File: derived.ml

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (668 lines) | stat: -rw-r--r-- 27,118 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
(* ========================================================================= *)
(* Derived properties of provability.                                        *)
(* ========================================================================= *)

let negativef = new_definition
  `negativef p = ?q. p = q --> False`;;

let negatef = new_definition
  `negatef p = if negativef p then @q. p = q --> False else p --> False`;;

(* ------------------------------------------------------------------------- *)
(* The primitive basis, separated into its named components.                 *)
(* ------------------------------------------------------------------------- *)

let axiom_addimp = prove
 (`!A p q. A |-- p --> (q --> p)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_distribimp = prove
 (`!A p q r. A |-- (p --> q --> r) --> (p --> q) --> (p --> r)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_doubleneg = prove
 (`!A p. A |-- ((p --> False) --> False) --> p`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_allimp = prove
 (`!A x p q. A |-- (!!x (p --> q)) --> (!!x p) --> (!!x q)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_impall = prove
 (`!A x p. ~(x IN FV p) ==> A |-- p --> !!x p`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_existseq = prove
 (`!A x t. ~(x IN FVT t) ==> A |-- ??x (V x === t)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_eqrefl = prove
 (`!A t. A |-- t === t`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_funcong = prove
 (`(!A s t. A |-- s === t --> Suc s === Suc t) /\
   (!A s t u v. A |-- s === t --> u === v --> s ++ u === t ++ v) /\
   (!A s t u v. A |-- s === t --> u === v --> s ** u === t ** v)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_predcong = prove
 (`(!A s t u v. A |-- s === t --> u === v --> s === u --> t === v) /\
   (!A s t u v. A |-- s === t --> u === v --> s << u --> t << v) /\
   (!A s t u v. A |-- s === t --> u === v --> s <<= u --> t <<= v)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_iffimp1 = prove
 (`!A p q. A |-- (p <-> q) --> p --> q`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_iffimp2 = prove
 (`!A p q. A |-- (p <-> q) --> q --> p`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_impiff = prove
 (`!A p q. A |-- (p --> q) --> (q --> p) --> (p <-> q)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_true = prove
 (`A |-- True <-> (False --> False)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_not = prove
 (`!A p. A |-- Not p <-> (p --> False)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_and = prove
 (`!A p q. A |-- (p && q) <-> (p --> q --> False) --> False`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_or = prove
 (`!A p q. A |-- (p || q) <-> Not(Not p && Not q)`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let axiom_exists = prove
 (`!A x p. A |-- (??x p) <-> Not(!!x (Not p))`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

let assume = prove
 (`!A p. p IN A ==> A |-- p`,
  MESON_TAC[proves_RULES]);;

let modusponens = prove
 (`!A p. A |-- (p --> q) /\ A |-- p ==> A |-- q`,
  MESON_TAC[proves_RULES]);;

let gen = prove
 (`!A p x. A |-- p ==> A |-- !!x p`,
  MESON_TAC[proves_RULES]);;

(* ------------------------------------------------------------------------- *)
(* Now some theorems corresponding to derived rules.                         *)
(* ------------------------------------------------------------------------- *)

let iff_imp1 = prove
 (`!A p q. A |-- p <-> q ==> A |-- p --> q`,
  MESON_TAC[modusponens; axiom_iffimp1]);;

let iff_imp2 = prove
 (`!A p q. A |-- p <-> q ==> A |-- q --> p`,
  MESON_TAC[modusponens; axiom_iffimp2]);;

let imp_antisym = prove
 (`!A p q. A |-- p --> q /\ A |-- q --> p ==> A |-- p <-> q`,
  MESON_TAC[modusponens; axiom_impiff]);;

let add_assum = prove
 (`!A p q. A |-- q ==> A |-- p --> q`,
  MESON_TAC[modusponens; axiom_addimp]);;

