File: EQ_MP.doc

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (40 lines) | stat: -rw-r--r-- 913 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\DOC EQ_MP

\TYPE {EQ_MP : thm -> thm -> thm}

\SYNOPSIS
Equality version of the Modus Ponens rule.

\KEYWORDS
rule, equality, modus, ponens.

\DESCRIBE
When applied to theorems {A1 |- t1 <=> t2} and {A2 |- t1}, the inference
rule {EQ_MP} returns the theorem {A1 u A2 |- t2}.
{
    A1 |- t1 <=> t2   A2 |- t1
   ----------------------------  EQ_MP
         A1 u A2 |- t2
}
\FAILURE
Fails unless the first theorem is equational and its left side
is the same as the conclusion of the second theorem (and is therefore
of type {bool}), up to alpha-conversion.

\EXAMPLE
{
  # let th1 = SPECL [`p:bool`; `q:bool`] CONJ_SYM
    and th2 = ASSUME `p /\ q`;;
  val th1 : thm = |- p /\ q <=> q /\ p
  val th2 : thm = p /\ q |- p /\ q
  # EQ_MP th1 th2;;
  val it : thm = p /\ q |- q /\ p
}

\COMMENTS
This is one of HOL Light's 10 primitive inference rules.

\SEEALSO
EQ_IMP_RULE, IMP_ANTISYM_RULE, MP, PROVE_HYP.

\ENDDOC