1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
|
#include <iostream>
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include "hnswlib.h"
#include <thread>
#include <atomic>
#include <stdlib.h>
#include <assert.h>
namespace py = pybind11;
using namespace pybind11::literals; // needed to bring in _a literal
/*
* replacement for the openmp '#pragma omp parallel for' directive
* only handles a subset of functionality (no reductions etc)
* Process ids from start (inclusive) to end (EXCLUSIVE)
*
* The method is borrowed from nmslib
*/
template<class Function>
inline void ParallelFor(size_t start, size_t end, size_t numThreads, Function fn) {
if (numThreads <= 0) {
numThreads = std::thread::hardware_concurrency();
}
if (numThreads == 1) {
for (size_t id = start; id < end; id++) {
fn(id, 0);
}
} else {
std::vector<std::thread> threads;
std::atomic<size_t> current(start);
// keep track of exceptions in threads
// https://stackoverflow.com/a/32428427/1713196
std::exception_ptr lastException = nullptr;
std::mutex lastExceptMutex;
for (size_t threadId = 0; threadId < numThreads; ++threadId) {
threads.push_back(std::thread([&, threadId] {
while (true) {
size_t id = current.fetch_add(1);
if (id >= end) {
break;
}
try {
fn(id, threadId);
} catch (...) {
std::unique_lock<std::mutex> lastExcepLock(lastExceptMutex);
lastException = std::current_exception();
/*
* This will work even when current is the largest value that
* size_t can fit, because fetch_add returns the previous value
* before the increment (what will result in overflow
* and produce 0 instead of current + 1).
*/
current = end;
break;
}
}
}));
}
for (auto &thread : threads) {
thread.join();
}
if (lastException) {
std::rethrow_exception(lastException);
}
}
}
inline void assert_true(bool expr, const std::string & msg) {
if (expr == false) throw std::runtime_error("Unpickle Error: " + msg);
return;
}
class CustomFilterFunctor: public hnswlib::BaseFilterFunctor {
std::function<bool(hnswlib::labeltype)> filter;
public:
explicit CustomFilterFunctor(const std::function<bool(hnswlib::labeltype)>& f) {
filter = f;
}
bool operator()(hnswlib::labeltype id) {
return filter(id);
}
};
inline void get_input_array_shapes(const py::buffer_info& buffer, size_t* rows, size_t* features) {
if (buffer.ndim != 2 && buffer.ndim != 1) {
char msg[256];
snprintf(msg, sizeof(msg),
"Input vector data wrong shape. Number of dimensions %d. Data must be a 1D or 2D array.",
buffer.ndim);
throw std::runtime_error(msg);
}
if (buffer.ndim == 2) {
*rows = buffer.shape[0];
*features = buffer.shape[1];
} else {
*rows = 1;
*features = buffer.shape[0];
}
}
inline std::vector<size_t> get_input_ids_and_check_shapes(const py::object& ids_, size_t feature_rows) {
std::vector<size_t> ids;
if (!ids_.is_none()) {
py::array_t < size_t, py::array::c_style | py::array::forcecast > items(ids_);
auto ids_numpy = items.request();
// check shapes
if (!((ids_numpy.ndim == 1 && ids_numpy.shape[0] == feature_rows) ||
(ids_numpy.ndim == 0 && feature_rows == 1))) {
char msg[256];
snprintf(msg, sizeof(msg),
"The input label shape %d does not match the input data vector shape %d",
ids_numpy.ndim, feature_rows);
throw std::runtime_error(msg);
}
// extract data
if (ids_numpy.ndim == 1) {
std::vector<size_t> ids1(ids_numpy.shape[0]);
for (size_t i = 0; i < ids1.size(); i++) {
ids1[i] = items.data()[i];
}
ids.swap(ids1);
} else if (ids_numpy.ndim == 0) {
ids.push_back(*items.data());
}
}
return ids;
}
template<typename dist_t, typename data_t = float>
class Index {
public:
static const int ser_version = 1; // serialization version
std::string space_name;
int dim;
size_t seed;
size_t default_ef;
bool index_inited;
bool ep_added;
bool normalize;
int num_threads_default;
hnswlib::labeltype cur_l;
hnswlib::HierarchicalNSW<dist_t>* appr_alg;
hnswlib::SpaceInterface<float>* l2space;
Index(const std::string &space_name, const int dim) : space_name(space_name), dim(dim) {
