linkListSize)
                    output.write(linkLists_[i], linkListSize);
            }
            output.close();
        }

        void loadIndex(const std::string &location, SpaceInterface<dist_t> *s, size_t max_elements_i=0) {


            std::ifstream input(location, std::ios::binary);

            if (!input.is_open())
                throw std::runtime_error("Cannot open file");


            // get file size:
            input.seekg(0,input.end);
            std::streampos total_filesize=input.tellg();
            input.seekg(0,input.beg);

            readBinaryPOD(input, offsetLevel0_);
            readBinaryPOD(input, max_elements_);
            readBinaryPOD(input, cur_element_count);

            size_t max_elements=max_elements_i;
            if(max_elements < cur_element_count)
                max_elements = max_elements_;
            max_elements_ = max_elements;
            readBinaryPOD(input, size_data_per_element_);
            readBinaryPOD(input, label_offset_);
            readBinaryPOD(input, offsetData_);
            readBinaryPOD(input, maxlevel_);
            readBinaryPOD(input, enterpoint_node_);

            readBinaryPOD(input, maxM_);
            readBinaryPOD(input, maxM0_);
            readBinaryPOD(input, M_);
            readBinaryPOD(input, mult_);
            readBinaryPOD(input, ef_construction_);


            data_size_ = s->get_data_size();
            fstdistfunc_ = s->get_dist_func();
            dist_func_param_ = s->get_dist_func_param();

            auto pos=input.tellg();


            /// Optional - check if index is ok:

            input.seekg(cur_element_count * size_data_per_element_,input.cur);
            for (size_t i = 0; i < cur_element_count; i++) {
                if(input.tellg() < 0 || input.tellg()>=total_filesize){
                    throw std::runtime_error("Index seems to be corrupted or unsupported");
                }

                unsigned int linkListSize;
                readBinaryPOD(input, linkListSize);
                if (linkListSize != 0) {
                    input.seekg(linkListSize,input.cur);
                }
            }

            // throw exception if it either corrupted or old index
            if(input.tellg()!=total_filesize)
                throw std::runtime_error("Index seems to be corrupted or unsupported");

            input.clear();

            /// Optional check end

            input.seekg(pos,input.beg);


            data_level0_memory_ = (char *) malloc(max_elements * size_data_per_element_);
            if (data_level0_memory_ == nullptr)
                throw std::runtime_error("Not enough memory: loadIndex failed to allocate level0");
            input.read(data_level0_memory_, cur_element_count * size_data_per_element_);




            size_links_per_element_ = maxM_ * sizeof(tableint) + sizeof(linklistsizeint);


            size_links_level0_ = maxM0_ * sizeof(tableint) + sizeof(linklistsizeint);
            std::vector<std::mutex>(max_elements).swap(link_list_locks_);
            std::vector<std::mutex>(max_update_element_locks).swap(link_list_update_locks_);


            visited_list_pool_ = new VisitedListPool(1, max_elements);


            linkLists_ = (char **) malloc(sizeof(void *) * max_elements);
            if (linkLists_ == nullptr)
                throw std::runtime_error("Not enough memory: loadIndex failed to allocate linklists");
            element_levels_ = std::vector<int>(max_elements);
            revSize_ = 1.0 / mult_;
            ef_ = 10;
            for (size_t i = 0; i < cur_element_count; i++) {
                label_lookup_[getExternalLabel(i)]=i;
                unsigned int linkListSize;
                readBinaryPOD(input, linkListSize);
                if (linkListSize == 0) {
                    element_levels_[i] = 0;

                    linkLists_[i] = nullptr;
                } else {
                    element_levels_[i] = linkListSize / size_links_per_element_;
                    linkLists_[i] = (char *) malloc(linkListSize);
                    if (linkLists_[i] == nullptr)
                        throw std::runtime_error("Not enough memory: loadIndex failed to allocate linklist");
                    input.read(linkLists_[i], linkListSize);
                }
            }

            has_deletions_=false;

            for (size_t i = 0; i < cur_element_count; i++) {
                if(isMarkedDeleted(i))
                    has_deletions_=true;
            }

            input.close();

