File: ARITH_RULE.doc

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (38 lines) | stat: -rw-r--r-- 1,079 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
\DOC ARITH_RULE

\TYPE {ARITH_RULE : term -> thm}

\SYNOPSIS
Automatically proves natural number arithmetic theorems needing basic
rearrangement and linear inequality reasoning only.

\DESCRIBE
The function {ARITH_RULE} can automatically prove natural number theorems using
basic algebraic normalization and inequality reasoning. For nonlinear
equational reasoning use {NUM_RING}.

\FAILURE
Fails if the term is not boolean or if it cannot be proved using the basic
methods employed, e.g. requiring nonlinear inequality reasoning.

\EXAMPLE
{
  # ARITH_RULE `x = 1 ==> y <= 1 \/ x < y`;;
  val it : thm = |- x = 1 ==> y <= 1 \/ x < y

  # ARITH_RULE `x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)`;;
  val it : thm = |- x <= 127 ==> (86 * x) DIV 256 = x DIV 3

  # ARITH_RULE
     `2 * a * b EXP 2 <= b * a * b ==> (SUC c - SUC(a * b * b) <= c)`;;
  val it : thm =
    |- 2 * a * b EXP 2 <= b * a * b ==> SUC c - SUC (a * b * b) <= c
}

\USES
Disposing of elementary arithmetic goals.

\SEEALSO
ARITH_CONV, ARITH_TAC, INT_ARITH, NUM_RING, REAL_ARITH, REAL_FIELD, REAL_RING.

\ENDDOC