1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
(* ------------------------------------------------------------------------- *)
(* Bug puzzle. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let move = new_definition
`move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=>
(?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\
bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/
(?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\
ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/
(?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\
cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;;
let reachable_RULES,reachable_INDUCT,reachable_CASES =
new_inductive_definition
`(!p. reachable p p) /\
(!p q r. move p q /\ reachable q r ==> reachable p r)`;;
let oriented_area = new_definition
`oriented_area ((ax,ay),(bx,by),(cx,cy)) =
((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;;
let MOVE_INVARIANT = prove
(`!p p'. move p p' ==> oriented_area p = oriented_area p'`,
REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);;
let REACHABLE_INVARIANT = prove
(`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`,
MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);;
let IMPOSSIBILITY_B = prove
(`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`,
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN
REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Verification of a simple concurrent program. *)
(* ------------------------------------------------------------------------- *)
let init = new_definition
`init (x,y,pc1,pc2,sem) <=>
pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;;
let trans = new_definition
`trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=>
pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\
(x',y',pc2') = (x,y,pc2) \/
pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\
(x',y',pc1') = (x,y,pc1) \/
pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\
(y',pc2',sem') = (y,pc2,sem) \/
pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\
pc1' = pc1 /\ sem' = sem \/
pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\
(x',y',pc2') = (x,y,pc2) \/
pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\
(x',y',pc1') = (x,y,pc1)`;;
let mutex = new_definition
`mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;;
let indinv = new_definition
`indinv (x:num,y:num,pc1,pc2,sem) <=>
sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;;
needs "Library/rstc.ml";;
let INDUCTIVE_INVARIANT = prove
(`!init invariant transition P.
(!s. init s ==> invariant s) /\
(!s s'. invariant s /\ transition s s' ==> invariant s') /\
(!s. invariant s ==> P s)
==> !s s':A. init s /\ RTC transition s s' ==> P s'`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL
[`transition:A->A->bool`;
`\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN
MESON_TAC[]);;
let MUTEX = prove
(`!s s'. init s /\ RTC trans s s' ==> mutex s'`,
MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN
REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN
ARITH_TAC);;
|