            return;
        }

        template<typename data_t>
        std::vector<data_t> getDataByLabel(labeltype label)
        {
            tableint label_c;
            auto search = label_lookup_.find(label);
            if (search == label_lookup_.end() || isMarkedDeleted(search->second)) {
                throw std::runtime_error("Label not found");
            }
            label_c = search->second;

            char* data_ptrv = getDataByInternalId(label_c);
            size_t dim = *((size_t *) dist_func_param_);
            std::vector<data_t> data;
            data_t* data_ptr = (data_t*) data_ptrv;
            for (int i = 0; i < dim; i++) {
                data.push_back(*data_ptr);
                data_ptr += 1;
            }
            return data;
        }

        static const unsigned char DELETE_MARK = 0x01;
//        static const unsigned char REUSE_MARK = 0x10;
        /**
         * Marks an element with the given label deleted, does NOT really change the current graph.
         * @param label
         */
        void markDelete(labeltype label)
        {
            has_deletions_=true;
            auto search = label_lookup_.find(label);
            if (search == label_lookup_.end()) {
                throw std::runtime_error("Label not found");
            }
            markDeletedInternal(search->second);
        }

        /**
         * Uses the first 8 bits of the memory for the linked list to store the mark,
         * whereas maxM0_ has to be limited to the lower 24 bits, however, still large enough in almost all cases.
         * @param internalId
         */
        void markDeletedInternal(tableint internalId) {
            unsigned char *ll_cur = ((unsigned char *)get_linklist0(internalId))+2;
            *ll_cur |= DELETE_MARK;
        }

        /**
         * Remove the deleted mark of the node.
         * @param internalId
         */
        void unmarkDeletedInternal(tableint internalId) {
            unsigned char *ll_cur = ((unsigned char *)get_linklist0(internalId))+2;
            *ll_cur &= ~DELETE_MARK;
        }

        /**
         * Checks the first 8 bits of the memory to see if the element is marked deleted.
         * @param internalId
         * @return
         */
        bool isMarkedDeleted(tableint internalId) const {
            unsigned char *ll_cur = ((unsigned char*)get_linklist0(internalId))+2;
            return *ll_cur & DELETE_MARK;
        }

        unsigned short int getListCount(linklistsizeint * ptr) const {
            return *((unsigned short int *)ptr);
        }

        void setListCount(linklistsizeint * ptr, unsigned short int size) const {
            *((unsigned short int*)(ptr))=*((unsigned short int *)&size);
        }

        void addPoint(const void *data_point, labeltype label) {
            addPoint(data_point, label,-1);
        }

        void updatePoint(const void *dataPoint, tableint internalId, float updateNeighborProbability) {
            // update the feature vector associated with existing point with new vector
            memcpy(getDataByInternalId(internalId), dataPoint, data_size_);

            int maxLevelCopy = maxlevel_;
            tableint entryPointCopy = enterpoint_node_;
            // If point to be updated is entry point and graph just contains single element then just return.
            if (entryPointCopy == internalId && cur_element_count == 1)
                return;

            int elemLevel = element_levels_[internalId];
            std::uniform_real_distribution<float> distribution(0.0, 1.0);
            for (int layer = 0; layer <= elemLevel; layer++) {
                std::unordered_set<tableint> sCand;
                std::unordered_set<tableint> sNeigh;
                std::vector<tableint> listOneHop = getConnectionsWithLock(internalId, layer);
                if (listOneHop.size() == 0)
                    continue;

                sCand.insert(internalId);

                for (auto&& elOneHop : listOneHop) {
                    sCand.insert(elOneHop);

                    if (distribution(update_probability_generator_) > updateNeighborProbability)
                        continue;

                    sNeigh.insert(elOneHop);

                    std::vector<tableint> listTwoHop = getConnectionsWithLock(elOneHop, layer);
                    for (auto&& elTwoHop : listTwoHop) {
                        sCand.insert(elTwoHop);
                    }
                }

                for (auto&& neigh : sNeigh) {
//                    if (neigh == internalId)
//                        continue;

                    std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> candidates;
                    int size = sCand.find(neigh) == sCand.end() ? sCand.size() : sCand.size() - 1;
                    int elementsToKeep = std::min(int(ef_construction_), size);
                    for (auto&& cand : sCand) {
                        if (cand == neigh)
                            continue;

