File: sift_1b.cpp

package info (click to toggle)
hnswlib 0.4.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 432 kB
  • sloc: cpp: 2,570; python: 402; makefile: 27; sh: 11
file content (365 lines) | stat: -rw-r--r-- 11,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#include <iostream>
#include <fstream>
#include <queue>
#include <chrono>
#include "hnswlib/hnswlib.h"


#include <unordered_set>

using namespace std;
using namespace hnswlib;

class StopW {
    std::chrono::steady_clock::time_point time_begin;
public:
    StopW() {
        time_begin = std::chrono::steady_clock::now();
    }

    float getElapsedTimeMicro() {
        std::chrono::steady_clock::time_point time_end = std::chrono::steady_clock::now();
        return (std::chrono::duration_cast<std::chrono::microseconds>(time_end - time_begin).count());
    }

    void reset() {
        time_begin = std::chrono::steady_clock::now();
    }

};



/*
* Author:  David Robert Nadeau
* Site:    http://NadeauSoftware.com/
* License: Creative Commons Attribution 3.0 Unported License
*          http://creativecommons.org/licenses/by/3.0/deed.en_US
*/

#if defined(_WIN32)
#include <windows.h>
#include <psapi.h>

#elif defined(__unix__) || defined(__unix) || defined(unix) || (defined(__APPLE__) && defined(__MACH__))

#include <unistd.h>
#include <sys/resource.h>

#if defined(__APPLE__) && defined(__MACH__)
#include <mach/mach.h>

#elif (defined(_AIX) || defined(__TOS__AIX__)) || (defined(__sun__) || defined(__sun) || defined(sun) && (defined(__SVR4) || defined(__svr4__)))
#include <fcntl.h>
#include <procfs.h>

#elif defined(__linux__) || defined(__linux) || defined(linux) || defined(__gnu_linux__)

#endif

#else
#error "Cannot define getPeakRSS( ) or getCurrentRSS( ) for an unknown OS."
#endif


/**
* Returns the peak (maximum so far) resident set size (physical
* memory use) measured in bytes, or zero if the value cannot be
* determined on this OS.
*/
static size_t getPeakRSS() {
#if defined(_WIN32)
    /* Windows -------------------------------------------------- */
    PROCESS_MEMORY_COUNTERS info;
    GetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
    return (size_t)info.PeakWorkingSetSize;

#elif (defined(_AIX) || defined(__TOS__AIX__)) || (defined(__sun__) || defined(__sun) || defined(sun) && (defined(__SVR4) || defined(__svr4__)))
    /* AIX and Solaris ------------------------------------------ */
    struct psinfo psinfo;
    int fd = -1;
    if ((fd = open("/proc/self/psinfo", O_RDONLY)) == -1)
        return (size_t)0L;      /* Can't open? */
    if (read(fd, &psinfo, sizeof(psinfo)) != sizeof(psinfo))
    {
        close(fd);
        return (size_t)0L;      /* Can't read? */
    }
    close(fd);
    return (size_t)(psinfo.pr_rssize * 1024L);

#elif defined(__unix__) || defined(__unix) || defined(unix) || (defined(__APPLE__) && defined(__MACH__))
    /* BSD, Linux, and OSX -------------------------------------- */
    struct rusage rusage;
    getrusage(RUSAGE_SELF, &rusage);
#if defined(__APPLE__) && defined(__MACH__)
    return (size_t)rusage.ru_maxrss;
#else
    return (size_t) (rusage.ru_maxrss * 1024L);
#endif

#else
    /* Unknown OS ----------------------------------------------- */
    return (size_t)0L;          /* Unsupported. */
#endif
}


/**
* Returns the current resident set size (physical memory use) measured
* in bytes, or zero if the value cannot be determined on this OS.
*/
static size_t getCurrentRSS() {
#if defined(_WIN32)
    /* Windows -------------------------------------------------- */
    PROCESS_MEMORY_COUNTERS info;
    GetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
    return (size_t)info.WorkingSetSize;