let imp_refl = prove
 (`!A p. A |-- p --> p`,
  MESON_TAC[modusponens; axiom_distribimp; axiom_addimp]);;

let imp_add_assum = prove
 (`!A p q r. A |-- q --> r ==> A |-- (p --> q) --> (p --> r)`,
  MESON_TAC[modusponens; axiom_distribimp; add_assum]);;

let imp_unduplicate = prove
 (`!A p q. A |-- p --> p --> q ==> A |-- p --> q`,
  MESON_TAC[modusponens; axiom_distribimp; imp_refl]);;

let imp_trans = prove
 (`!A p q. A |-- p --> q /\ A |-- q --> r ==> A |-- p --> r`,
  MESON_TAC[modusponens; imp_add_assum]);;

let imp_swap = prove
 (`!A p q r. A |-- p --> q --> r ==> A |-- q --> p --> r`,
  MESON_TAC[imp_trans; axiom_addimp; modusponens; axiom_distribimp]);;

let imp_trans_chain_2 = prove
 (`!A p q1 q2 r. A |-- p --> q1 /\ A |-- p --> q2 /\ A |-- q1 --> q2 --> r
                 ==> A |-- p --> r`,
  ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate]);;



(*****

let imp_trans_chain = prove
 (`!A p qs r. ALL (\q. A |-- p --> q) qs /\
              A |-- ITLIST (-->) qs r
              ==> A |-- p --> r`,
  GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[ALL; ITLIST] THENL
   [ASM_MESON_TAC[add_assum]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC


ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate; axiom_distribimp;
              modusponens; add_assum]

add_assum] THEN
  ... needs more thought. Maybe the REV

 *****)


let imp_trans_th = prove
 (`!A p q r. A |-- (q --> r) --> (p --> q) --> (p --> r)`,
  MESON_TAC[imp_trans; axiom_addimp; axiom_distribimp]);;

let imp_add_concl = prove
 (`!A p q r. A |-- p --> q ==> A |-- (q --> r) --> (p --> r)`,
  MESON_TAC[modusponens; imp_swap; imp_trans_th]);;

let imp_trans2 = prove
 (`!A p q r s. A |-- p --> q --> r /\ A |-- r --> s ==> A |-- p --> q --> s`,
  MESON_TAC[imp_add_assum; modusponens; imp_trans_th]);;

let imp_swap_th = prove
 (`!A p q r. A |-- (p --> q --> r) --> (q --> p --> r)`,
  MESON_TAC[imp_trans; axiom_distribimp; imp_add_concl; axiom_addimp]);;

let contrapos = prove
 (`!A p q. A |-- p --> q ==> A |-- Not q --> Not p`,
  MESON_TAC[imp_trans; iff_imp1; axiom_not; imp_add_concl; iff_imp2]);;

let imp_truefalse = prove
 (`!p q. A |-- (q --> False) --> p --> (p --> q) --> False`,
  MESON_TAC[imp_trans; imp_trans_th; imp_swap_th]);;

let imp_insert = prove
 (`!A p q r. A |-- p --> r ==> A |-- p --> q --> r`,
  MESON_TAC[imp_trans; axiom_addimp]);;

let ex_falso = prove
 (`!A p. A |-- False --> p`,
  MESON_TAC[imp_trans; axiom_addimp; axiom_doubleneg]);;

let imp_contr = prove
 (`!A p q. A |-- (p --> False) --> (p --> r)`,
  MESON_TAC[imp_add_assum; ex_falso]);;

let imp_contrf = prove
 (`!A p r. A |-- p --> negatef p --> r`,
  REPEAT GEN_TAC THEN REWRITE_TAC[negatef; negativef] THEN
  COND_CASES_TAC THEN POP_ASSUM STRIP_ASSUME_TAC THEN
  ASM_REWRITE_TAC[form_INJ] THEN
  ASM_MESON_TAC[imp_contr; imp_swap]);;

let contrad = prove
 (`!A p. A |-- (p --> False) --> p ==> A |-- p`,
  MESON_TAC[modusponens; axiom_distribimp; imp_refl; axiom_doubleneg]);;

let bool_cases = prove
 (`!p q. A |-- p --> q /\ A |-- (p --> False) --> q ==> A |-- q`,
  MESON_TAC[contrad; imp_trans; imp_add_concl]);;