                        dist_t distance = fstdistfunc_(getDataByInternalId(neigh), getDataByInternalId(cand), dist_func_param_);
                        if (candidates.size() < elementsToKeep) {
                            candidates.emplace(distance, cand);
                        } else {
                            if (distance < candidates.top().first) {
                                candidates.pop();
                                candidates.emplace(distance, cand);
                            }
                        }
                    }

                    // Retrieve neighbours using heuristic and set connections.
                    getNeighborsByHeuristic2(candidates, layer == 0 ? maxM0_ : maxM_);

                    {
                        std::unique_lock <std::mutex> lock(link_list_locks_[neigh]);
                        linklistsizeint *ll_cur;
                        ll_cur = get_linklist_at_level(neigh, layer);
                        int candSize = candidates.size();
                        setListCount(ll_cur, candSize);
                        tableint *data = (tableint *) (ll_cur + 1);
                        for (size_t idx = 0; idx < candSize; idx++) {
                            data[idx] = candidates.top().second;
                            candidates.pop();
                        }
                    }
                }
            }

            repairConnectionsForUpdate(dataPoint, entryPointCopy, internalId, elemLevel, maxLevelCopy);
        };

        void repairConnectionsForUpdate(const void *dataPoint, tableint entryPointInternalId, tableint dataPointInternalId, int dataPointLevel, int maxLevel) {
            tableint currObj = entryPointInternalId;
            if (dataPointLevel < maxLevel) {
                dist_t curdist = fstdistfunc_(dataPoint, getDataByInternalId(currObj), dist_func_param_);
                for (int level = maxLevel; level > dataPointLevel; level--) {
                    bool changed = true;
                    while (changed) {
                        changed = false;
                        unsigned int *data;
                        std::unique_lock <std::mutex> lock(link_list_locks_[currObj]);
                        data = get_linklist_at_level(currObj,level);
                        int size = getListCount(data);
                        tableint *datal = (tableint *) (data + 1);
#ifdef USE_SSE
                        _mm_prefetch(getDataByInternalId(*datal), _MM_HINT_T0);
#endif
                        for (int i = 0; i < size; i++) {
#ifdef USE_SSE
                            _mm_prefetch(getDataByInternalId(*(datal + i + 1)), _MM_HINT_T0);
#endif
                            tableint cand = datal[i];
                            dist_t d = fstdistfunc_(dataPoint, getDataByInternalId(cand), dist_func_param_);
                            if (d < curdist) {
                                curdist = d;
                                currObj = cand;
                                changed = true;
                            }
                        }
                    }
                }
            }

            if (dataPointLevel > maxLevel)
                throw std::runtime_error("Level of item to be updated cannot be bigger than max level");

            for (int level = dataPointLevel; level >= 0; level--) {
                std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> topCandidates = searchBaseLayer(
                        currObj, dataPoint, level);

                std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> filteredTopCandidates;
                while (topCandidates.size() > 0) {
                    if (topCandidates.top().second != dataPointInternalId)
                        filteredTopCandidates.push(topCandidates.top());

                    topCandidates.pop();
                }

                // Since element_levels_ is being used to get `dataPointLevel`, there could be cases where `topCandidates` could just contains entry point itself.
                // To prevent self loops, the `topCandidates` is filtered and thus can be empty.
                if (filteredTopCandidates.size() > 0) {
                    bool epDeleted = isMarkedDeleted(entryPointInternalId);
                    if (epDeleted) {
                        filteredTopCandidates.emplace(fstdistfunc_(dataPoint, getDataByInternalId(entryPointInternalId), dist_func_param_), entryPointInternalId);
                        if (filteredTopCandidates.size() > ef_construction_)
                            filteredTopCandidates.pop();
                    }

                    currObj = mutuallyConnectNewElement(dataPoint, dataPointInternalId, filteredTopCandidates, level, true);
                }
            }
        }

        std::vector<tableint> getConnectionsWithLock(tableint internalId, int level) {
            std::unique_lock <std::mutex> lock(link_list_locks_[internalId]);
            unsigned int *data = get_linklist_at_level(internalId, level);
            int size = getListCount(data);
            std::vector<tableint> result(size);
            tableint *ll = (tableint *) (data + 1);
            memcpy(result.data(), ll,size * sizeof(tableint));
            return result;
        };