#elif defined(__APPLE__) && defined(__MACH__)
    /* OSX ------------------------------------------------------ */
    struct mach_task_basic_info info;
    mach_msg_type_number_t infoCount = MACH_TASK_BASIC_INFO_COUNT;
    if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO,
        (task_info_t)&info, &infoCount) != KERN_SUCCESS)
        return (size_t)0L;      /* Can't access? */
    return (size_t)info.resident_size;

#elif defined(__linux__) || defined(__linux) || defined(linux) || defined(__gnu_linux__)
    /* Linux ---------------------------------------------------- */
    long rss = 0L;
    FILE *fp = NULL;
    if ((fp = fopen("/proc/self/statm", "r")) == NULL)
        return (size_t) 0L;      /* Can't open? */
    if (fscanf(fp, "%*s%ld", &rss) != 1) {
        fclose(fp);
        return (size_t) 0L;      /* Can't read? */
    }
    fclose(fp);
    return (size_t) rss * (size_t) sysconf(_SC_PAGESIZE);

#else
    /* AIX, BSD, Solaris, and Unknown OS ------------------------ */
    return (size_t)0L;          /* Unsupported. */
#endif
}


static void
get_gt(unsigned int *massQA, unsigned char *massQ, unsigned char *mass, size_t vecsize, size_t qsize, L2SpaceI &l2space,
       size_t vecdim, vector<std::priority_queue<std::pair<int, labeltype >>> &answers, size_t k) {


    (vector<std::priority_queue<std::pair<int, labeltype >>>(qsize)).swap(answers);
    DISTFUNC<int> fstdistfunc_ = l2space.get_dist_func();
    cout << qsize << "\n";
    for (int i = 0; i < qsize; i++) {
        for (int j = 0; j < k; j++) {
            answers[i].emplace(0.0f, massQA[1000 * i + j]);
        }
    }
}

static float
test_approx(unsigned char *massQ, size_t vecsize, size_t qsize, HierarchicalNSW<int> &appr_alg, size_t vecdim,
            vector<std::priority_queue<std::pair<int, labeltype >>> &answers, size_t k) {
    size_t correct = 0;
    size_t total = 0;
    //uncomment to test in parallel mode:
    //#pragma omp parallel for
    for (int i = 0; i < qsize; i++) {

        std::priority_queue<std::pair<int, labeltype >> result = appr_alg.searchKnn(massQ + vecdim * i, k);
        std::priority_queue<std::pair<int, labeltype >> gt(answers[i]);
        unordered_set<labeltype> g;
        total += gt.size();

        while (gt.size()) {


            g.insert(gt.top().second);
            gt.pop();
        }

        while (result.size()) {
            if (g.find(result.top().second) != g.end()) {

                correct++;
            } else {
            }
            result.pop();
        }

    }
    return 1.0f * correct / total;
}

static void
test_vs_recall(unsigned char *massQ, size_t vecsize, size_t qsize, HierarchicalNSW<int> &appr_alg, size_t vecdim,
               vector<std::priority_queue<std::pair<int, labeltype >>> &answers, size_t k) {
    vector<size_t> efs;// = { 10,10,10,10,10 };
    for (int i = k; i < 30; i++) {
        efs.push_back(i);
    }
    for (int i = 30; i < 100; i += 10) {
        efs.push_back(i);
    }
    for (int i = 100; i < 500; i += 40) {
        efs.push_back(i);
    }
    for (size_t ef : efs) {
        appr_alg.setEf(ef);
        StopW stopw = StopW();

        float recall = test_approx(massQ, vecsize, qsize, appr_alg, vecdim, answers, k);
        float time_us_per_query = stopw.getElapsedTimeMicro() / qsize;

        cout << ef << "\t" << recall << "\t" << time_us_per_query << " us\n";
        if (recall > 1.0) {
            cout << recall << "\t" << time_us_per_query << " us\n";
            break;
        }
    }
}

inline bool exists_test(const std::string &name) {
    ifstream f(name.c_str());
    return f.good();
}


void sift_test1B() {
	
	
	int subset_size_milllions = 200;
	int efConstruction = 40;
	int M = 16;
	

    size_t vecsize = subset_size_milllions * 1000000;

