1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
\DOC CONJUNCTS
\TYPE {CONJUNCTS : thm -> thm list}
\SYNOPSIS
Recursively splits conjunctions into a list of conjuncts.
\KEYWORDS
rule, conjunction.
\DESCRIBE
Flattens out all conjuncts, regardless of grouping. Returns a singleton list
if the input theorem is not a conjunction.
{
A |- t1 /\ t2 /\ ... /\ tn
----------------------------------- CONJUNCTS
A |- t1 A |- t2 ... A |- tn
}
\FAILURE
Never fails.
\EXAMPLE
{
# CONJUNCTS(ASSUME `(x /\ y) /\ z /\ w`);;
val it : thm list =
[(x /\ y) /\ z /\ w |- x; (x /\ y) /\ z /\ w |- y; (x /\ y) /\ z /\ w
|- z; (x /\ y) /\ z /\ w |- w]
}
\SEEALSO
CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.
\ENDDOC
|