File: bdd.ml

package info (click to toggle)
hol-light 1%3A3.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 50,136 kB
  • sloc: ml: 753,527; cpp: 439; sh: 435; makefile: 399; lisp: 286; java: 279; yacc: 108; perl: 78; ansic: 57; python: 53; sed: 39
file content (451 lines) | stat: -rw-r--r-- 17,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
(* ========================================================================= *)
(* Binary decision diagrams with complement edges, as a HOL derived rule.    *)
(*                                                                           *)
(* The style of implementation follows Brace, Rudell and Bryant's paper      *)
(* "Efficient implementation of a BDD package" (DAC 1990). It's based on the *)
(* hol90 implementation in "Binary Decision Diagrams as a HOL Derived Rule", *)
(* but greatly simplified since HOL Light handles pointer-eq subterms more   *)
(* efficiently and so we can avoid introducing any additional variables.     *)
(* ========================================================================= *)

let tfst (a,b,c) = a;;
let tsnd (a,b,c) = b;;

(* ------------------------------------------------------------------------- *)
(* Handling of variable tables.                                              *)
(* ------------------------------------------------------------------------- *)

let var_of_num varray n = Array.get varray n;;

let num_of_var (varray,vnext,vhash) v =
  try Hashtbl.find vhash v
  with Not_Found ->
      let n = !vnext in
      (vnext := n + 1; Array.set varray n v; Hashtbl.add vhash v n; n);;

let mk_vtable n =
  (Array.make (n+1) `T`,
   ref 1,
   (Hashtbl.create (n+1) :(term,int)Hashtbl.t));;

(* ------------------------------------------------------------------------- *)
(* Handling of unique table.                                                 *)
(* ------------------------------------------------------------------------- *)

let BDD_1 = max_int;;
let BDD_0 = -BDD_1;;

let btm_of_int =
  let true_tm = `T` in
  let rec btm_of_int uarray n =
     if n < 0 then mk_neg(btm_of_int uarray (-n)) else
     if n = BDD_1 then true_tm else
     rand(rator(concl(snd(apply (!uarray) n)))) in
  btm_of_int;;

let lookup_triple varray (uarray,unext,uhash) ((v,y,n) as tr) =
  try apply (!uhash) tr with Not_Found ->
  let ytm = btm_of_int uarray y
  and ntm = btm_of_int uarray n
  and vtm = Array.get varray v
  and m = !unext in
  let ltm = mk_cond(vtm,ytm,ntm) in
  let dth = REFL ltm in
  (unext := m + 1;
   uarray := (m |-> (tr,dth)) (!uarray);
   uhash := (tr |-> m) (!uhash);
   m);;

let bdd_expand uarray b =
  if b < 0 then
    let (v,l,r) = fst(apply (!uarray) (-b)) in
    (v,-l,-r)
  else fst(apply (!uarray) b);;

let BDD_EXPAND =
  let pth1 = TAUT
    `~(if v then b1 else b2) <=> (if v then ~b1 else ~b2)`
  and pth2 = TAUT
    `~(if v then b1 else ~b2) <=> (if v then ~b1 else b2)`
  and pth3 = TAUT
    `~(if v then ~b1 else b2) <=> (if v then b1 else ~b2)`
  and pth4 = TAUT
    `~(if v then ~b1 else ~b2) <=> (if v then b1 else b2)`
  and neg_tm = `~`
  and v_tm = `v:bool`
  and b1_tm = `b1:bool`
  and b2_tm = `b2:bool` in
  let rec BDD_EXPAND uarray b =
    if b < 0 then
      let def = snd(apply (!uarray) (-b)) in
      let (v,(y,n)) = dest_cond(rand(concl def)) in
      let pth =
        if is_neg y then
          if is_neg n then INST [v,v_tm; rand y,b1_tm; rand n,b2_tm] pth4
          else INST [v,v_tm; rand y,b1_tm; n,b2_tm] pth3
        else
          if is_neg n then INST [v,v_tm; y,b1_tm; rand n,b2_tm] pth2
          else INST [v,v_tm; y,b1_tm; n,b2_tm] pth1 in
      TRANS (AP_TERM neg_tm def) pth
    else snd(apply (!uarray) b) in
  BDD_EXPAND;;