normalize = false;
if (space_name == "l2") {
l2space = new hnswlib::L2Space(dim);
} else if (space_name == "ip") {
l2space = new hnswlib::InnerProductSpace(dim);
} else if (space_name == "cosine") {
l2space = new hnswlib::InnerProductSpace(dim);
normalize = true;
} else {
throw std::runtime_error("Space name must be one of l2, ip, or cosine.");
}
appr_alg = NULL;
ep_added = true;
index_inited = false;
num_threads_default = std::thread::hardware_concurrency();
default_ef = 10;
}
~Index() {
delete l2space;
if (appr_alg)
delete appr_alg;
}
void init_new_index(
size_t maxElements,
size_t M,
size_t efConstruction,
size_t random_seed,
bool allow_replace_deleted) {
if (appr_alg) {
throw std::runtime_error("The index is already initiated.");
}
cur_l = 0;
appr_alg = new hnswlib::HierarchicalNSW<dist_t>(l2space, maxElements, M, efConstruction, random_seed, allow_replace_deleted);
index_inited = true;
ep_added = false;
appr_alg->ef_ = default_ef;
seed = random_seed;
}
void set_ef(size_t ef) {
default_ef = ef;
if (appr_alg)
appr_alg->ef_ = ef;
}
void set_num_threads(int num_threads) {
this->num_threads_default = num_threads;
}
size_t indexFileSize() const {
return appr_alg->indexFileSize();
}
void saveIndex(const std::string &path_to_index) {
appr_alg->saveIndex(path_to_index);
}
void loadIndex(const std::string &path_to_index, size_t max_elements, bool allow_replace_deleted) {
if (appr_alg) {
std::cerr << "Warning: Calling load_index for an already inited index. Old index is being deallocated." << std::endl;
delete appr_alg;
}
appr_alg = new hnswlib::HierarchicalNSW<dist_t>(l2space, path_to_index, false, max_elements, allow_replace_deleted);
cur_l = appr_alg->cur_element_count;
index_inited = true;
}
void normalize_vector(float* data, float* norm_array) {
float norm = 0.0f;
for (int i = 0; i < dim; i++)
norm += data[i] * data[i];
norm = 1.0f / (sqrtf(norm) + 1e-30f);
for (int i = 0; i < dim; i++)
norm_array[i] = data[i] * norm;
}
void addItems(py::object input, py::object ids_ = py::none(), int num_threads = -1, bool replace_deleted = false) {
py::array_t < dist_t, py::array::c_style | py::array::forcecast > items(input);
auto buffer = items.request();
if (num_threads <= 0)
num_threads = num_threads_default;
size_t rows, features;
get_input_array_shapes(buffer, &rows, &features);
if (features != dim)
throw std::runtime_error("Wrong dimensionality of the vectors");
// avoid using threads when the number of additions is small:
if (rows <= num_threads * 4) {
num_threads = 1;
}
std::vector<size_t> ids = get_input_ids_and_check_shapes(ids_, rows);
{
int start = 0;
if (!ep_added) {
size_t id = ids.size() ? ids.at(0) : (cur_l);
float* vector_data = (float*)items.data(0);
std::vector<float> norm_array(dim);
if (normalize) {
normalize_vector(vector_data, norm_array.data());
vector_data = norm_array.data();
}
appr_alg->addPoint((void*)vector_data, (size_t)id, replace_deleted);
start = 1;
ep_added = true;
}
py::gil_scoped_release l;
if (normalize == false) {
ParallelFor(start, rows, num_threads, [&](size_t row, size_t threadId) {
size_t id = ids.size() ? ids.at(row) : (cur_l + row);
appr_alg->addPoint((void*)items.data(row), (size_t)id, replace_deleted);
});
} else {
std::vector<float> norm_array(num_threads * dim);
ParallelFor(start, rows, num_threads, [&](size_t row, size_t threadId) {
// normalize vector:
size_t start_idx = threadId * dim;
normalize_vector((float*)items.data(row), (norm_array.data() + start_idx));
size_t id = ids.size() ? ids.at(row) : (cur_l + row);
appr_alg->addPoint((void*)(norm_array.data() + start_idx), (size_t)id, replace_deleted);
});
}
cur_l += rows;
}
}
py::object getData(py::object ids_ = py::none(), std::string return_type = "numpy") {
std::vector<std::string> return_types{"numpy", "list"};
if (std::find(std::begin(return_types), std::end(return_types), return_type) == std::end(return_types)) {