        tableint addPoint(const void *data_point, labeltype label, int level) {

            tableint cur_c = 0;
            {
                // Checking if the element with the same label already exists
                // if so, updating it *instead* of creating a new element.
                std::unique_lock <std::mutex> templock_curr(cur_element_count_guard_);
                auto search = label_lookup_.find(label);
                if (search != label_lookup_.end()) {
                    tableint existingInternalId = search->second;

                    templock_curr.unlock();

                    std::unique_lock <std::mutex> lock_el_update(link_list_update_locks_[(existingInternalId & (max_update_element_locks - 1))]);
                    updatePoint(data_point, existingInternalId, 1.0);
                    return existingInternalId;
                }

                if (cur_element_count >= max_elements_) {
                    throw std::runtime_error("The number of elements exceeds the specified limit");
                };

                cur_c = cur_element_count;
                cur_element_count++;
                label_lookup_[label] = cur_c;
            }

            // Take update lock to prevent race conditions on an element with insertion/update at the same time.
            std::unique_lock <std::mutex> lock_el_update(link_list_update_locks_[(cur_c & (max_update_element_locks - 1))]);
            std::unique_lock <std::mutex> lock_el(link_list_locks_[cur_c]);
            int curlevel = getRandomLevel(mult_);
            if (level > 0)
                curlevel = level;

            element_levels_[cur_c] = curlevel;


            std::unique_lock <std::mutex> templock(global);
            int maxlevelcopy = maxlevel_;
            if (curlevel <= maxlevelcopy)
                templock.unlock();
            tableint currObj = enterpoint_node_;
            tableint enterpoint_copy = enterpoint_node_;


            memset(data_level0_memory_ + cur_c * size_data_per_element_ + offsetLevel0_, 0, size_data_per_element_);

            // Initialisation of the data and label
            memcpy(getExternalLabeLp(cur_c), &label, sizeof(labeltype));
            memcpy(getDataByInternalId(cur_c), data_point, data_size_);


            if (curlevel) {
                linkLists_[cur_c] = (char *) malloc(size_links_per_element_ * curlevel + 1);
                if (linkLists_[cur_c] == nullptr)
                    throw std::runtime_error("Not enough memory: addPoint failed to allocate linklist");
                memset(linkLists_[cur_c], 0, size_links_per_element_ * curlevel + 1);
            }

            if ((signed)currObj != -1) {

                if (curlevel < maxlevelcopy) {

                    dist_t curdist = fstdistfunc_(data_point, getDataByInternalId(currObj), dist_func_param_);
                    for (int level = maxlevelcopy; level > curlevel; level--) {


                        bool changed = true;
                        while (changed) {
                            changed = false;
                            unsigned int *data;
                            std::unique_lock <std::mutex> lock(link_list_locks_[currObj]);
                            data = get_linklist(currObj,level);
                            int size = getListCount(data);

                            tableint *datal = (tableint *) (data + 1);
                            for (int i = 0; i < size; i++) {
                                tableint cand = datal[i];
                                if (cand < 0 || cand > max_elements_)
                                    throw std::runtime_error("cand error");
                                dist_t d = fstdistfunc_(data_point, getDataByInternalId(cand), dist_func_param_);
                                if (d < curdist) {
                                    curdist = d;
                                    currObj = cand;
                                    changed = true;
                                }
                            }
                        }
                    }
                }

                bool epDeleted = isMarkedDeleted(enterpoint_copy);
                for (int level = std::min(curlevel, maxlevelcopy); level >= 0; level--) {
                    if (level > maxlevelcopy || level < 0)  // possible?
                        throw std::runtime_error("Level error");

                    std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> top_candidates = searchBaseLayer(
                            currObj, data_point, level);
                    if (epDeleted) {
                        top_candidates.emplace(fstdistfunc_(data_point, getDataByInternalId(enterpoint_copy), dist_func_param_), enterpoint_copy);
                        if (top_candidates.size() > ef_construction_)
                            top_candidates.pop();
                    }
                    currObj = mutuallyConnectNewElement(data_point, cur_c, top_candidates, level, false);
                }