(****

let imp_front = prove
 (`...` a bi more structure);;

****)

(*** This takes about a minute, but it does work ***)

let imp_false_rule = prove
 (`!p q r. A |-- (q --> False) --> p --> r
           ==> A |-- ((p --> q) --> False) --> r`,
  MESON_TAC[imp_add_concl; imp_add_assum; ex_falso; axiom_addimp; imp_swap;
            imp_trans; axiom_doubleneg; imp_unduplicate]);;

let imp_true_rule = prove
 (`!A p q r. A |-- (p --> False) --> r /\ A |-- q --> r
             ==> A |-- (p --> q) --> r`,
  MESON_TAC[imp_insert; imp_swap; modusponens; imp_trans_th; bool_cases]);;

let iff_def = prove
 (`!A p q. A |-- (p <-> q) <-> (p --> q) && (q --> p)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC imp_antisym THEN CONJ_TAC THENL
   [SUBGOAL_THEN
     `A |-- ((p --> q) --> (q --> p) --> False) --> (p <-> q) --> False`
    ASSUME_TAC THENL
     [ASM_MESON_TAC[imp_add_concl; imp_trans; axiom_distribimp; modusponens;
                    imp_swap; axiom_iffimp1; axiom_iffimp2];
      ALL_TAC] THEN
    ASM_MESON_TAC[imp_add_concl; imp_trans; imp_swap; imp_refl;
                   iff_imp2; axiom_and];
    SUBGOAL_THEN
     `A |-- (((p --> q) --> (q --> p) --> False) --> False)
            --> ((p <-> q) --> False) --> False`
    ASSUME_TAC THENL
     [ASM_MESON_TAC[imp_swap; imp_trans_th; modusponens; imp_add_assum;
                    axiom_impiff; imp_add_concl];
      ALL_TAC] THEN
    ASM_MESON_TAC[imp_trans; iff_imp1; axiom_and; axiom_doubleneg]]);;

(* ------------------------------------------------------------------------- *)
(* Equality rules.                                                           *)
(* ------------------------------------------------------------------------- *)

let eq_sym = prove
 (`!A s t. A |-- s === t --> t === s`,
  MESON_TAC[axiom_eqrefl; modusponens; imp_swap; axiom_predcong]);;

let icongruence_general = prove
 (`!A p x s t tm.
     A |-- s === t -->
           termsubst ((x |-> s) v) tm === termsubst ((x |-> t) v) tm`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN
  REPEAT CONJ_TAC THENL
   [MESON_TAC[axiom_eqrefl; add_assum];
    GEN_TAC THEN REWRITE_TAC[valmod] THEN
    COND_CASES_TAC THEN REWRITE_TAC[imp_refl] THEN
    MESON_TAC[axiom_eqrefl; add_assum];
    MESON_TAC[imp_trans; axiom_funcong];
    MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate];
    MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]]);;

let icongruence = prove
 (`!A x s t tm.
     A |-- s === t --> termsubst (x |=> s) tm === termsubst (x |=> t) tm`,
  REWRITE_TAC[assign; icongruence_general]);;

let icongruence_var = prove
 (`!A x t tm.
     A |-- V x === t --> tm === termsubst (x |=> t) tm`,
  MESON_TAC[icongruence; TERMSUBST_TRIV; ASSIGN_TRIV]);;

