File: RIGHT_BETAS.doc

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (26 lines) | stat: -rw-r--r-- 713 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
\DOC RIGHT_BETAS

\TYPE {RIGHT_BETAS : term list -> thm -> thm}

\SYNOPSIS
Apply and beta-reduce equational theorem with abstraction on RHS.

\DESCRIBE
Given a list of arguments {[`a1`; ...; `an`]} and a theorem of the form
{A |- f = \x1 ... xn. t[x1,...xn]}, the rule {RIGHT_BETAS} returns
{A |- f a1 ... an = t[a1,...,an]}. That is, it applies the theorem to the list 
of arguments and beta-reduces the right-hand side.

\FAILURE
Fails if the argument types are wrong or the RHS has too few abstractions.

\EXAMPLE
{
  # RIGHT_BETAS [`x:num`; `y:num`] (ASSUME `f = \a b c. a + b + c + 1`);;
  val it : thm = f = (\a b c. a + b + c + 1) |- f x y = (\c. x + y + c + 1)
}

\SEEALSO
BETA_CONV, BETAS_CONV.

\ENDDOC