let BDD_LOOKUP =
  let pth1 = TAUT `b <=> (if v then b else b)`
  and pth2 = TAUT
    `(b <=> (if v then l else r))
     ==> (~b <=> (if v then ~l else ~r))`
  and pth3 = TAUT
    `(b <=> (if v then l else ~r))
     ==> (~b <=> (if v then ~l else r))`
  and b_tm = `b:bool`
  and v_tm = `v:bool`
  and l_tm = `l:bool`
  and r_tm = `r:bool` in
  let rec BDD_LOOKUP varray utable (v,l,r) =
    if l = r then
      (INST [var_of_num varray v,v_tm;btm_of_int (tfst utable) l,b_tm] pth1,
       l,0)
    else if l < 0 then
      let i = lookup_triple varray utable (v,-l,-r) in
      let dth = snd(apply(!(tfst utable)) i) in
      let (ctm,(vtm,(ltm,rtm))) = (I F_F dest_cond) (dest_eq(concl dth)) in
      if r < 0 then
        (MP (INST [ctm,b_tm;vtm,v_tm;ltm,l_tm;rtm,r_tm] pth2) dth,-i,i)
      else
        (MP (INST [ctm,b_tm;vtm,v_tm;ltm,l_tm;rand rtm,r_tm] pth3) dth,-i,i)
    else let i = lookup_triple varray utable (v,l,r) in
         let dth = snd(apply (!(tfst utable)) i) in
         (dth,i,i) in
  BDD_LOOKUP;;

let mk_utable() =
  (ref(0 |=> ((0,0,0),TRUTH)),
   ref 1,
   ref undefined);;

(* ------------------------------------------------------------------------- *)
(* Handling of computed table.                                               *)
(* ------------------------------------------------------------------------- *)