    size_t qsize = 10000;
    size_t vecdim = 128;
    char path_index[1024];
    char path_gt[1024];
    char *path_q = "bigann/bigann_query.bvecs";
    char *path_data = "bigann/bigann_base.bvecs";
    sprintf(path_index, "sift1b_%dm_ef_%d_M_%d.bin", subset_size_milllions, efConstruction, M);

    sprintf(path_gt, "bigann/gnd/idx_%dM.ivecs", subset_size_milllions);


    unsigned char *massb = new unsigned char[vecdim];

    cout << "Loading GT:\n";
    ifstream inputGT(path_gt, ios::binary);
    unsigned int *massQA = new unsigned int[qsize * 1000];
    for (int i = 0; i < qsize; i++) {
        int t;
        inputGT.read((char *) &t, 4);
        inputGT.read((char *) (massQA + 1000 * i), t * 4);
        if (t != 1000) {
            cout << "err";
            return;
        }
    }
    inputGT.close();
	
    cout << "Loading queries:\n";
    unsigned char *massQ = new unsigned char[qsize * vecdim];
    ifstream inputQ(path_q, ios::binary);

    for (int i = 0; i < qsize; i++) {
        int in = 0;
        inputQ.read((char *) &in, 4);
        if (in != 128) {
            cout << "file error";
            exit(1);
        }
        inputQ.read((char *) massb, in);
        for (int j = 0; j < vecdim; j++) {
            massQ[i * vecdim + j] = massb[j];
        }

    }
    inputQ.close();


    unsigned char *mass = new unsigned char[vecdim];
    ifstream input(path_data, ios::binary);
    int in = 0;
    L2SpaceI l2space(vecdim);

    HierarchicalNSW<int> *appr_alg;
    if (exists_test(path_index)) {
        cout << "Loading index from " << path_index << ":\n";
        appr_alg = new HierarchicalNSW<int>(&l2space, path_index, false);
        cout << "Actual memory usage: " << getCurrentRSS() / 1000000 << " Mb \n";
    } else {
        cout << "Building index:\n";
        appr_alg = new HierarchicalNSW<int>(&l2space, vecsize, M, efConstruction);


        input.read((char *) &in, 4);
        if (in != 128) {
            cout << "file error";
            exit(1);
        }
        input.read((char *) massb, in);

        for (int j = 0; j < vecdim; j++) {
            mass[j] = massb[j] * (1.0f);
        }

        appr_alg->addPoint((void *) (massb), (size_t) 0);
        int j1 = 0;
        StopW stopw = StopW();
        StopW stopw_full = StopW();
        size_t report_every = 100000;
#pragma omp parallel for
        for (int i = 1; i < vecsize; i++) {
            unsigned char mass[128];
            int j2=0;
#pragma omp critical
            {

                input.read((char *) &in, 4);
                if (in != 128) {
                    cout << "file error";
                    exit(1);
                }
                input.read((char *) massb, in);
                for (int j = 0; j < vecdim; j++) {
                    mass[j] = massb[j];
                }
                j1++;
                j2=j1;
                if (j1 % report_every == 0) {
                    cout << j1 / (0.01 * vecsize) << " %, "
                         << report_every / (1000.0 * 1e-6 * stopw.getElapsedTimeMicro()) << " kips " << " Mem: "
                         << getCurrentRSS() / 1000000 << " Mb \n";
                    stopw.reset();
                }
            }
            appr_alg->addPoint((void *) (mass), (size_t) j2);


        }
        input.close();
        cout << "Build time:" << 1e-6 * stopw_full.getElapsedTimeMicro() << "  seconds\n";
        appr_alg->saveIndex(path_index);
    }


    vector<std::priority_queue<std::pair<int, labeltype >>> answers;
    size_t k = 1;
    cout << "Parsing gt:\n";
    get_gt(massQA, massQ, mass, vecsize, qsize, l2space, vecdim, answers, k);
    cout << "Loaded gt\n";
    for (int i = 0; i < 1; i++)
        test_vs_recall(massQ, vecsize, qsize, *appr_alg, vecdim, answers, k);
    cout << "Actual memory usage: " << getCurrentRSS() / 1000000 << " Mb \n";
    return;


}