File: complexpolygon.ml

package info (click to toggle)
hol-light 1%3A3.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 49,876 kB
  • sloc: ml: 752,857; cpp: 439; makefile: 420; sh: 380; lisp: 286; java: 279; yacc: 108; perl: 78; ansic: 57; python: 53; sed: 39
file content (127 lines) | stat: -rw-r--r-- 6,430 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
(* ========================================================================= *)
(* Some formalization around a cute puzzle on stackexchange.                 *)
(*                                                                           *)
(* See https://math.stackexchange.com/questions/4892153, in particular the   *)
(* observation from Dario extending Carl Schildkraut's proof to equivalence. *)
(*                                                                           *)
(* A polygon with its vertices on the unit circle is closed under complex    *)
(* multiplication iff the vertices are n'th roots of unity for some n.       *)
(* ========================================================================= *)

needs "Multivariate/transcendentals.ml";;

(* ------------------------------------------------------------------------- *)
(* Actually set up the circle group of unimodular complex numbers.           *)
(* ------------------------------------------------------------------------- *)

let circle_group = new_definition
 `circle_group = group({z| norm z = &1},Cx(&1),complex_inv,complex_mul)`;;

let CIRCLE_GROUP = prove
 (`group_carrier circle_group = {z | norm z = &1} /\
   group_id circle_group = Cx(&1) /\
   group_inv circle_group = complex_inv /\
   group_mul circle_group = complex_mul`,
  REWRITE_TAC[group_carrier; group_id; group_inv; group_mul; GSYM PAIR_EQ] THEN
  REWRITE_TAC[circle_group; GSYM(CONJUNCT2 group_tybij)] THEN
  REWRITE_TAC[IN_ELIM_THM; COMPLEX_MUL_LID; COMPLEX_MUL_RID] THEN
  SIMP_TAC[COMPLEX_NORM_INV; COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[COMPLEX_MUL_ASSOC] THEN
  X_GEN_TAC `z:complex` THEN ASM_CASES_TAC `z = Cx(&0)` THEN
  ASM_REWRITE_TAC[COMPLEX_NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN
  DISCH_THEN(K ALL_TAC) THEN POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);;

let ABELIAN_CIRCLE_GROUP = prove
 (`abelian_group circle_group`,
  REWRITE_TAC[abelian_group; CIRCLE_GROUP; COMPLEX_MUL_SYM]);;

let GROUP_POW_CIRCLE_GROUP = prove
 (`!z n. group_pow circle_group z n = z pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[group_pow; CIRCLE_GROUP; complex_pow]);;

let FINITE_SUBGROUP_OF_CIRCLE_GROUP = prove
 (`!s:complex->bool.
        FINITE s /\ s subgroup_of circle_group
        ==> ?n. 1 <= n /\ s = {z | z pow n = Cx(&1)}`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `subgroup_generated circle_group s`
        ABELIAN_GROUP_ORDER_DIVIDES_MAXIMAL) THEN
  ASM_SIMP_TAC[CYCLIC_GROUP_ELEMENT_ORDER; CARRIER_SUBGROUP_GENERATED_SUBGROUP;
               ABELIAN_SUBGROUP_GENERATED; ABELIAN_CIRCLE_GROUP] THEN
  DISCH_THEN(X_CHOOSE_THEN `z:complex` STRIP_ASSUME_TAC) THEN
  ABBREV_TAC
   `n = group_element_order (subgroup_generated circle_group s) z` THEN
  EXISTS_TAC `n:num` THEN
  MP_TAC(ISPECL [`subgroup_generated circle_group s`; `z:complex`]
        FINITE_GROUP_ELEMENT_ORDER_NONZERO) THEN
  ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN
  DISCH_TAC THEN ASM_SIMP_TAC[LE_1] THEN MATCH_MP_TAC CARD_SUBSET_LE THEN
  MP_TAC(SPEC `n:num` FINITE_CARD_COMPLEX_ROOTS_UNITY) THEN
  ASM_SIMP_TAC[LE_1] THEN STRIP_TAC THEN CONJ_TAC THENL
   [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
    X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
    MP_TAC(ISPECL [`subgroup_generated circle_group s`; `w:complex`; `n:num`]
          GROUP_POW_EQ_ID) THEN
    ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; CIRCLE_GROUP;
                 CONJUNCT2 SUBGROUP_GENERATED; GROUP_POW_SUBGROUP_GENERATED;
                 GROUP_POW_CIRCLE_GROUP];
    TRANS_TAC LE_TRANS `n:num` THEN ASM_REWRITE_TAC[] THEN
    MP_TAC(ISPECL [`subgroup_generated circle_group s`; `z:complex`]
                  GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN
    ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN
    ASM_MESON_TAC[CARD_EQ_0; NOT_IN_EMPTY; DIVIDES_LE_IMP]]);;