(* ------------------------------------------------------------------------- *)
(* First-order rules.                                                        *)
(* ------------------------------------------------------------------------- *)

let gen_right = prove
 (`!A x p q. ~(x IN FV(p)) /\ A |-- p --> q
             ==> A |-- p --> !!x q`,
  MESON_TAC[axiom_allimp; modusponens; gen; imp_trans; axiom_impall]);;

let genimp = prove
 (`!x p q. A |-- p --> q ==> A |-- (!!x p) --> (!!x q)`,
  MESON_TAC[modusponens; axiom_allimp; gen]);;

let eximp = prove
 (`!x p q. A |-- p --> q ==> A |-- (??x p) --> (??x q)`,
  MESON_TAC[contrapos; genimp; contrapos; imp_trans; iff_imp1; iff_imp2;
            axiom_exists]);;

let exists_imp = prove
 (`!A x p q. A |-- ??x (p --> q) /\ ~(x IN FV(q)) ==> A |-- (!!x p) --> q`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `A |-- (q --> False) --> !!x (p --> Not(p --> q))`
  ASSUME_TAC THENL
   [MATCH_MP_TAC gen_right THEN
    ASM_REWRITE_TAC[FV; IN_UNION; NOT_IN_EMPTY] THEN
    ASM_MESON_TAC[iff_imp2; axiom_not; imp_trans2; imp_truefalse];
    ALL_TAC] THEN
  SUBGOAL_THEN `A |-- (q --> False) --> !!x p --> !!x (Not(p --> q))`
  ASSUME_TAC THENL
   [ASM_MESON_TAC[imp_trans; axiom_allimp]; ALL_TAC] THEN
  SUBGOAL_THEN `A |-- ((q --> False) --> !!x (Not(p --> q)))
                      --> (q --> False) --> False`
  ASSUME_TAC THENL
   [ASM_MESON_TAC[modusponens; iff_imp1; axiom_exists; axiom_not; imp_trans_th];
    ALL_TAC] THEN
  ASM_MESON_TAC[imp_trans; imp_swap; axiom_doubleneg]);;

let subspec = prove
 (`!A x t p q. ~(x IN FVT(t)) /\ ~(x IN FV(q)) /\ A |-- V x === t --> p --> q
               ==> A |-- (!!x p) --> q`,
  MESON_TAC[exists_imp; modusponens; eximp; axiom_existseq]);;

let subalpha = prove
 (`!A x y p q. ((x = y) \/ ~(x IN FV(q)) /\ ~(y IN FV(p))) /\
               A |-- V x === V y --> p --> q
               ==> A |-- (!!x p) --> (!!y q)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[] THEN
  STRIP_TAC THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN
    ASM_MESON_TAC[genimp; modusponens; axiom_eqrefl];
    ALL_TAC] THEN
  MATCH_MP_TAC gen_right THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN
  MATCH_MP_TAC subspec THEN EXISTS_TAC `V y` THEN
  ASM_REWRITE_TAC[FVT; IN_SING]);;

let imp_mono_th = prove
 (`A |-- (p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q')`,
  MESON_TAC[imp_trans; imp_swap; imp_trans_th]);;

(* ------------------------------------------------------------------------- *)
(* We'll perform induction on this measure.                                  *)
(* ------------------------------------------------------------------------- *)

let complexity = new_recursive_definition form_RECURSION
  `(complexity False = 1) /\
   (complexity True = 1) /\
   (!s t. complexity (s === t) = 1) /\
   (!s t. complexity (s << t) = 1) /\
   (!s t. complexity (s <<= t) = 1) /\
   (!p. complexity (Not p) = complexity p + 3) /\
   (!p q. complexity (p && q) = complexity p + complexity q + 6) /\
   (!p q. complexity (p || q) = complexity p + complexity q + 16) /\
   (!p q. complexity (p --> q) = complexity p + complexity q + 1) /\
   (!p q. complexity (p <-> q) = 2 * (complexity p + complexity q) + 9) /\
   (!x p. complexity (!!x p) = complexity p + 1) /\
   (!x p. complexity (??x p) = complexity p + 8)`;;