let bdd_and =
  let pth1 = TAUT `~T /\ r1 <=> ~T`
  and pth2 = TAUT `l1 /\ T <=> l1`
  and pth3 = TAUT `l1 /\ l1 <=> l1`
  and pth4 = TAUT `~r1 /\ r1 <=> ~T`
  and pth5 = TAUT
    `(b1 <=> (if v then l1 else r1))
     ==> (b2 <=> (if v then l2 else r2))
         ==> (b3 <=> (if v then l3 else r3))
             ==> (l1 /\ l2 <=> l3) ==> (r1 /\ r2 <=> r3) ==> (b1 /\ b2 <=> b3)`
  and pth6 = TAUT
   `(b1 <=> (if v then l1 else r1))
    ==> (b3 <=> (if v then l3 else r3))
        ==> (l1 /\ b2 <=> l3) ==> (r1 /\ b2 <=> r3) ==> (b1 /\ b2 <=> b3)`
  and pth7 = TAUT
    `(b2 <=> (if v then l2 else r2))
     ==> (b3 <=> (if v then l3 else r3))
         ==> (b1 /\ l2 <=> l3) ==> (b1 /\ r2 <=> r3) ==> (b1 /\ b2 <=> b3)`
  and pth8 = TAUT `l1 /\ r1 <=> r1 /\ l1`
  and b1_tm = `b1:bool`
  and b2_tm = `b2:bool`
  and b3_tm = `b3:bool`
  and l1_tm = `l1:bool`
  and l2_tm = `l2:bool`
  and l3_tm = `l3:bool`
  and r1_tm = `r1:bool`
  and r2_tm = `r2:bool`
  and r3_tm = `r3:bool`
  and v_tm = `v:bool`
  and lookup_pair (carray,cnext,chash) (l,r) =
     try let i = apply (!chash) (l,r) in (fst(apply (!carray) i),i)
     with Not_Found -> failwith "lookup_pair" in
  let rec bdd_and (varray,utable,((carray,cnext,chash) as ctable)) (l,r) =
    try lookup_pair ctable (l,r) with Failure _ ->
    let (ans,thm,uargs,cargs) =
      if l = BDD_0 then
       (BDD_0,INST [btm_of_int (tfst utable) r,r1_tm] pth1,[],[])
      else if r = BDD_1 then
       (l,INST [btm_of_int (tfst utable) l,l1_tm] pth2,[],[])
      else if l = r then
       (l,INST [btm_of_int (tfst utable) l,l1_tm] pth3,[],[])
      else if l = -r then
       (BDD_0,INST [btm_of_int (tfst utable) r,r1_tm] pth4,[],[])
      else
        let (lv,ly,ln) = bdd_expand (tfst utable) l
        and (rv,ry,rn) = bdd_expand (tfst utable) r in
        if lv = rv then
          let (thy,cy,jy) = bdd_ands (varray,utable,ctable) (ly,ry) in
          let (thn,cn,jn) = bdd_ands (varray,utable,ctable) (ln,rn) in
          let thl = BDD_EXPAND (tfst utable) l in
          let thr = BDD_EXPAND (tfst utable) r in
          let (thc,c,jc) = BDD_LOOKUP varray utable (lv,cy,cn) in
          let (b1,(v1,(l1,r1))) = (I F_F dest_cond) (dest_eq(concl thl)) in
          let (b2,(v2,(l2,r2))) = (I F_F dest_cond) (dest_eq(concl thr)) in
          let (b3,(v3,(l3,r3))) = (I F_F dest_cond) (dest_eq(concl thc)) in
          let ith = INST [(b1,b1_tm);(b2,b2_tm);(b3,b3_tm);
                          (l1,l1_tm);(l2,l2_tm);(l3,l3_tm);
                          (r1,r1_tm);(r2,r2_tm);(r3,r3_tm);(v3,v_tm)] pth5 in
          let lis = [thl; thr; thc; thy; thn] in
          let xth = rev_itlist (C MP) lis ith in
          (c,xth,[abs(l);abs(r);jc],[jy;jn])
        else if lv > rv then
          let (thy,cy,jy) = bdd_ands (varray,utable,ctable) (ly,r) in
          let (thn,cn,jn) = bdd_ands (varray,utable,ctable) (ln,r) in
          let thl = BDD_EXPAND (tfst utable) l in
          let (thc,c,jc) = BDD_LOOKUP varray utable (lv,cy,cn) in
          let (b1,(v1,(l1,r1))) = (I F_F dest_cond) (dest_eq(concl thl)) in
          let (b3,(v3,(l3,r3))) = (I F_F dest_cond) (dest_eq(concl thc)) in
          let b2 = rand(rand(rator(concl thy))) in
          let ith = INST [(b1,b1_tm);(b2,b2_tm);(b3,b3_tm);
                          (l1,l1_tm);(l3,l3_tm);
                          (r1,r1_tm);(r3,r3_tm);(v3,v_tm)] pth6 in
          let lis = [thl; thc; thy; thn] in
          let xth = rev_itlist (C MP) lis ith in
          (c,xth,[abs(l);jc],[jy;jn])
        else
          let (thy,cy,jy) = bdd_ands (varray,utable,ctable) (l,ry) in
          let (thn,cn,jn) = bdd_ands (varray,utable,ctable) (l,rn) in
          let thr = BDD_EXPAND (tfst utable) r in
          let (thc,c,jc) = BDD_LOOKUP varray utable (rv,cy,cn) in
          let (b2,(v2,(l2,r2))) = (I F_F dest_cond) (dest_eq(concl thr)) in
          let (b3,(v3,(l3,r3))) = (I F_F dest_cond) (dest_eq(concl thc)) in
          let b1 = rand(rator(rand(rator(concl thy)))) in
          let ith = INST [(b1,b1_tm);(b2,b2_tm);(b3,b3_tm);
                          (l2,l2_tm);(l3,l3_tm);
                          (r2,r2_tm);(r3,r3_tm);(v3,v_tm)] pth7 in
          let lis = [thr; thc; thy; thn] in
          let xth = rev_itlist (C MP) lis ith in
          (c,xth,[abs(r);jc],[jy;jn]) in
    let m = !cnext in
    (cnext := m + 1;
     carray := (m |-> (ans,(thm,uargs,cargs))) (!carray);
     chash := ((l,r) |-> m) (!chash);
     (ans,m))