            } else {
                // Do nothing for the first element
                enterpoint_node_ = 0;
                maxlevel_ = curlevel;

            }

            //Releasing lock for the maximum level
            if (curlevel > maxlevelcopy) {
                enterpoint_node_ = cur_c;
                maxlevel_ = curlevel;
            }
            return cur_c;
        };

        std::priority_queue<std::pair<dist_t, labeltype >>
        searchKnn(const void *query_data, size_t k) const {
            std::priority_queue<std::pair<dist_t, labeltype >> result;
            if (cur_element_count == 0) return result;

            tableint currObj = enterpoint_node_;
            dist_t curdist = fstdistfunc_(query_data, getDataByInternalId(enterpoint_node_), dist_func_param_);

            for (int level = maxlevel_; level > 0; level--) {
                bool changed = true;
                while (changed) {
                    changed = false;
                    unsigned int *data;

                    data = (unsigned int *) get_linklist(currObj, level);
                    int size = getListCount(data);
                    metric_hops++;
                    metric_distance_computations+=size;

                    tableint *datal = (tableint *) (data + 1);
                    for (int i = 0; i < size; i++) {
                        tableint cand = datal[i];
                        if (cand < 0 || cand > max_elements_)
                            throw std::runtime_error("cand error");
                        dist_t d = fstdistfunc_(query_data, getDataByInternalId(cand), dist_func_param_);

                        if (d < curdist) {
                            curdist = d;
                            currObj = cand;
                            changed = true;
                        }
                    }
                }
            }

            std::priority_queue<std::pair<dist_t, tableint>, std::vector<std::pair<dist_t, tableint>>, CompareByFirst> top_candidates;
            if (has_deletions_) {                
                top_candidates=searchBaseLayerST<true,true>(
                        currObj, query_data, std::max(ef_, k));
            }
            else{
                top_candidates=searchBaseLayerST<false,true>(
                        currObj, query_data, std::max(ef_, k));
            }

            while (top_candidates.size() > k) {
                top_candidates.pop();
            }
            while (top_candidates.size() > 0) {
                std::pair<dist_t, tableint> rez = top_candidates.top();
                result.push(std::pair<dist_t, labeltype>(rez.first, getExternalLabel(rez.second)));
                top_candidates.pop();
            }
            return result;
        };

        template <typename Comp>
        std::vector<std::pair<dist_t, labeltype>>
        searchKnn(const void* query_data, size_t k, Comp comp) {
            std::vector<std::pair<dist_t, labeltype>> result;
            if (cur_element_count == 0) return result;

            auto ret = searchKnn(query_data, k);

            while (!ret.empty()) {
                result.push_back(ret.top());
                ret.pop();
            }

            std::sort(result.begin(), result.end(), comp);

            return result;
        }

        void checkIntegrity(){
            int connections_checked=0;
            std::vector <int > inbound_connections_num(cur_element_count,0);
            for(int i = 0;i < cur_element_count; i++){
                for(int l = 0;l <= element_levels_[i]; l++){
                    linklistsizeint *ll_cur = get_linklist_at_level(i,l);
                    int size = getListCount(ll_cur);
                    tableint *data = (tableint *) (ll_cur + 1);
                    std::unordered_set<tableint> s;
                    for (int j=0; j<size; j++){
                        assert(data[j] > 0);
                        assert(data[j] < cur_element_count);                                                
                        assert (data[j] != i);
                        inbound_connections_num[data[j]]++;
                        s.insert(data[j]);
                        connections_checked++;
                        
                    }
                    assert(s.size() == size);
                }
            }
            if(cur_element_count > 1){
                int min1=inbound_connections_num[0], max1=inbound_connections_num[0];
                for(int i=0; i < cur_element_count; i++){                
                    assert(inbound_connections_num[i] > 0);
                    min1=std::min(inbound_connections_num[i],min1);
                    max1=std::max(inbound_connections_num[i],max1);
                }
                std::cout << "Min inbound: " << min1 << ", Max inbound:" << max1 << "\n";
            }
            std::cout << "integrity ok, checked " << connections_checked << " connections\n";
            
        }

    };

}