let COMPLEXITY_FORMSUBST = prove
 (`!p i. complexity(formsubst i p) = complexity p`,
  MATCH_MP_TAC form_INDUCT THEN
  SIMP_TAC[formsubst; complexity; LET_DEF; LET_END_DEF]);;

let isubst_general = prove
 (`!A p x v s t. A |-- s === t
                       --> formsubst ((x |-> s) v) p
                           --> formsubst ((x |-> t) v) p`,
  GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `complexity p` THEN
  POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN
  MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[formsubst; complexity] THEN
  REPEAT CONJ_TAC THENL
   [MESON_TAC[imp_refl; add_assum];
    MESON_TAC[imp_refl; add_assum];
    MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general];
    MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general];
    MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general];
    X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `p --> False`) THEN
    REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[formsubst] THEN
    MESON_TAC[axiom_not; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
    MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `(p --> q --> False) --> False`) THEN
    REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[formsubst] THEN
    MESON_TAC[axiom_and; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
    MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `Not(Not p && Not q)`) THEN
    REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[formsubst] THEN
    MESON_TAC[axiom_or; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
    MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(fun th -> MP_TAC(SPEC `p:form` th) THEN
                         MP_TAC(SPEC `q:form` th)) THEN
    REWRITE_TAC[ARITH_RULE `p < p + q + 1 /\ q < p + q + 1`] THEN
    MESON_TAC[imp_mono_th; eq_sym; imp_trans; imp_trans_chain_2];
    MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `(p --> q) && (q --> p)`) THEN
    REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[formsubst] THEN
    MESON_TAC[iff_def; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
    ALL_TAC;
    MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `Not(!!x (Not p))`) THEN
    REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[formsubst] THEN
    REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
    REWRITE_TAC[FV] THEN REPEAT LET_TAC THEN
    ASM_MESON_TAC[axiom_exists; iff_imp1; iff_imp2; imp_swap; imp_trans;
                  imp_trans2]] THEN
  MAP_EVERY X_GEN_TAC [`u:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[ARITH_RULE `a < b + 1 <=> a <= b`] THEN DISCH_TAC THEN
  MAP_EVERY X_GEN_TAC [`v:num`; `i:num->term`; `s:term`; `t:term`] THEN
  MAP_EVERY ABBREV_TAC
   [`x = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> s) i y)
         then VARIANT (FV (formsubst ((u |-> V u) ((v |-> s) i)) p))
         else u`;
    `y = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> t) i y)
         then VARIANT (FV (formsubst ((u |-> V u) ((v |-> t) i)) p))
         else u`] THEN
  REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
  SUBGOAL_THEN `~(x IN FV(formsubst ((v |-> s) i) (!!u p))) /\
                ~(y IN FV(formsubst ((v |-> t) i) (!!u p)))`
  STRIP_ASSUME_TAC THENL
   [MAP_EVERY EXPAND_TAC ["x"; "y"] THEN CONJ_TAC THEN
    (COND_CASES_TAC THENL
       [ALL_TAC; ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN
      MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[FV_FINITE] THEN
      REWRITE_TAC[SUBSET; FORMSUBST_FV; IN_ELIM_THM; FV; IN_DELETE] THEN
      REWRITE_TAC[valmod] THEN MESON_TAC[FVT; IN_SING]);
    ALL_TAC] THEN
  ASM_CASES_TAC `v:num = u` THENL
   [ASM_REWRITE_TAC[VALMOD_VALMOD_BASIC] THEN
    MATCH_MP_TAC add_assum THEN MATCH_MP_TAC subalpha THEN
    ASM_SIMP_TAC[LE_REFL] THEN
    ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`;
      UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN
    ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN
    MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN
    X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN
    ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN
    ASM_REWRITE_TAC[valmod; FVT; IN_SING];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `?z. ~(z IN FVT s) /\ ~(z IN FVT t) /\
        A |-- !!x (formsubst ((u |-> V x) ((v |-> s) i)) p)
              --> !!z (formsubst ((u |-> V z) ((v |-> s) i)) p) /\
        A |-- !!z (formsubst ((u |-> V z) ((v |-> t) i)) p)
              --> !!y (formsubst ((u |-> V y) ((v |-> t) i)) p)`
  MP_TAC THENL
   [ALL_TAC;
    DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
    MATCH_MP_TAC imp_trans THEN
    EXISTS_TAC `(!!z (formsubst ((v |-> s) ((u |-> V z) i)) p))
                     --> (!!z (formsubst ((v |-> t) ((u |-> V z) i)) p))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC imp_trans THEN
      EXISTS_TAC `!!z (formsubst ((v |-> s) ((u |-> V z) i)) p
                       --> formsubst ((v |-> t) ((u |-> V z) i)) p)` THEN
      REWRITE_TAC[axiom_allimp] THEN
      ASM_SIMP_TAC[complexity; LE_REFL; FV; IN_UNION; gen_right];
      ALL_TAC] THEN
    FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP VALMOD_SWAP th]) THEN
    ASM_MESON_TAC[imp_mono_th; modusponens]] THEN
  MP_TAC(SPEC
   `FVT(s) UNION FVT(t) UNION
    FV(formsubst ((u |-> V x) ((v |-> s) i)) p) UNION
    FV(formsubst ((u |-> V y) ((v |-> t) i)) p)` VARIANT_FINITE) THEN
  REWRITE_TAC[FINITE_UNION; FV_FINITE; FVT_FINITE] THEN
  W(fun (_,w) -> ABBREV_TAC(mk_comb(`(=) (z:num)`,lhand(rand(lhand w))))) THEN
  REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN STRIP_TAC THEN
  EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[] THEN
  CONJ_TAC THEN MATCH_MP_TAC subalpha THEN ASM_SIMP_TAC[LE_REFL] THENL
   [ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`;
    ASM_CASES_TAC `z:num = y` THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN
  ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN
  MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN
  ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN
  ASM_REWRITE_TAC[valmod; FVT; IN_SING]);;