throw std::invalid_argument("return_type should be \"numpy\" or \"list\"");
}
std::vector<size_t> ids;
if (!ids_.is_none()) {
py::array_t < size_t, py::array::c_style | py::array::forcecast > items(ids_);
auto ids_numpy = items.request();
if (ids_numpy.ndim == 0) {
throw std::invalid_argument("get_items accepts a list of indices and returns a list of vectors");
} else {
std::vector<size_t> ids1(ids_numpy.shape[0]);
for (size_t i = 0; i < ids1.size(); i++) {
ids1[i] = items.data()[i];
}
ids.swap(ids1);
}
}
std::vector<std::vector<data_t>> data;
for (auto id : ids) {
data.push_back(appr_alg->template getDataByLabel<data_t>(id));
}
if (return_type == "list") {
return py::cast(data);
}
if (return_type == "numpy") {
return py::array_t< data_t, py::array::c_style | py::array::forcecast >(py::cast(data));
}
}
std::vector<hnswlib::labeltype> getIdsList() {
std::vector<hnswlib::labeltype> ids;
for (auto kv : appr_alg->label_lookup_) {
ids.push_back(kv.first);
}
return ids;
}
py::dict getAnnData() const { /* WARNING: Index::getAnnData is not thread-safe with Index::addItems */
std::unique_lock <std::mutex> templock(appr_alg->global);
size_t level0_npy_size = appr_alg->cur_element_count * appr_alg->size_data_per_element_;
size_t link_npy_size = 0;
std::vector<size_t> link_npy_offsets(appr_alg->cur_element_count);
for (size_t i = 0; i < appr_alg->cur_element_count; i++) {
size_t linkListSize = appr_alg->element_levels_[i] > 0 ? appr_alg->size_links_per_element_ * appr_alg->element_levels_[i] : 0;
link_npy_offsets[i] = link_npy_size;
if (linkListSize)
link_npy_size += linkListSize;
}
char* data_level0_npy = (char*)malloc(level0_npy_size);
char* link_list_npy = (char*)malloc(link_npy_size);
int* element_levels_npy = (int*)malloc(appr_alg->element_levels_.size() * sizeof(int));
hnswlib::labeltype* label_lookup_key_npy = (hnswlib::labeltype*)malloc(appr_alg->label_lookup_.size() * sizeof(hnswlib::labeltype));
hnswlib::tableint* label_lookup_val_npy = (hnswlib::tableint*)malloc(appr_alg->label_lookup_.size() * sizeof(hnswlib::tableint));
memset(label_lookup_key_npy, -1, appr_alg->label_lookup_.size() * sizeof(hnswlib::labeltype));
memset(label_lookup_val_npy, -1, appr_alg->label_lookup_.size() * sizeof(hnswlib::tableint));
size_t idx = 0;
for (auto it = appr_alg->label_lookup_.begin(); it != appr_alg->label_lookup_.end(); ++it) {
label_lookup_key_npy[idx] = it->first;
label_lookup_val_npy[idx] = it->second;
idx++;
}
memset(link_list_npy, 0, link_npy_size);
memcpy(data_level0_npy, appr_alg->data_level0_memory_, level0_npy_size);
memcpy(element_levels_npy, appr_alg->element_levels_.data(), appr_alg->element_levels_.size() * sizeof(int));
for (size_t i = 0; i < appr_alg->cur_element_count; i++) {
size_t linkListSize = appr_alg->element_levels_[i] > 0 ? appr_alg->size_links_per_element_ * appr_alg->element_levels_[i] : 0;
if (linkListSize) {
memcpy(link_list_npy + link_npy_offsets[i], appr_alg->linkLists_[i], linkListSize);
}
}
py::capsule free_when_done_l0(data_level0_npy, [](void* f) {
delete[] f;
});
py::capsule free_when_done_lvl(element_levels_npy, [](void* f) {
delete[] f;
});
py::capsule free_when_done_lb(label_lookup_key_npy, [](void* f) {
delete[] f;
});
py::capsule free_when_done_id(label_lookup_val_npy, [](void* f) {
delete[] f;
});
py::capsule free_when_done_ll(link_list_npy, [](void* f) {
delete[] f;
});
/* TODO: serialize state of random generators appr_alg->level_generator_ and appr_alg->update_probability_generator_ */
/* for full reproducibility / to avoid re-initializing generators inside Index::createFromParams */
return py::dict(
"offset_level0"_a = appr_alg->offsetLevel0_,
"max_elements"_a = appr_alg->max_elements_,
"cur_element_count"_a = (size_t)appr_alg->cur_element_count,
"size_data_per_element"_a = appr_alg->size_data_per_element_,
"label_offset"_a = appr_alg->label_offset_,