  and bdd_ands (varray,utable,ctable) (l,r) =
    if (l:int) <= r then
      let (ans,i) = bdd_and (varray,utable,ctable) (l,r) in
      let th = tfst(snd(apply (!(tfst ctable)) i)) in
      (th,ans,i)
    else
      let (ans,i) = bdd_and (varray,utable,ctable) (r,l) in
      let th = tfst(snd(apply (!(tfst ctable)) i)) in
      let ((ltm,rtm),ctm) = (dest_conj F_F I) (dest_eq(concl th)) in
      let eth = INST [rtm,l1_tm; ltm,r1_tm] pth8 in
      (TRANS eth th,ans,i) in
  bdd_and;;

let mk_ctable() =
  (ref undefined,
   ref 0,
   ref undefined);;

(* ------------------------------------------------------------------------- *)
(* Basic BDD-constructing operations for the logical connectives.            *)
(* ------------------------------------------------------------------------- *)

let BDD_TRUE = (BDD_1,REFL `T`);;

let BDD_FALSE = (BDD_0,TAUT `F <=> ~T`);;

let BDD_VAR =
  let pth = TAUT `(x <=> (if v then T else ~T)) ==> v = x`
  and x_tm = `x:bool`
  and v_tm = `v:bool` in
  fun (vtable,utable,ctable) tm ->
    let v = num_of_var vtable tm in
    let u = lookup_triple (tfst vtable) utable (v,BDD_1,BDD_0) in
    let ltm = btm_of_int (tfst utable) u in
    let sth = INST [ltm,x_tm; tm,v_tm] pth in
    let th = snd(apply (!(tfst utable)) u) in
    (u,MP sth th);;

let BDD_NEG =
  let neg_tm = `~`
  and x_tm = `x:bool`
  and pth = TAUT `~ ~ x <=> x` in
  fun (vtable,utable,ctable) (i,fth) ->
    if i < 0 then
      let utm = btm_of_int (tfst utable) (-i) in
      let th = INST [utm,x_tm] pth in
      (-i,TRANS (AP_TERM neg_tm fth) th)
    else
      (-i,AP_TERM neg_tm fth);;

let BDD_AND =
  let and_tm = `/\`
  and t1_tm = `t1:bool`
  and t2_tm = `t2:bool` in
  let pth = SPECL [t1_tm; t2_tm] CONJ_SYM in
  fun (vtable,utable,ctable) ((i1,th1),(i2,th2)) ->
    if i2 < i1 then
      let (i3,j) = bdd_and (tfst vtable,utable,ctable) (i2,i1) in
      let sth = INST [btm_of_int (tfst utable) i1,t1_tm;
                      btm_of_int (tfst utable) i2,t2_tm] pth
      and th = tfst(snd(apply (!(tfst ctable)) j)) in
      (i3,TRANS (MK_COMB(AP_TERM and_tm th1,th2))
                (TRANS sth th))
    else
      let (i3,j) = bdd_and (tfst vtable,utable,ctable) (i1,i2) in
      let th = tfst(snd(apply (!(tfst ctable)) j)) in
      (i3,TRANS (MK_COMB(AP_TERM and_tm th1,th2)) th);;

