1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
#include "../../hnswlib/hnswlib.h"
#include <thread>
class StopW {
std::chrono::steady_clock::time_point time_begin;
public:
StopW() {
time_begin = std::chrono::steady_clock::now();
}
float getElapsedTimeMicro() {
std::chrono::steady_clock::time_point time_end = std::chrono::steady_clock::now();
return (std::chrono::duration_cast<std::chrono::microseconds>(time_end - time_begin).count());
}
void reset() {
time_begin = std::chrono::steady_clock::now();
}
};
/*
* replacement for the openmp '#pragma omp parallel for' directive
* only handles a subset of functionality (no reductions etc)
* Process ids from start (inclusive) to end (EXCLUSIVE)
*
* The method is borrowed from nmslib
*/
template<class Function>
inline void ParallelFor(size_t start, size_t end, size_t numThreads, Function fn) {
if (numThreads <= 0) {
numThreads = std::thread::hardware_concurrency();
}
if (numThreads == 1) {
for (size_t id = start; id < end; id++) {
fn(id, 0);
}
} else {
std::vector<std::thread> threads;
std::atomic<size_t> current(start);
// keep track of exceptions in threads
// https://stackoverflow.com/a/32428427/1713196
std::exception_ptr lastException = nullptr;
std::mutex lastExceptMutex;
for (size_t threadId = 0; threadId < numThreads; ++threadId) {
threads.push_back(std::thread([&, threadId] {
while (true) {
size_t id = current.fetch_add(1);
if ((id >= end)) {
break;
}
try {
fn(id, threadId);
} catch (...) {
std::unique_lock<std::mutex> lastExcepLock(lastExceptMutex);
lastException = std::current_exception();
/*
* This will work even when current is the largest value that
* size_t can fit, because fetch_add returns the previous value
* before the increment (what will result in overflow
* and produce 0 instead of current + 1).
*/
current = end;
break;
}
}
}));
}
for (auto &thread : threads) {
thread.join();
}
if (lastException) {
std::rethrow_exception(lastException);
}
}
}
template <typename datatype>
std::vector<datatype> load_batch(std::string path, int size) {
std::cout << "Loading " << path << "...";
// float or int32 (python)
assert(sizeof(datatype) == 4);
std::ifstream file;
file.open(path, std::ios::binary);
if (!file.is_open()) {
std::cout << "Cannot open " << path << "\n";
exit(1);
}
std::vector<datatype> batch(size);
file.read((char *)batch.data(), size * sizeof(float));
std::cout << " DONE\n";
return batch;
}
template <typename d_type>
static float
test_approx(std::vector<float> &queries, size_t qsize, hnswlib::HierarchicalNSW<d_type> &appr_alg, size_t vecdim,
std::vector<std::unordered_set<hnswlib::labeltype>> &answers, size_t K) {
size_t correct = 0;
size_t total = 0;
for (int i = 0; i < qsize; i++) {
std::priority_queue<std::pair<d_type, hnswlib::labeltype>> result = appr_alg.searchKnn((char *)(queries.data() + vecdim * i), K);
total += K;
while (result.size()) {
if (answers[i].find(result.top().second) != answers[i].end()) {
correct++;
} else {
}
result.pop();
}
}
return 1.0f * correct / total;
}
static void
test_vs_recall(
std::vector<float> &queries,
size_t qsize,
hnswlib::HierarchicalNSW<float> &appr_alg,
size_t vecdim,
std::vector<std::unordered_set<hnswlib::labeltype>> &answers,
size_t k) {
std::vector<size_t> efs = {1};
for (int i = k; i < 30; i++) {
efs.push_back(i);
}
for (int i = 30; i < 400; i+=10) {
efs.push_back(i);
}
for (int i = 1000; i < 100000; i += 5000) {
efs.push_back(i);
}
std::cout << "ef\trecall\ttime\thops\tdistcomp\n";
bool test_passed = false;
for (size_t ef : efs) {
appr_alg.setEf(ef);
appr_alg.metric_hops = 0;