"offset_data"_a = appr_alg->offsetData_,
"max_level"_a = appr_alg->maxlevel_,
"enterpoint_node"_a = appr_alg->enterpoint_node_,
"max_M"_a = appr_alg->maxM_,
"max_M0"_a = appr_alg->maxM0_,
"M"_a = appr_alg->M_,
"mult"_a = appr_alg->mult_,
"ef_construction"_a = appr_alg->ef_construction_,
"ef"_a = appr_alg->ef_,
"has_deletions"_a = (bool)appr_alg->num_deleted_,
"size_links_per_element"_a = appr_alg->size_links_per_element_,
"allow_replace_deleted"_a = appr_alg->allow_replace_deleted_,
"label_lookup_external"_a = py::array_t<hnswlib::labeltype>(
{ appr_alg->label_lookup_.size() }, // shape
{ sizeof(hnswlib::labeltype) }, // C-style contiguous strides for each index
label_lookup_key_npy, // the data pointer
free_when_done_lb),
"label_lookup_internal"_a = py::array_t<hnswlib::tableint>(
{ appr_alg->label_lookup_.size() }, // shape
{ sizeof(hnswlib::tableint) }, // C-style contiguous strides for each index
label_lookup_val_npy, // the data pointer
free_when_done_id),
"element_levels"_a = py::array_t<int>(
{ appr_alg->element_levels_.size() }, // shape
{ sizeof(int) }, // C-style contiguous strides for each index
element_levels_npy, // the data pointer
free_when_done_lvl),
// linkLists_,element_levels_,data_level0_memory_
"data_level0"_a = py::array_t<char>(
{ level0_npy_size }, // shape
{ sizeof(char) }, // C-style contiguous strides for each index
data_level0_npy, // the data pointer
free_when_done_l0),
"link_lists"_a = py::array_t<char>(
{ link_npy_size }, // shape
{ sizeof(char) }, // C-style contiguous strides for each index
link_list_npy, // the data pointer
free_when_done_ll));
}
py::dict getIndexParams() const { /* WARNING: Index::getAnnData is not thread-safe with Index::addItems */
auto params = py::dict(
"ser_version"_a = py::int_(Index<float>::ser_version), // serialization version
"space"_a = space_name,
"dim"_a = dim,
"index_inited"_a = index_inited,
"ep_added"_a = ep_added,
"normalize"_a = normalize,
"num_threads"_a = num_threads_default,
"seed"_a = seed);
if (index_inited == false)
return py::dict(**params, "ef"_a = default_ef);
auto ann_params = getAnnData();
return py::dict(**params, **ann_params);
}
static Index<float>* createFromParams(const py::dict d) {
// check serialization version
assert_true(((int)py::int_(Index<float>::ser_version)) >= d["ser_version"].cast<int>(), "Invalid serialization version!");
auto space_name_ = d["space"].cast<std::string>();
auto dim_ = d["dim"].cast<int>();
auto index_inited_ = d["index_inited"].cast<bool>();
Index<float>* new_index = new Index<float>(space_name_, dim_);
/* TODO: deserialize state of random generators into new_index->level_generator_ and new_index->update_probability_generator_ */
/* for full reproducibility / state of generators is serialized inside Index::getIndexParams */
new_index->seed = d["seed"].cast<size_t>();
if (index_inited_) {
new_index->appr_alg = new hnswlib::HierarchicalNSW<dist_t>(
new_index->l2space,
d["max_elements"].cast<size_t>(),
d["M"].cast<size_t>(),
d["ef_construction"].cast<size_t>(),
new_index->seed);
new_index->cur_l = d["cur_element_count"].cast<size_t>();
}
new_index->index_inited = index_inited_;
new_index->ep_added = d["ep_added"].cast<bool>();
new_index->num_threads_default = d["num_threads"].cast<int>();
new_index->default_ef = d["ef"].cast<size_t>();
if (index_inited_)
new_index->setAnnData(d);
return new_index;
}
static Index<float> * createFromIndex(const Index<float> & index) {
return createFromParams(index.getIndexParams());
}
void setAnnData(const py::dict d) { /* WARNING: Index::setAnnData is not thread-safe with Index::addItems */
std::unique_lock <std::mutex> templock(appr_alg->global);
assert_true(appr_alg->offsetLevel0_ == d["offset_level0"].cast<size_t>(), "Invalid value of offsetLevel0_ ");
assert_true(appr_alg->max_elements_ == d["max_elements"].cast<size_t>(), "Invalid value of max_elements_ ");