let BDD_OR =
  let pth = TAUT `~(~a /\ ~b) <=> a \/ b` in
  let rew = REWR_CONV pth in
  let rewl = LAND_CONV rew in
  let rule = CONV_RULE rewl in
  fun tt (b1,b2) ->
    let (i,fth) = BDD_NEG tt (BDD_AND tt (BDD_NEG tt b1,BDD_NEG tt b2)) in
    (i,rule fth);;

let BDD_IMP =
  let pth = TAUT `~(a /\ ~b) <=> a ==> b` in
  let rew = REWR_CONV pth in
  let rewl = LAND_CONV rew in
  let rule = CONV_RULE rewl in
  fun tt (b1,b2) ->
    let (i,fth) = BDD_NEG tt (BDD_AND tt (b1,BDD_NEG tt b2)) in
    (i,rule fth);;

let BDD_IFF =
  let pth = TAUT `~(a /\ ~b) /\ ~(~a /\ b) <=> (a <=> b)` in
  let rew = REWR_CONV pth in
  let rewl = LAND_CONV rew in
  let rule = CONV_RULE rewl in
  fun tt (b1,b2) ->
    let (i,fth) = BDD_AND tt (BDD_NEG tt (BDD_AND tt (b1,BDD_NEG tt b2)),
                            BDD_NEG tt (BDD_AND tt (BDD_NEG tt b1,b2))) in
    (i,rule fth);;

let rec BDD_OF_TERM defs tt tm =
  match tm with
    Const("T",_) -> BDD_TRUE
  | Const("F",_) -> BDD_FALSE
  | Comb(Comb(Const("/\\",_),l),r) ->
        BDD_AND tt (BDD_OF_TERM defs tt l,BDD_OF_TERM defs tt r)
  | Comb(Comb(Const("\\/",_),l),r) ->
        BDD_OR tt (BDD_OF_TERM defs tt l,BDD_OF_TERM defs tt r)
  | Comb(Comb(Const("==>",_),l),r) ->
        BDD_IMP tt (BDD_OF_TERM defs tt l,BDD_OF_TERM defs tt r)
  | Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) ->
        BDD_IFF tt (BDD_OF_TERM defs tt l,BDD_OF_TERM defs tt r)
  | Comb(Const("~",_),l) ->
        BDD_NEG tt (BDD_OF_TERM defs tt (rand tm))
  | _ -> (try apply defs tm with Failure _ -> BDD_VAR tt tm);;

(* ------------------------------------------------------------------------- *)
(* Existential quantification of BDDs.                                       *)
(* ------------------------------------------------------------------------- *)

let BDD_EXISTS =
  let [rule_e;rule_d;rule_t;rule_f] =
    map (fun t -> GEN_REWRITE_RULE RAND_CONV [MESON[] t])
      [`(?p. if p then q else r) <=> q \/ r`;
       `(?p. if x then q p else r p) <=> (if x then (?p. q p) else (?p. r p))`;
       `(?p:bool. T) <=> T`;
       `(?p:bool. ~T) <=> ~T`] in
  fun (vtable,utable,ctable) x ->
    let etable = ref undefined in
    let xn = num_of_var vtable x in
    let rec BDD_EXISTS (n,th) =
      try apply (!etable) n with Failure _ ->
      let res =
        if n = BDD_0 then
          (BDD_0,rule_f (MK_EXISTS x th))
        else if n = BDD_1 then
          (BDD_1,rule_t (MK_EXISTS x th))
        else
          let v,nt,nf = bdd_expand (tfst utable) n
          and eth = TRANS th (BDD_EXPAND (tfst utable) n) in
          let _,(ntm,nfm) = dest_cond(rand(concl eth)) in
          if v = xn then
            let onum,oth = BDD_OR (vtable,utable,ctable)
                                  ((nt,REFL ntm),(nf,REFL nfm)) in
            onum,TRANS (rule_e (MK_EXISTS x eth)) oth
          else
            let lnum,lth = BDD_EXISTS (nt,REFL ntm)
            and rnum,rth = BDD_EXISTS (nf,REFL nfm) in
            let wth =
              TRANS (rule_d (MK_EXISTS x eth))
                 (MK_COMB(AP_TERM (rator(rator(rand(concl eth)))) lth,rth)) in
            let fth,wn,_ =  BDD_LOOKUP (tfst vtable) utable (v,lnum,rnum) in
            wn,TRANS wth (SYM fth) in
      etable := (n |-> res) (!etable); res in
      BDD_EXISTS;;