let isubst = prove
 (`!A p x s t. A |-- s === t
                     --> formsubst (x |=> s) p --> formsubst (x |=> t) p`,
  REWRITE_TAC[assign; isubst_general]);;

let isubst_var = prove
 (`!A p x t. A |-- V x === t --> p --> formsubst (x |=> t) p`,
  MESON_TAC[FORMSUBST_TRIV; ASSIGN_TRIV; isubst]);;

let alpha = prove
 (`!A x z p. ~(z IN FV p) ==> A |-- (!!x p) --> !!z (formsubst (x |=> V z) p)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC subalpha THEN CONJ_TAC THENL
   [ALL_TAC; MESON_TAC[isubst_var]] THEN
  REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN
  ASM_MESON_TAC[IN_SING; FVT]);;

(* ------------------------------------------------------------------------- *)
(* To conclude cleanly, useful to have all variables.                        *)
(* ------------------------------------------------------------------------- *)

let VARS = new_recursive_definition form_RECURSION
 `(VARS False = {}) /\
  (VARS True = {}) /\
  (VARS (s === t) = FVT s UNION FVT t) /\
  (VARS (s << t) = FVT s UNION FVT t) /\
  (VARS (s <<= t) = FVT s UNION FVT t) /\
  (VARS (Not p) = VARS p) /\
  (VARS (p && q) = VARS p UNION VARS q) /\
  (VARS (p || q) = VARS p UNION VARS q) /\
  (VARS (p --> q) = VARS p UNION VARS q) /\
  (VARS (p <-> q) = VARS p UNION VARS q) /\
  (VARS (!! x p) = x INSERT VARS p) /\
  (VARS (?? x p) = x INSERT VARS p)`;;