(* ------------------------------------------------------------------------- *)
(* The nice observation from Dario combined with Carl Schildkraut's          *)
(* ------------------------------------------------------------------------- *)

let DARIO_LEMMA1 = prove
 (`!s:complex->bool.
      (!z. z IN s ==> norm z = &1)
      ==> ((!w z. w IN convex hull s /\ z IN convex hull s
                  ==> w * z IN convex hull s) <=>
           (!w z. w IN s /\ z IN s ==> w * z IN s))`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
   [MP_TAC(ISPECL [`Cx(&0)`; `s:complex->bool`; `w * z:complex`]
        SIMPLEX_FURTHEST_LT_EXISTS) THEN
    ASM_SIMP_TAC[HULL_INC; COMPLEX_SUB_RZERO] THEN
    MATCH_MP_TAC(TAUT `~q ==> (~p ==> q) ==> p`) THEN
    ASM_SIMP_TAC[COMPLEX_NORM_MUL; REAL_MUL_LID] THEN
    ASM_MESON_TAC[REAL_LT_REFL];
    MP_TAC(ISPECL [`complex_mul`; `s:complex->bool`; `s:complex->bool`;
                   `w:complex`; `z:complex`] BILINEAR_IN_CONVEX_HULL) THEN
    ASM_REWRITE_TAC[BILINEAR_COMPLEX_MUL] THEN
    MATCH_MP_TAC(REWRITE_RULE[SUBSET; RIGHT_IMP_FORALL_THM] HULL_MONO) THEN
    ASM SET_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* The other lemma                                                           *)
(* ------------------------------------------------------------------------- *)

let DARIO_LEMMA2 = prove
 (`!s:complex->bool.
        FINITE s /\ ~(s = {}) /\ (!z. z IN s ==> norm z = &1)
        ==> ((!w z. w IN s /\ z IN s ==> w * z IN s) <=>
             s subgroup_of circle_group)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`circle_group`; `s:complex->bool`]
   FINITE_SUBGROUP_OF_SETWISE) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[group_setmul; SUBSET; FORALL_IN_GSPEC; CIRCLE_GROUP] THEN
  ASM_REWRITE_TAC[IN_ELIM_THM]);;

(* ------------------------------------------------------------------------- *)
(* And so the finale.                                                        *)
(* ------------------------------------------------------------------------- *)

let DARIO = prove
 (`!s:complex->bool.
      FINITE s /\ ~(s = {}) /\ (!z. z IN s ==> norm z = &1)
      ==> ((!w z. w IN convex hull s /\ z IN convex hull s
                  ==> w * z IN convex hull s) <=>
           ?n. 1 <= n /\ s = {z | z pow n = Cx(&1)})`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DARIO_LEMMA1] THEN EQ_TAC THENL
   [ASM_SIMP_TAC[DARIO_LEMMA2; FINITE_SUBGROUP_OF_CIRCLE_GROUP];
    STRIP_TAC THEN
    ASM_SIMP_TAC[IN_ELIM_THM; COMPLEX_POW_MUL; COMPLEX_MUL_LID]]);;