1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
\DOC RIGHT_BETAS
\TYPE {RIGHT_BETAS : term list -> thm -> thm}
\SYNOPSIS
Apply and beta-reduce equational theorem with abstraction on RHS.
\DESCRIBE
Given a list of arguments {[`a1`; ...; `an`]} and a theorem of the form
{A |- f = \x1 ... xn. t[x1,...xn]}, the rule {RIGHT_BETAS} returns
{A |- f a1 ... an = t[a1,...,an]}. That is, it applies the theorem to the list
of arguments and beta-reduces the right-hand side.
\FAILURE
Fails if the argument types are wrong or the RHS has too few abstractions.
\EXAMPLE
{
# RIGHT_BETAS [`x:num`; `y:num`] (ASSUME `f = \a b c. a + b + c + 1`);;
val it : thm = f = (\a b c. a + b + c + 1) |- f x y = (\c. x + y + c + 1)
}
\SEEALSO
BETA_CONV, BETAS_CONV.
\ENDDOC
|