let VARS_FINITE = prove
 (`!p. FINITE(VARS p)`,
  MATCH_MP_TAC form_INDUCT THEN
  ASM_SIMP_TAC[VARS; FINITE_RULES; FVT_FINITE; FINITE_UNION; FINITE_DELETE]);;

let FV_SUBSET_VARS = prove
 (`!p. FV(p) SUBSET VARS(p)`,
  REWRITE_TAC[SUBSET] THEN
  MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[FV; VARS] THEN
  REWRITE_TAC[IN_INSERT; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;

let TERMSUBST_TWICE_GENERAL = prove
 (`!x z t v s. ~(z IN FVT s)
               ==> (termsubst ((x |-> t) v) s =
                    termsubst ((z |-> t) v) (termsubst (x |=> V z) s))`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[termsubst; ASSIGN; valmod; FVT; IN_SING; IN_UNION] THEN
  MESON_TAC[termsubst; ASSIGN]);;

let TERMSUBST_TWICE = prove
 (`!x z t s. ~(z IN FVT s)
             ==> (termsubst (x |=> t) s =
                  termsubst (z |=> t) (termsubst (x |=> V z) s))`,
  MESON_TAC[assign; TERMSUBST_TWICE_GENERAL]);;

let FORMSUBST_TWICE_GENERAL = prove
 (`!z p x t v. ~(z IN VARS p)
               ==> (formsubst ((z |-> t) v) (formsubst (x |=> V z) p) =
                    formsubst ((x |-> t) v) p)`,
  GEN_TAC THEN MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[CONJ_ASSOC] THEN
  GEN_REWRITE_TAC I [GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
   [REWRITE_TAC[formsubst; ASSIGN; VARS; IN_UNION; DE_MORGAN_THM] THEN
    MESON_TAC[TERMSUBST_TWICE_GENERAL];
    ALL_TAC] THEN
  CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:num`; `p:form`] THEN
  (REWRITE_TAC[VARS; IN_INSERT; DE_MORGAN_THM] THEN
   DISCH_THEN(fun th -> REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC th) THEN
   ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
   GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [formsubst] THEN
   COND_CASES_TAC THENL
    [FIRST_X_ASSUM(CHOOSE_THEN MP_TAC) THEN
     REWRITE_TAC[ASSIGN; FV; IN_DELETE] THEN
     ASM_MESON_TAC[FVT; IN_SING];
     ALL_TAC] THEN
   REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
   ASM_CASES_TAC `x:num = y` THENL
    [ASM_REWRITE_TAC[assign; VALMOD_VALMOD_BASIC; VALMOD_REPEAT;
                     FORMSUBST_TRIV] THEN
     MATCH_MP_TAC FORMSUBST_EQ THEN
     ASM_REWRITE_TAC[valmod; FV; IN_DELETE] THEN
     ASM_MESON_TAC[FV_SUBSET_VARS; SUBSET];
     ALL_TAC] THEN
   SUBGOAL_THEN
    `(!t. (y |-> V y) (x |=> t) = x |=> t) /\
     (!t. (y |-> V y) (z |=> t) = z |=> t)`
   STRIP_ASSUME_TAC THENL
    [REWRITE_TAC[assign] THEN ASM_MESON_TAC[VALMOD_SWAP; VALMOD_REPEAT];
     ALL_TAC] THEN
   ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC BINOP_CONV [formsubst] THEN
   ASM_REWRITE_TAC[FV] THEN
   SUBGOAL_THEN
    `(?u. u IN (FV(formsubst (x |=> V z) p) DELETE y) /\
          y IN FVT ((z |-> t) v u)) =
     (?u. u IN (FV p DELETE y) /\ y IN FVT ((x |-> t) v u))`
   SUBST1_TAC THENL
    [REWRITE_TAC[FV; FORMSUBST_FV; IN_ELIM_THM; IN_DELETE; valmod; ASSIGN] THEN
     ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RAND] THEN
     REWRITE_TAC[FVT; IN_SING] THEN
     ASM_MESON_TAC[SUBSET; FV_SUBSET_VARS; FVT; IN_SING];
     ALL_TAC] THEN
   COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
    [ALL_TAC;
     REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN
     ASM_MESON_TAC[VALMOD_SWAP]] THEN
   REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN
   MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
    [ALL_TAC; DISCH_THEN SUBST1_TAC] THEN
   REPEAT AP_TERM_TAC THEN ASM_MESON_TAC[VALMOD_SWAP]));;