appr_alg->cur_element_count = d["cur_element_count"].cast<size_t>();
assert_true(appr_alg->size_data_per_element_ == d["size_data_per_element"].cast<size_t>(), "Invalid value of size_data_per_element_ ");
assert_true(appr_alg->label_offset_ == d["label_offset"].cast<size_t>(), "Invalid value of label_offset_ ");
assert_true(appr_alg->offsetData_ == d["offset_data"].cast<size_t>(), "Invalid value of offsetData_ ");
appr_alg->maxlevel_ = d["max_level"].cast<int>();
appr_alg->enterpoint_node_ = d["enterpoint_node"].cast<hnswlib::tableint>();
assert_true(appr_alg->maxM_ == d["max_M"].cast<size_t>(), "Invalid value of maxM_ ");
assert_true(appr_alg->maxM0_ == d["max_M0"].cast<size_t>(), "Invalid value of maxM0_ ");
assert_true(appr_alg->M_ == d["M"].cast<size_t>(), "Invalid value of M_ ");
assert_true(appr_alg->mult_ == d["mult"].cast<double>(), "Invalid value of mult_ ");
assert_true(appr_alg->ef_construction_ == d["ef_construction"].cast<size_t>(), "Invalid value of ef_construction_ ");
appr_alg->ef_ = d["ef"].cast<size_t>();
assert_true(appr_alg->size_links_per_element_ == d["size_links_per_element"].cast<size_t>(), "Invalid value of size_links_per_element_ ");
auto label_lookup_key_npy = d["label_lookup_external"].cast<py::array_t < hnswlib::labeltype, py::array::c_style | py::array::forcecast > >();
auto label_lookup_val_npy = d["label_lookup_internal"].cast<py::array_t < hnswlib::tableint, py::array::c_style | py::array::forcecast > >();
auto element_levels_npy = d["element_levels"].cast<py::array_t < int, py::array::c_style | py::array::forcecast > >();
auto data_level0_npy = d["data_level0"].cast<py::array_t < char, py::array::c_style | py::array::forcecast > >();
auto link_list_npy = d["link_lists"].cast<py::array_t < char, py::array::c_style | py::array::forcecast > >();
for (size_t i = 0; i < appr_alg->cur_element_count; i++) {
if (label_lookup_val_npy.data()[i] < 0) {
throw std::runtime_error("Internal id cannot be negative!");
} else {
appr_alg->label_lookup_.insert(std::make_pair(label_lookup_key_npy.data()[i], label_lookup_val_npy.data()[i]));
}
}
memcpy(appr_alg->element_levels_.data(), element_levels_npy.data(), element_levels_npy.nbytes());
size_t link_npy_size = 0;
std::vector<size_t> link_npy_offsets(appr_alg->cur_element_count);
for (size_t i = 0; i < appr_alg->cur_element_count; i++) {
size_t linkListSize = appr_alg->element_levels_[i] > 0 ? appr_alg->size_links_per_element_ * appr_alg->element_levels_[i] : 0;
link_npy_offsets[i] = link_npy_size;
if (linkListSize)
link_npy_size += linkListSize;
}
memcpy(appr_alg->data_level0_memory_, data_level0_npy.data(), data_level0_npy.nbytes());
for (size_t i = 0; i < appr_alg->max_elements_; i++) {
size_t linkListSize = appr_alg->element_levels_[i] > 0 ? appr_alg->size_links_per_element_ * appr_alg->element_levels_[i] : 0;
if (linkListSize == 0) {
appr_alg->linkLists_[i] = nullptr;
} else {
appr_alg->linkLists_[i] = (char*)malloc(linkListSize);
if (appr_alg->linkLists_[i] == nullptr)
throw std::runtime_error("Not enough memory: loadIndex failed to allocate linklist");
memcpy(appr_alg->linkLists_[i], link_list_npy.data() + link_npy_offsets[i], linkListSize);
}
}
// process deleted elements
bool allow_replace_deleted = false;
if (d.contains("allow_replace_deleted")) {
allow_replace_deleted = d["allow_replace_deleted"].cast<bool>();
}
appr_alg->allow_replace_deleted_= allow_replace_deleted;
appr_alg->num_deleted_ = 0;
bool has_deletions = d["has_deletions"].cast<bool>();
if (has_deletions) {
for (size_t i = 0; i < appr_alg->cur_element_count; i++) {
if (appr_alg->isMarkedDeleted(i)) {
appr_alg->num_deleted_ += 1;
if (allow_replace_deleted) appr_alg->deleted_elements.insert(i);
}
}
}
}
py::object knnQuery_return_numpy(
py::object input,
size_t k = 1,
int num_threads = -1,
const std::function<bool(hnswlib::labeltype)>& filter = nullptr) {
py::array_t < dist_t, py::array::c_style | py::array::forcecast > items(input);