appr_alg.metric_distance_computations = 0;
StopW stopw = StopW();
float recall = test_approx<float>(queries, qsize, appr_alg, vecdim, answers, k);
float time_us_per_query = stopw.getElapsedTimeMicro() / qsize;
float distance_comp_per_query = appr_alg.metric_distance_computations / (1.0f * qsize);
float hops_per_query = appr_alg.metric_hops / (1.0f * qsize);
std::cout << ef << "\t" << recall << "\t" << time_us_per_query << "us \t" << hops_per_query << "\t" << distance_comp_per_query << "\n";
if (recall > 0.99) {
test_passed = true;
std::cout << "Recall is over 0.99! " << recall << "\t" << time_us_per_query << "us \t" << hops_per_query << "\t" << distance_comp_per_query << "\n";
break;
}
}
if (!test_passed) {
std::cerr << "Test failed\n";
exit(1);
}
}
int main(int argc, char **argv) {
int M = 16;
int efConstruction = 200;
int num_threads = std::thread::hardware_concurrency();
bool update = false;
if (argc == 2) {
if (std::string(argv[1]) == "update") {
update = true;
std::cout << "Updates are on\n";
} else {
std::cout << "Usage ./test_updates [update]\n";
exit(1);
}
} else if (argc > 2) {
std::cout << "Usage ./test_updates [update]\n";
exit(1);
}
std::string path = "../tests/cpp/data/";
int N;
int dummy_data_multiplier;
int N_queries;
int d;
int K;
{
std::ifstream configfile;
configfile.open(path + "/config.txt");
if (!configfile.is_open()) {
std::cout << "Cannot open config.txt\n";
return 1;
}
configfile >> N >> dummy_data_multiplier >> N_queries >> d >> K;
printf("Loaded config: N=%d, d_mult=%d, Nq=%d, dim=%d, K=%d\n", N, dummy_data_multiplier, N_queries, d, K);
}
hnswlib::L2Space l2space(d);
hnswlib::HierarchicalNSW<float> appr_alg(&l2space, N + 1, M, efConstruction);
std::vector<float> dummy_batch = load_batch<float>(path + "batch_dummy_00.bin", N * d);
// Adding enterpoint:
appr_alg.addPoint((void *)dummy_batch.data(), (size_t)0);
StopW stopw = StopW();
if (update) {
std::cout << "Update iteration 0\n";
ParallelFor(1, N, num_threads, [&](size_t i, size_t threadId) {
appr_alg.addPoint((void *)(dummy_batch.data() + i * d), i);
});
appr_alg.checkIntegrity();
ParallelFor(1, N, num_threads, [&](size_t i, size_t threadId) {
appr_alg.addPoint((void *)(dummy_batch.data() + i * d), i);
});
appr_alg.checkIntegrity();
for (int b = 1; b < dummy_data_multiplier; b++) {
std::cout << "Update iteration " << b << "\n";
char cpath[1024];
snprintf(cpath, sizeof(cpath), "batch_dummy_%02d.bin", b);
std::vector<float> dummy_batchb = load_batch<float>(path + cpath, N * d);
ParallelFor(0, N, num_threads, [&](size_t i, size_t threadId) {
appr_alg.addPoint((void *)(dummy_batch.data() + i * d), i);
});
appr_alg.checkIntegrity();
}
}
std::cout << "Inserting final elements\n";
std::vector<float> final_batch = load_batch<float>(path + "batch_final.bin", N * d);
stopw.reset();
ParallelFor(0, N, num_threads, [&](size_t i, size_t threadId) {
appr_alg.addPoint((void *)(final_batch.data() + i * d), i);
});
std::cout << "Finished. Time taken:" << stopw.getElapsedTimeMicro()*1e-6 << " s\n";
std::cout << "Running tests\n";
std::vector<float> queries_batch = load_batch<float>(path + "queries.bin", N_queries * d);
std::vector<int> gt = load_batch<int>(path + "gt.bin", N_queries * K);
std::vector<std::unordered_set<hnswlib::labeltype>> answers(N_queries);
for (int i = 0; i < N_queries; i++) {
for (int j = 0; j < K; j++) {
answers[i].insert(gt[i * K + j]);
}
}
for (int i = 0; i < 3; i++) {
std::cout << "Test iteration " << i << "\n";
test_vs_recall(queries_batch, N_queries, appr_alg, d, answers, K);
}
return 0;
}
|