let FORMSUBST_TWICE = prove
 (`!z p x t. ~(z IN VARS p)
             ==> (formsubst (z |=> t) (formsubst (x |=> V z) p) =
                  formsubst (x |=> t) p)`,
  MESON_TAC[assign; FORMSUBST_TWICE_GENERAL]);;

let ispec_lemma = prove
 (`!A x p t. ~(x IN FVT(t)) ==> A |-- !!x p --> formsubst (x |=> t) p`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC subspec THEN
  EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[isubst_var] THEN
  ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN
  ASM_MESON_TAC[FVT; IN_SING]);;

let ispec = prove
 (`!A x p t. A |-- !!x p --> formsubst (x |=> t) p`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `x IN FVT(t)` THEN
  ASM_SIMP_TAC[ispec_lemma] THEN
  ABBREV_TAC `z = VARIANT (FVT t UNION VARS p)` THEN
  MATCH_MP_TAC imp_trans THEN
  EXISTS_TAC `!!z (formsubst (x |=> V z) p)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC alpha THEN EXPAND_TAC "z" THEN
    MATCH_MP_TAC NOT_IN_VARIANT THEN
    REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION] THEN
    MESON_TAC[SUBSET; FVT_FINITE; VARS_FINITE; FV_SUBSET_VARS];
    SUBGOAL_THEN
     `formsubst (x |=> t) p =
      formsubst (z |=> t) (formsubst (x |=> V z) p)`
    SUBST1_TAC THENL
     [MATCH_MP_TAC(GSYM FORMSUBST_TWICE); MATCH_MP_TAC ispec_lemma] THEN
    EXPAND_TAC "z" THEN MATCH_MP_TAC NOT_IN_VARIANT THEN
    REWRITE_TAC[VARS_FINITE; FVT_FINITE; FINITE_UNION] THEN
    SIMP_TAC[SUBSET; IN_UNION]]);;

let spec = prove
 (`!A x p t. A |-- !!x p ==> A |-- formsubst (x |=> t) p`,
  MESON_TAC[ispec; modusponens]);;

(* ------------------------------------------------------------------------- *)
(* Monotonicity and the deduction theorem.                                   *)
(* ------------------------------------------------------------------------- *)

let PROVES_MONO = prove
 (`!A B p. A SUBSET B /\ A |-- p ==> B |-- p`,
  GEN_TAC THEN GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
  MATCH_MP_TAC proves_INDUCT THEN  ASM_MESON_TAC[proves_RULES; SUBSET]);;

let DEDUCTION_LEMMA = prove
 (`!A p q. p INSERT A |-- q /\ closed p ==> A |-- p --> q`,
  GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN
  REPEAT CONJ_TAC THEN X_GEN_TAC `r:form` THENL
   [REWRITE_TAC[IN_INSERT] THEN MESON_TAC[proves_RULES; add_assum; imp_refl];
    MESON_TAC[modusponens; axiom_distribimp];
    ASM_MESON_TAC[gen_right; closed; NOT_IN_EMPTY]]);;

let DEDUCTION = prove
 (`!A p q. closed p ==> (A |-- p --> q <=> p INSERT A |-- q)`,
  MESON_TAC[DEDUCTION_LEMMA; modusponens; IN_INSERT; proves_RULES;
            PROVES_MONO; SUBSET]);;