auto buffer = items.request();
hnswlib::labeltype* data_numpy_l;
dist_t* data_numpy_d;
size_t rows, features;
if (num_threads <= 0)
num_threads = num_threads_default;
{
py::gil_scoped_release l;
get_input_array_shapes(buffer, &rows, &features);
// avoid using threads when the number of searches is small:
if (rows <= num_threads * 4) {
num_threads = 1;
}
data_numpy_l = new hnswlib::labeltype[rows * k];
data_numpy_d = new dist_t[rows * k];
// Warning: search with a filter works slow in python in multithreaded mode. For best performance set num_threads=1
CustomFilterFunctor idFilter(filter);
CustomFilterFunctor* p_idFilter = filter ? &idFilter : nullptr;
if (normalize == false) {
ParallelFor(0, rows, num_threads, [&](size_t row, size_t threadId) {
std::priority_queue<std::pair<dist_t, hnswlib::labeltype >> result = appr_alg->searchKnn(
(void*)items.data(row), k, p_idFilter);
if (result.size() != k)
throw std::runtime_error(
"Cannot return the results in a contiguous 2D array. Probably ef or M is too small");
for (int i = k - 1; i >= 0; i--) {
auto& result_tuple = result.top();
data_numpy_d[row * k + i] = result_tuple.first;
data_numpy_l[row * k + i] = result_tuple.second;
result.pop();
}
});
} else {
std::vector<float> norm_array(num_threads * features);
ParallelFor(0, rows, num_threads, [&](size_t row, size_t threadId) {
float* data = (float*)items.data(row);
size_t start_idx = threadId * dim;
normalize_vector((float*)items.data(row), (norm_array.data() + start_idx));
std::priority_queue<std::pair<dist_t, hnswlib::labeltype >> result = appr_alg->searchKnn(
(void*)(norm_array.data() + start_idx), k, p_idFilter);
if (result.size() != k)
throw std::runtime_error(
"Cannot return the results in a contiguous 2D array. Probably ef or M is too small");
for (int i = k - 1; i >= 0; i--) {
auto& result_tuple = result.top();
data_numpy_d[row * k + i] = result_tuple.first;
data_numpy_l[row * k + i] = result_tuple.second;
result.pop();
}
});
}
}
py::capsule free_when_done_l(data_numpy_l, [](void* f) {
delete[] f;
});
py::capsule free_when_done_d(data_numpy_d, [](void* f) {
delete[] f;
});
return py::make_tuple(
py::array_t<hnswlib::labeltype>(
{ rows, k }, // shape
{ k * sizeof(hnswlib::labeltype),
sizeof(hnswlib::labeltype) }, // C-style contiguous strides for each index
data_numpy_l, // the data pointer
free_when_done_l),
py::array_t<dist_t>(
{ rows, k }, // shape
{ k * sizeof(dist_t), sizeof(dist_t) }, // C-style contiguous strides for each index
data_numpy_d, // the data pointer
free_when_done_d));
}
void markDeleted(size_t label) {
appr_alg->markDelete(label);
}
void unmarkDeleted(size_t label) {
appr_alg->unmarkDelete(label);
}
void resizeIndex(size_t new_size) {
appr_alg->resizeIndex(new_size);
}
size_t getMaxElements() const {
return appr_alg->max_elements_;
}
size_t getCurrentCount() const {
return appr_alg->cur_element_count;
}
};
template<typename dist_t, typename data_t = float>
class BFIndex {
public:
static const int ser_version = 1; // serialization version
std::string space_name;
int dim;
bool index_inited;
bool normalize;
int num_threads_default;
hnswlib::labeltype cur_l;
hnswlib::BruteforceSearch<dist_t>* alg;
hnswlib::SpaceInterface<float>* space;
BFIndex(const std::string &space_name, const int dim) : space_name(space_name), dim(dim) {
normalize = false;
if (space_name == "l2") {
space = new hnswlib::L2Space(dim);
} else if (space_name == "ip") {
space = new hnswlib::InnerProductSpace(dim);
} else if (space_name == "cosine") {
space = new hnswlib::InnerProductSpace(dim);
normalize = true;
} else {
throw std::runtime_error("Space name must be one of l2, ip, or cosine.");
}
alg = NULL;
index_inited = false;
num_threads_default = std::thread::hardware_concurrency();
}
~BFIndex() {
delete space;
if (alg)
delete alg;
}
size_t getMaxElements() const {
return alg->maxelements_;
}
size_t getCurrentCount() const {
