1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
\DOC NUMSEG_CONV
\TYPE {NUMSEG_CONV : conv}
\SYNOPSIS
Expands a specific interval {m..n} to a set enumeration.
\DESCRIBE
When applied to a term {`m..n`} (the segment of natural numbers between
{m} and {n}) for specific numerals {m} and {n}, the conversion {NUMSEG_CONV}
returns a theorem of the form {|- m..n = {{m, ..., n}}} expressing that segment
as a set enumeration.
\FAILURE
Fails unless applied to a term of the form {m..n} for specific numerals {m} and
{n}.
\EXAMPLE
{
# NUMSEG_CONV `7..11`;;
val it : thm = |- 7..11 = {7, 8, 9, 10, 11}
# NUMSEG_CONV `24..7`;;
val it : thm = |- 24..7 = {}
}
\SEEALSO
SET_RULE, SET_TAC.
\ENDDOC
|