File: example_mt_search.cpp

package info (click to toggle)
hnswlib 0.8.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 628 kB
  • sloc: cpp: 4,809; python: 1,113; makefile: 32; sh: 18
file content (107 lines) | stat: -rw-r--r-- 3,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include "../../hnswlib/hnswlib.h"
#include <thread>


// Multithreaded executor
// The helper function copied from python_bindings/bindings.cpp (and that itself is copied from nmslib)
// An alternative is using #pragme omp parallel for or any other C++ threading
template<class Function>
inline void ParallelFor(size_t start, size_t end, size_t numThreads, Function fn) {
    if (numThreads <= 0) {
        numThreads = std::thread::hardware_concurrency();
    }

    if (numThreads == 1) {
        for (size_t id = start; id < end; id++) {
            fn(id, 0);
        }
    } else {
        std::vector<std::thread> threads;
        std::atomic<size_t> current(start);

        // keep track of exceptions in threads
        // https://stackoverflow.com/a/32428427/1713196
        std::exception_ptr lastException = nullptr;
        std::mutex lastExceptMutex;

        for (size_t threadId = 0; threadId < numThreads; ++threadId) {
            threads.push_back(std::thread([&, threadId] {
                while (true) {
                    size_t id = current.fetch_add(1);

                    if (id >= end) {
                        break;
                    }

                    try {
                        fn(id, threadId);
                    } catch (...) {
                        std::unique_lock<std::mutex> lastExcepLock(lastExceptMutex);
                        lastException = std::current_exception();
                        /*
                         * This will work even when current is the largest value that
                         * size_t can fit, because fetch_add returns the previous value
                         * before the increment (what will result in overflow
                         * and produce 0 instead of current + 1).
                         */
                        current = end;
                        break;
                    }
                }
            }));
        }
        for (auto &thread : threads) {
            thread.join();
        }
        if (lastException) {
            std::rethrow_exception(lastException);
        }
    }
}


int main() {
    int dim = 16;               // Dimension of the elements
    int max_elements = 10000;   // Maximum number of elements, should be known beforehand
    int M = 16;                 // Tightly connected with internal dimensionality of the data
                                // strongly affects the memory consumption
    int ef_construction = 200;  // Controls index search speed/build speed tradeoff
    int num_threads = 20;       // Number of threads for operations with index

    // Initing index
    hnswlib::L2Space space(dim);
    hnswlib::HierarchicalNSW<float>* alg_hnsw = new hnswlib::HierarchicalNSW<float>(&space, max_elements, M, ef_construction);

    // Generate random data
    std::mt19937 rng;
    rng.seed(47);
    std::uniform_real_distribution<> distrib_real;
    float* data = new float[dim * max_elements];
    for (int i = 0; i < dim * max_elements; i++) {
        data[i] = distrib_real(rng);
    }

    // Add data to index
    ParallelFor(0, max_elements, num_threads, [&](size_t row, size_t threadId) {
        alg_hnsw->addPoint((void*)(data + dim * row), row);
    });

    // Query the elements for themselves and measure recall
    std::vector<hnswlib::labeltype> neighbors(max_elements);
    ParallelFor(0, max_elements, num_threads, [&](size_t row, size_t threadId) {
        std::priority_queue<std::pair<float, hnswlib::labeltype>> result = alg_hnsw->searchKnn(data + dim * row, 1);
        hnswlib::labeltype label = result.top().second;
        neighbors[row] = label;
    });
    float correct = 0;
    for (int i = 0; i < max_elements; i++) {
        hnswlib::labeltype label = neighbors[i];
        if (label == i) correct++;
    }
    float recall = correct / max_elements;
    std::cout << "Recall: " << recall << "\n";

    delete[] data;
    delete alg_hnsw;
    return 0;
}