return alg->cur_element_count;
}
void set_num_threads(int num_threads) {
this->num_threads_default = num_threads;
}
void init_new_index(const size_t maxElements) {
if (alg) {
throw std::runtime_error("The index is already initiated.");
}
cur_l = 0;
alg = new hnswlib::BruteforceSearch<dist_t>(space, maxElements);
index_inited = true;
}
void normalize_vector(float* data, float* norm_array) {
float norm = 0.0f;
for (int i = 0; i < dim; i++)
norm += data[i] * data[i];
norm = 1.0f / (sqrtf(norm) + 1e-30f);
for (int i = 0; i < dim; i++)
norm_array[i] = data[i] * norm;
}
void addItems(py::object input, py::object ids_ = py::none()) {
py::array_t < dist_t, py::array::c_style | py::array::forcecast > items(input);
auto buffer = items.request();
size_t rows, features;
get_input_array_shapes(buffer, &rows, &features);
if (features != dim)
throw std::runtime_error("Wrong dimensionality of the vectors");
std::vector<size_t> ids = get_input_ids_and_check_shapes(ids_, rows);
{
for (size_t row = 0; row < rows; row++) {
size_t id = ids.size() ? ids.at(row) : cur_l + row;
if (!normalize) {
alg->addPoint((void *) items.data(row), (size_t) id);
} else {
std::vector<float> normalized_vector(dim);
normalize_vector((float *)items.data(row), normalized_vector.data());
alg->addPoint((void *) normalized_vector.data(), (size_t) id);
}
}
cur_l+=rows;
}
}
void deleteVector(size_t label) {
alg->removePoint(label);
}
void saveIndex(const std::string &path_to_index) {
alg->saveIndex(path_to_index);
}
void loadIndex(const std::string &path_to_index, size_t max_elements) {
if (alg) {
std::cerr << "Warning: Calling load_index for an already inited index. Old index is being deallocated." << std::endl;
delete alg;
}
alg = new hnswlib::BruteforceSearch<dist_t>(space, path_to_index);
cur_l = alg->cur_element_count;
index_inited = true;
}
py::object knnQuery_return_numpy(
py::object input,
size_t k = 1,
int num_threads = -1,
const std::function<bool(hnswlib::labeltype)>& filter = nullptr) {
py::array_t < dist_t, py::array::c_style | py::array::forcecast > items(input);
auto buffer = items.request();
hnswlib::labeltype *data_numpy_l;
dist_t *data_numpy_d;
size_t rows, features;
if (num_threads <= 0)
num_threads = num_threads_default;
{
py::gil_scoped_release l;
get_input_array_shapes(buffer, &rows, &features);
data_numpy_l = new hnswlib::labeltype[rows * k];
data_numpy_d = new dist_t[rows * k];
CustomFilterFunctor idFilter(filter);
CustomFilterFunctor* p_idFilter = filter ? &idFilter : nullptr;
ParallelFor(0, rows, num_threads, [&](size_t row, size_t threadId) {
std::priority_queue<std::pair<dist_t, hnswlib::labeltype >> result = alg->searchKnn(
(void*)items.data(row), k, p_idFilter);
for (int i = k - 1; i >= 0; i--) {
auto& result_tuple = result.top();
data_numpy_d[row * k + i] = result_tuple.first;
data_numpy_l[row * k + i] = result_tuple.second;
result.pop();
}
});
}
py::capsule free_when_done_l(data_numpy_l, [](void *f) {
delete[] f;
});
py::capsule free_when_done_d(data_numpy_d, [](void *f) {
delete[] f;
});
return py::make_tuple(
py::array_t<hnswlib::labeltype>(
{ rows, k }, // shape
{ k * sizeof(hnswlib::labeltype),
sizeof(hnswlib::labeltype)}, // C-style contiguous strides for each index
data_numpy_l, // the data pointer
free_when_done_l),
py::array_t<dist_t>(
{ rows, k }, // shape
{ k * sizeof(dist_t), sizeof(dist_t) }, // C-style contiguous strides for each index
data_numpy_d, // the data pointer
free_when_done_d));
}
};
PYBIND11_PLUGIN(hnswlib) {
py::module m("hnswlib");
py::class_<Index<float>>(m, "Index")
.def(py::init(&Index<float>::createFromParams), py::arg("params"))
/* WARNING: Index::createFromIndex is not thread-safe with Index::addItems */
.def(py::init(&Index<float>::createFromIndex), py::arg("index"))
.def(py::init<const std::string &, const int>(), py::arg("space"), py::arg("dim"))
.def("init_index",
&Index<float>::init_new_index,
