1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// This is a test file for testing the filtering feature
#include "../../hnswlib/hnswlib.h"
#include <assert.h>
#include <vector>
#include <iostream>
namespace {
using idx_t = hnswlib::labeltype;
class PickDivisibleIds: public hnswlib::BaseFilterFunctor {
unsigned int divisor = 1;
public:
PickDivisibleIds(unsigned int divisor): divisor(divisor) {
assert(divisor != 0);
}
bool operator()(idx_t label_id) {
return label_id % divisor == 0;
}
};
class PickNothing: public hnswlib::BaseFilterFunctor {
public:
bool operator()(idx_t label_id) {
return false;
}
};
void test_some_filtering(hnswlib::BaseFilterFunctor& filter_func, size_t div_num, size_t label_id_start) {
int d = 4;
idx_t n = 100;
idx_t nq = 10;
size_t k = 10;
std::vector<float> data(n * d);
std::vector<float> query(nq * d);
std::mt19937 rng;
rng.seed(47);
std::uniform_real_distribution<> distrib;
for (idx_t i = 0; i < n * d; ++i) {
data[i] = distrib(rng);
}
for (idx_t i = 0; i < nq * d; ++i) {
query[i] = distrib(rng);
}
hnswlib::L2Space space(d);
hnswlib::AlgorithmInterface<float>* alg_brute = new hnswlib::BruteforceSearch<float>(&space, 2 * n);
hnswlib::AlgorithmInterface<float>* alg_hnsw = new hnswlib::HierarchicalNSW<float>(&space, 2 * n);
for (size_t i = 0; i < n; ++i) {
// `label_id_start` is used to ensure that the returned IDs are labels and not internal IDs
alg_brute->addPoint(data.data() + d * i, label_id_start + i);
alg_hnsw->addPoint(data.data() + d * i, label_id_start + i);
}
// test searchKnnCloserFirst of BruteforceSearch with filtering
for (size_t j = 0; j < nq; ++j) {
const void* p = query.data() + j * d;
auto gd = alg_brute->searchKnn(p, k, &filter_func);
auto res = alg_brute->searchKnnCloserFirst(p, k, &filter_func);
assert(gd.size() == res.size());
size_t t = gd.size();
while (!gd.empty()) {
assert(gd.top() == res[--t]);
assert((gd.top().second % div_num) == 0);
gd.pop();
}
}
// test searchKnnCloserFirst of hnsw with filtering
for (size_t j = 0; j < nq; ++j) {
const void* p = query.data() + j * d;
auto gd = alg_hnsw->searchKnn(p, k, &filter_func);
auto res = alg_hnsw->searchKnnCloserFirst(p, k, &filter_func);
assert(gd.size() == res.size());
size_t t = gd.size();
while (!gd.empty()) {
assert(gd.top() == res[--t]);
assert((gd.top().second % div_num) == 0);
gd.pop();
}
}
delete alg_brute;
delete alg_hnsw;
}
void test_none_filtering(hnswlib::BaseFilterFunctor& filter_func, size_t label_id_start) {
int d = 4;
idx_t n = 100;
idx_t nq = 10;
size_t k = 10;
std::vector<float> data(n * d);
std::vector<float> query(nq * d);
std::mt19937 rng;
rng.seed(47);
std::uniform_real_distribution<> distrib;
for (idx_t i = 0; i < n * d; ++i) {
data[i] = distrib(rng);
}
for (idx_t i = 0; i < nq * d; ++i) {
query[i] = distrib(rng);
}
hnswlib::L2Space space(d);
hnswlib::AlgorithmInterface<float>* alg_brute = new hnswlib::BruteforceSearch<float>(&space, 2 * n);
hnswlib::AlgorithmInterface<float>* alg_hnsw = new hnswlib::HierarchicalNSW<float>(&space, 2 * n);
for (size_t i = 0; i < n; ++i) {
// `label_id_start` is used to ensure that the returned IDs are labels and not internal IDs
alg_brute->addPoint(data.data() + d * i, label_id_start + i);
alg_hnsw->addPoint(data.data() + d * i, label_id_start + i);
}
// test searchKnnCloserFirst of BruteforceSearch with filtering
for (size_t j = 0; j < nq; ++j) {
const void* p = query.data() + j * d;
auto gd = alg_brute->searchKnn(p, k, &filter_func);
auto res = alg_brute->searchKnnCloserFirst(p, k, &filter_func);
assert(gd.size() == res.size());
assert(0 == gd.size());
}
// test searchKnnCloserFirst of hnsw with filtering
for (size_t j = 0; j < nq; ++j) {
const void* p = query.data() + j * d;
auto gd = alg_hnsw->searchKnn(p, k, &filter_func);
auto res = alg_hnsw->searchKnnCloserFirst(p, k, &filter_func);
assert(gd.size() == res.size());
assert(0 == gd.size());
}
delete alg_brute;
delete alg_hnsw;
}
} // namespace
class CustomFilterFunctor: public hnswlib::BaseFilterFunctor {
std::unordered_set<idx_t> allowed_values;
public:
explicit CustomFilterFunctor(const std::unordered_set<idx_t>& values) : allowed_values(values) {}
bool operator()(idx_t id) {
return allowed_values.count(id) != 0;
}
};
int main() {
std::cout << "Testing ..." << std::endl;
// some of the elements are filtered
PickDivisibleIds pickIdsDivisibleByThree(3);
test_some_filtering(pickIdsDivisibleByThree, 3, 17);
PickDivisibleIds pickIdsDivisibleBySeven(7);
test_some_filtering(pickIdsDivisibleBySeven, 7, 17);
// all of the elements are filtered
PickNothing pickNothing;
test_none_filtering(pickNothing, 17);
// functor style which can capture context
CustomFilterFunctor pickIdsDivisibleByThirteen({26, 39, 52, 65});
test_some_filtering(pickIdsDivisibleByThirteen, 13, 21);
std::cout << "Test ok" << std::endl;
return 0;
}
|