1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
import unittest
import numpy as np
import hnswlib
class RandomSelfTestCase(unittest.TestCase):
def testRandomSelf(self):
for idx in range(16):
print("\n**** Index resize test ****\n")
np.random.seed(idx)
dim = 16
num_elements = 10000
# Generating sample data
data = np.float32(np.random.random((num_elements, dim)))
# Declaring index
p = hnswlib.Index(space='l2', dim=dim) # possible options are l2, cosine or ip
# Initiating index
# max_elements - the maximum number of elements, should be known beforehand
# (probably will be made optional in the future)
#
# ef_construction - controls index search speed/build speed tradeoff
# M - is tightly connected with internal dimensionality of the data
# strongly affects the memory consumption
p.init_index(max_elements=num_elements//2, ef_construction=100, M=16)
# Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(20)
p.set_num_threads(idx % 8) # by default using all available cores
# We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:]
print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1)
# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
items = p.get_items(list(range(len(data1))))
# Check the recall:
self.assertAlmostEqual(np.mean(labels.reshape(-1) == np.arange(len(data1))), 1.0, 3)
# Check that the returned element data is correct:
diff_with_gt_labels = np.max(np.abs(data1-items))
self.assertAlmostEqual(diff_with_gt_labels, 0, delta=1e-4)
print("Resizing the index")
p.resize_index(num_elements)
print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2)
# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
items=p.get_items(list(range(num_elements)))
# Check the recall:
self.assertAlmostEqual(np.mean(labels.reshape(-1) == np.arange(len(data))), 1.0, 3)
# Check that the returned element data is correct:
diff_with_gt_labels = np.max(np.abs(data-items))
self.assertAlmostEqual(diff_with_gt_labels, 0, delta=1e-4)
# Checking that all labels are returned correctly:
sorted_labels = sorted(p.get_ids_list())
self.assertEqual(np.sum(~np.asarray(sorted_labels) == np.asarray(range(num_elements))), 0)
|