File: IMP_TRANS.doc

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (38 lines) | stat: -rw-r--r-- 876 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
\DOC IMP_TRANS

\TYPE {IMP_TRANS : thm -> thm -> thm}

\SYNOPSIS
Implements the transitivity of implication.

\KEYWORDS
rule, implication, transitivity.

\DESCRIBE
When applied to theorems {A1 |- t1 ==> t2} and {A2 |- t2 ==> t3},
the inference rule {IMP_TRANS} returns the theorem {A1 u A2 |- t1 ==> t3}.
{
    A1 |- t1 ==> t2   A2 |- t2 ==> t3
   -----------------------------------  IMP_TRANS
         A1 u A2 |- t1 ==> t3
}

\FAILURE
Fails unless the theorems are both implicative, with the consequent of the
first being the same as the antecedent of the  second (up to alpha-conversion).

\EXAMPLE
{
  # let th1 = TAUT `p /\ q /\ r ==> p /\ q`
    and th2 = TAUT `p /\ q ==> p`;;
  val th1 : thm = |- p /\ q /\ r ==> p /\ q
  val th2 : thm = |- p /\ q ==> p

  # IMP_TRANS th1 th2;;
  val it : thm = |- p /\ q /\ r ==> p
}

\SEEALSO
IMP_ANTISYM_RULE, SYM, TRANS.

\ENDDOC