1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
\DOC GEN_ALL
\TYPE {GEN_ALL : thm -> thm}
\SYNOPSIS
Generalizes the conclusion of a theorem over its own free variables.
\KEYWORDS
rule, quantifier, universal.
\DESCRIBE
When applied to a theorem {A |- t}, the inference rule {GEN_ALL} returns
the theorem {A |- !x1...xn. t}, where the {xi} are all the variables,
if any, which are free in {t} but not in the assumptions.
{
A |- t
------------------ GEN_ALL
A |- !x1...xn. t
}
\FAILURE
Never fails.
\EXAMPLE
{
# let th = ARITH_RULE `x < y ==> 2 * x + y + 1 < 3 * y`;;
val th : thm = |- x < y ==> 2 * x + y + 1 < 3 * y
# GEN_ALL th;;
val it : thm = |- !x y. x < y ==> 2 * x + y + 1 < 3 * y
}
\SEEALSO
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC.
\ENDDOC
|