py::arg("max_elements"),
py::arg("M") = 16,
py::arg("ef_construction") = 200,
py::arg("random_seed") = 100,
py::arg("allow_replace_deleted") = false)
.def("knn_query",
&Index<float>::knnQuery_return_numpy,
py::arg("data"),
py::arg("k") = 1,
py::arg("num_threads") = -1,
py::arg("filter") = py::none())
.def("add_items",
&Index<float>::addItems,
py::arg("data"),
py::arg("ids") = py::none(),
py::arg("num_threads") = -1,
py::arg("replace_deleted") = false)
.def("get_items", &Index<float>::getData, py::arg("ids") = py::none(), py::arg("return_type") = "numpy")
.def("get_ids_list", &Index<float>::getIdsList)
.def("set_ef", &Index<float>::set_ef, py::arg("ef"))
.def("set_num_threads", &Index<float>::set_num_threads, py::arg("num_threads"))
.def("index_file_size", &Index<float>::indexFileSize)
.def("save_index", &Index<float>::saveIndex, py::arg("path_to_index"))
.def("load_index",
&Index<float>::loadIndex,
py::arg("path_to_index"),
py::arg("max_elements") = 0,
py::arg("allow_replace_deleted") = false)
.def("mark_deleted", &Index<float>::markDeleted, py::arg("label"))
.def("unmark_deleted", &Index<float>::unmarkDeleted, py::arg("label"))
.def("resize_index", &Index<float>::resizeIndex, py::arg("new_size"))
.def("get_max_elements", &Index<float>::getMaxElements)
.def("get_current_count", &Index<float>::getCurrentCount)
.def_readonly("space", &Index<float>::space_name)
.def_readonly("dim", &Index<float>::dim)
.def_readwrite("num_threads", &Index<float>::num_threads_default)
.def_property("ef",
[](const Index<float> & index) {
return index.index_inited ? index.appr_alg->ef_ : index.default_ef;
},
[](Index<float> & index, const size_t ef_) {
index.default_ef = ef_;
if (index.appr_alg)
index.appr_alg->ef_ = ef_;
})
.def_property_readonly("max_elements", [](const Index<float> & index) {
return index.index_inited ? index.appr_alg->max_elements_ : 0;
})
.def_property_readonly("element_count", [](const Index<float> & index) {
return index.index_inited ? (size_t)index.appr_alg->cur_element_count : 0;
})
.def_property_readonly("ef_construction", [](const Index<float> & index) {
return index.index_inited ? index.appr_alg->ef_construction_ : 0;
})
.def_property_readonly("M", [](const Index<float> & index) {
return index.index_inited ? index.appr_alg->M_ : 0;
})
.def(py::pickle(
[](const Index<float> &ind) { // __getstate__
return py::make_tuple(ind.getIndexParams()); /* Return dict (wrapped in a tuple) that fully encodes state of the Index object */
},
[](py::tuple t) { // __setstate__
if (t.size() != 1)
throw std::runtime_error("Invalid state!");
return Index<float>::createFromParams(t[0].cast<py::dict>());
}))
.def("__repr__", [](const Index<float> &a) {
return "<hnswlib.Index(space='" + a.space_name + "', dim="+std::to_string(a.dim)+")>";
});
py::class_<BFIndex<float>>(m, "BFIndex")
.def(py::init<const std::string &, const int>(), py::arg("space"), py::arg("dim"))
.def("init_index", &BFIndex<float>::init_new_index, py::arg("max_elements"))
.def("knn_query",
&BFIndex<float>::knnQuery_return_numpy,
py::arg("data"),
py::arg("k") = 1,
py::arg("num_threads") = -1,
py::arg("filter") = py::none())
.def("add_items", &BFIndex<float>::addItems, py::arg("data"), py::arg("ids") = py::none())
.def("delete_vector", &BFIndex<float>::deleteVector, py::arg("label"))
.def("set_num_threads", &BFIndex<float>::set_num_threads, py::arg("num_threads"))
.def("save_index", &BFIndex<float>::saveIndex, py::arg("path_to_index"))
.def("load_index", &BFIndex<float>::loadIndex, py::arg("path_to_index"), py::arg("max_elements") = 0)
.def("__repr__", [](const BFIndex<float> &a) {
return "<hnswlib.BFIndex(space='" + a.space_name + "', dim="+std::to_string(a.dim)+")>";
})
.def("get_max_elements", &BFIndex<float>::getMaxElements)
.def("get_current_count", &BFIndex<float>::getCurrentCount)
.def_readwrite("num_threads", &BFIndex<float>::num_threads_default);
return m.ptr();
}
|