1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
(* ========================================================================= *)
(* Isabelle Light *)
(* Isabelle/Procedural style additions and other user-friendly shortcuts. *)
(* *)
(* Petros Papapanagiotou, Jacques Fleuriot *)
(* Centre of Intelligent Systems and their Applications *)
(* University of Edinburgh *)
(* 2009-2010 *)
(* ========================================================================= *)
(* FILE : support.ml *)
(* DESCRIPTION : Support functions and various shortcuts. *)
(* LAST MODIFIED: October 2010 *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Functions to deal with triplets: *)
(* ------------------------------------------------------------------------- *)
let fst3 (x,_,_) = x;;
let snd3 (_,x,_) = x;;
let thd3 (_,_,x) = x;;
(*----------------------------------------------------------------------------*)
(* num_list : a' list -> (a' * int) list *)
(* *)
(* Numbers a list of elements, *)
(* e.g. [`a`;`b`;`c`] ---> [(0,`a`);(1,`b`);(2,`c`)]. *)
(*----------------------------------------------------------------------------*)
let num_list l =
let rec number_list' n l =
if ( l = [] ) then []
else (n,hd l)::(number_list' (n + 1) (tl l))
in number_list' 0 l;;
(* ------------------------------------------------------------------------- *)
(* list_match_first: (a' -> b') -> a' list -> b' *)
(* Tries to apply a function to the members of a list. Returns the result *)
(* from the first member that succeeds. *)
(* ------------------------------------------------------------------------- *)
let rec list_match_first f alist =
if (alist = []) then failwith "list_match_first: No matches!"
else try f (hd alist) with Failure _ -> list_match_first f (tl alist);;
(* ------------------------------------------------------------------------- *)
(* terms_match: term list -> term -> term list -> instantiation *)
(* Tries to apply term_match to the first possible term in a list. *)
(* Returns the insantiation. *)
(* ------------------------------------------------------------------------- *)
let (terms_match: term list -> term -> term list -> instantiation ) =
fun consts key tlist ->
try (list_match_first (term_match consts key) tlist)
with Failure _ -> failwith "terms_match: No terms match!";;
(* ------------------------------------------------------------------------- *)
(* thm_mk_primed_vars: term list -> thm -> thm *)
(* Renames all free variables in a theorem to avoid specified and constant *)
(* names. *)
(* ------------------------------------------------------------------------- *)
let thm_mk_primed_vars avoids thm =
let fvars = thm_frees thm in
let new_vars = map (mk_primed_var avoids) fvars in
let insts = List.combine new_vars fvars in
INST insts thm;;
(* ------------------------------------------------------------------------- *)
(* gl_frees: goal -> term list *)
(* Finds the free variables in a subgoal (assumptions and goal). *)
(* ------------------------------------------------------------------------- *)
let gl_frees : goal -> term list =
fun (asl,w) -> itlist (union o thm_frees o snd) asl (frees w);;
(* ------------------------------------------------------------------------- *)
(* ADD_HYP: thm -> thm -> thm *)
(* Trivially adds the hypotheses of a theorem to the premises of another. *)
(* ------------------------------------------------------------------------- *)
(* (+) Used in the justification of erule and drule to add the eliminated *)
(* assumption to the proven subgoals. *)
(* (+) Could have been based on ADD_ASSUM but it's more convenient this way. *)
(* ------------------------------------------------------------------------- *)
let ADD_HYP hyp_thm thm = CONJUNCT2 (CONJ hyp_thm thm);;
(* ------------------------------------------------------------------------- *)
(* DISCHL: term list -> thm -> thm *)
(* Applies DISCH for several terms. *)
(* ------------------------------------------------------------------------- *)
let rec (DISCHL: term list -> thm -> thm) =
fun tms thm ->
if (tms = []) then thm
else DISCH (hd tms) (DISCHL (tl tms) thm);;
(* ------------------------------------------------------------------------- *)
(* print_thl: *)
(* Print a list of theorems (for debugging). *)
(* ------------------------------------------------------------------------- *)
let print_thl thl =
map (fun thm -> ( print_thm thm ; print_newline ())) thl;;