(* ------------------------------------------------------------------------- *)
(* Provide some information on output when verbose = 1                       *)
(* ------------------------------------------------------------------------- *)

let bdd_stats nd (vt,ct,ut) =
  let d = if nd = 0 then "" else string_of_int nd^" definitions, " in
  remark
   ("BDD with "^d^
    string_of_int(!(tsnd vt)) ^ " variables, " ^
    string_of_int(!(tsnd ut)) ^ " nodes and " ^
    string_of_int(!(tsnd ct)) ^ " cached results");;

(* ------------------------------------------------------------------------- *)
(* Basic tautology prover                                                    *)
(* ------------------------------------------------------------------------- *)

let BDD_TAUT tm =
  let vt = mk_vtable(length(atoms tm))
  and ut = mk_utable() and ct = mk_ctable() in
  let b = BDD_OF_TERM undefined (vt,ut,ct) tm in
  let _ = bdd_stats 0 (vt,ct,ut) in
  EQT_ELIM (snd b);;

(* ------------------------------------------------------------------------- *)
(* A version that treats an input p ==> q specially, considering p           *)
(* as a list of "definitions" (required to be left-to-right acyclic)         *)
(* ------------------------------------------------------------------------- *)

let BDD_DEFTAUT =
  let bdd_def th =
    let rule = TRANS th in
    fun (i,fth) -> (i,rule fth) in
  let rec bdd_of_defs defs tt ths =
    match ths with
      [] -> defs
    | th::oths ->
          let lv,rt = dest_eq(concl th) in
          let br = BDD_OF_TERM defs tt rt in
          let bl = bdd_def th br in
          bdd_of_defs ((lv |-> bl) defs) tt oths in
  let is_atomic tm =
    not(is_neg tm || is_conj tm || is_disj tm || is_imp tm || is_iff tm) in
  let is_literal tm =
    (is_neg tm && is_atomic(rand tm)) || is_atomic tm in
  let valid_definition tm =
    (is_iff tm && is_literal(lhand tm)) || is_literal tm in
  let ADJUST_DEF th =
    let tm = concl th in
    if is_neg tm then EQF_INTRO th
    else if is_iff tm then th
    else EQT_INTRO th in
  let rec acyclic oks tms =
    match tms with
      [] -> true
    | tm::otms -> not (exists (free_in (lhs tm)) (rand tm::oks)) &&
                  acyclic (tm::oks) otms in
  let valid_definitions tm =
    let tms = map (concl o ADJUST_DEF o ASSUME) (conjuncts tm) in
    forall valid_definition tms && acyclic [] tms in
  fun ivars tm ->
    let vars = ivars @ subtract (atoms tm) ivars in
    let vt = mk_vtable (length vars)
    and ut = mk_utable() and ct = mk_ctable() in
    let _ = do_list (ignore o BDD_VAR (vt,ut,ct)) ivars in
    if is_imp tm && valid_definitions (lhand tm) then
      let ths = map ADJUST_DEF (CONJUNCTS(ASSUME(lhand tm))) in
      let defs = bdd_of_defs undefined (vt,ut,ct) ths in
      let b = BDD_OF_TERM defs (vt,ut,ct) (rand tm) in
      let _ = bdd_stats (length(dom defs)) (vt,ct,ut) in
      DISCH (lhand tm) (EQT_ELIM(snd b))
    else
      let b = BDD_OF_TERM undefined (vt,ut,ct) tm in
      let _ = bdd_stats 0 (vt,ct,ut) in
      EQT_ELIM(snd b);;