(* ------------------------------------------------------------------------- *)
(* print_tml: *)
(* Print a list of terms (for debugging). *)
(* ------------------------------------------------------------------------- *)
let print_tml tml =
map (fun tm -> ( print_term tm ; print_newline ())) tml;;
(* ------------------------------------------------------------------------- *)
(* print_varandtype, show_types, hide_types: *)
(* Prints the type after each variable. Useful for "debugging" type issues. *)
(* ------------------------------------------------------------------------- *)
(* Source: *)
(* http://code.google.com/p/flyspeck/wiki/TipsAndTricks#Investigating_Types *)
(* ------------------------------------------------------------------------- *)
let print_varandtype tm =
let fmt = std_formatter in
let hop,args = strip_comb tm in
let s = name_of hop
and ty = type_of hop in
if is_var hop & args = [] then
(pp_print_string fmt "(";
pp_print_string fmt s;
pp_print_string fmt ":";
pp_print_type fmt ty;
pp_print_string fmt ")")
else fail() ;;
let show_types,hide_types =
(fun () -> install_user_printer ("Show Types",print_varandtype)),
(fun () -> try delete_user_printer "Show Types"
with Failure _ -> failwith ("hide_types: "^
"Types are already hidden."));;
(* ------------------------------------------------------------------------- *)
(* count_goals : unit -> int *)
(* Shortcut to count the subgoals in the current goalstate. *)
(* ------------------------------------------------------------------------- *)
let count_goals () =
if (!current_goalstack = []) then 0 else
( let _,gls,_ = hd !current_goalstack in length gls );;
(* ------------------------------------------------------------------------- *)
(* top_asms : goalstack -> (string * thm) list *)
(* Shortcut to get the assumption list of the top goal of a given goalstack. *)
(* ------------------------------------------------------------------------- *)
let top_asms (gs:goalstack) = (fst o hd o snd3 o hd) gs;;
(* ------------------------------------------------------------------------- *)
(* print_goalstack_all : *)
(* Alternative goalstack printer that always prints all subgoals. *)
(* Also prints list of metavariables with their types. *)
(* ------------------------------------------------------------------------- *)
(* Original printer only prints more than one subgoals iff they were *)
(* generated by the last step. Otherwise it only prints the 'active' subgoal.*)
(* Replace by #install_printer print_goalstack_all;; *)
(* Revert to original by #install_printer print_goalstack;; *)
(* ------------------------------------------------------------------------- *)
let (print_goalstack_all:goalstack->unit) =
let print_goalstate k gs =
let ((mvs,_),gl,_) = gs in
let n = length gl in
let s = if n = 0 then "No subgoals" else
(string_of_int k)^" subgoal"^(if k > 1 then "s" else "")
^" ("^(string_of_int n)^" total)" in
let print_mv v = print_string " `" ; print_varandtype v ; print_string "`;" in
print_string s; print_newline();
if (length mvs > 0) then (
print_string "Metas:" ; let _ = map print_mv mvs in () ; print_newline()
) ;
if gl = [] then () else
do_list (print_goal o C el gl) (rev(0--(k-1))) in
fun l ->
if l = [] then print_string "Empty goalstack"
else
let (_,gl,_ as gs) = hd l in
print_goalstate (length gl) gs;;
(* ------------------------------------------------------------------------- *)
(* print_goalstack : *)
(* Upgrade to print_goalstack that also prints a list of metavariables with *)
(* their types. *)
(* ------------------------------------------------------------------------- *)
let (print_goalstack:goalstack->unit) =
let print_goalstate k gs =
let ((mvs,_),gl,_) = gs in
let n = length gl in
let s = if n = 0 then "No subgoals" else
(string_of_int k)^" subgoal"^(if k > 1 then "s" else "")
^" ("^(string_of_int n)^" total)" in
let print_mv v = print_string " `" ; print_varandtype v ; print_string "`;" in
print_string s; print_newline();
if (length mvs > 0) then (
print_string "Metas:" ; let _ = map print_mv mvs in () ; print_newline()
) ;
if gl = [] then () else
do_list (print_goal o C el gl) (rev(0--(k-1))) in
fun l ->
if l = [] then print_string "Empty goalstack"
else if tl l = [] then
let (_,gl,_ as gs) = hd l in
print_goalstate 1 gs
else
let (_,gl,_ as gs) = hd l
and (_,gl0,_) = hd(tl l) in
let p = length gl - length gl0 in
let p' = if p < 1 then 1 else p + 1 in
print_goalstate p' gs;;
#install_printer print_goalstack;;
|