File: permutations.ml

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (824 lines) | stat: -rw-r--r-- 36,097 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
(* ========================================================================= *)
(* Permutations, both general and specifically on finite sets.               *)
(* ========================================================================= *)

parse_as_infix("permutes",(12,"right"));;

let permutes = new_definition
 `p permutes s <=> (!x. ~(x IN s) ==> p(x) = x) /\ (!y. ?!x. p x = y)`;;

(* ------------------------------------------------------------------------- *)
(* Inverse function (on whole universe).                                     *)
(* ------------------------------------------------------------------------- *)

let inverse = new_definition
 `inverse(f) = \y. @x. f x = y`;;

let SURJECTIVE_INVERSE = prove
 (`!f. (!y. ?x. f x = y) <=> !y. f(inverse f y) = y`,
  REWRITE_TAC[SURJECTIVE_RIGHT_INVERSE; inverse] THEN MESON_TAC[]);;

let SURJECTIVE_INVERSE_o = prove
 (`!f. (!y. ?x. f x = y) <=> (f o inverse f = I)`,
  REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; SURJECTIVE_INVERSE]);;

let INJECTIVE_INVERSE = prove
 (`!f. (!x x'. f x = f x' ==> x = x') <=> !x. inverse f (f x) = x`,
  MESON_TAC[inverse]);;

let INJECTIVE_INVERSE_o = prove
 (`!f. (!x x'. f x = f x' ==> x = x') <=> (inverse f o f = I)`,
  REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; INJECTIVE_INVERSE]);;

let INVERSE_UNIQUE_o = prove
 (`!f g. f o g = I /\ g o f = I ==> inverse f = g`,
  REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN
  MESON_TAC[INJECTIVE_INVERSE; SURJECTIVE_INVERSE]);;

let INVERSE_I = prove
 (`inverse I = I`,
  MATCH_MP_TAC INVERSE_UNIQUE_o THEN REWRITE_TAC[I_O_ID]);;

(* ------------------------------------------------------------------------- *)
(* Transpositions.                                                           *)
(* ------------------------------------------------------------------------- *)

let swap = new_definition
 `swap(i,j) k = if k = i then j else if k = j then i else k`;;

let SWAP_REFL = prove
 (`!a. swap(a,a) = I`,
  REWRITE_TAC[FUN_EQ_THM; swap; I_THM] THEN MESON_TAC[]);;

let SWAP_SYM = prove
 (`!a b. swap(a,b) = swap(b,a)`,
  REWRITE_TAC[FUN_EQ_THM; swap; I_THM] THEN MESON_TAC[]);;

let SWAP_IDEMPOTENT = prove
 (`!a b. swap(a,b) o swap(a,b) = I`,
  REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN MESON_TAC[]);;

let INVERSE_SWAP = prove
 (`!a b. inverse(swap(a,b)) = swap(a,b)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC INVERSE_UNIQUE_o THEN
  REWRITE_TAC[SWAP_SYM; SWAP_IDEMPOTENT]);;

let SWAP_GALOIS = prove
 (`!a b x y. x = swap(a,b) y <=> y = swap(a,b) x`,
  REWRITE_TAC[swap] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Basic consequences of the definition.                                     *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_IN_IMAGE = prove
 (`!p s x. p permutes s ==> (p(x) IN s <=> x IN s)`,
  REWRITE_TAC[permutes] THEN MESON_TAC[]);;

let PERMUTES_IMAGE = prove
 (`!p s. p permutes s ==> IMAGE p s = s`,
  REWRITE_TAC[permutes; EXTENSION; IN_IMAGE] THEN MESON_TAC[]);;

let PERMUTES_INJECTIVE = prove
 (`!p s. p permutes s ==> !x y. p(x) = p(y) <=> x = y`,
  REWRITE_TAC[permutes] THEN MESON_TAC[]);;

let PERMUTES_SURJECTIVE = prove
 (`!p s. p permutes s ==> !y. ?x. p(x) = y`,
  REWRITE_TAC[permutes] THEN MESON_TAC[]);;

let PERMUTES_INVERSES_o = prove
 (`!p s. p permutes s ==> p o inverse(p) = I /\ inverse(p) o p = I`,
  REWRITE_TAC[GSYM INJECTIVE_INVERSE_o; GSYM SURJECTIVE_INVERSE_o] THEN
  REWRITE_TAC[permutes] THEN MESON_TAC[]);;

let PERMUTES_INVERSES = prove
 (`!p s. p permutes s
         ==> (!x. p(inverse p x) = x) /\ (!x. inverse p (p x) = x)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
  REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]);;

let PERMUTES_SUBSET = prove
 (`!p s t. p permutes s /\ s SUBSET t ==> p permutes t`,
  REWRITE_TAC[permutes; SUBSET] THEN MESON_TAC[]);;

let PERMUTES_EMPTY = prove
 (`!p. p permutes {} <=> p = I`,
  REWRITE_TAC[FUN_EQ_THM; I_THM; permutes; NOT_IN_EMPTY] THEN MESON_TAC[]);;

let PERMUTES_SING = prove
 (`!p a.  p permutes {a} <=> p = I`,
  REWRITE_TAC[FUN_EQ_THM; I_THM; permutes; IN_SING] THEN MESON_TAC[]);;

let PERMUTES_UNIV = prove
 (`!p. p permutes UNIV <=> !y:A. ?!x. p x = y`,
  REWRITE_TAC[permutes; IN_UNIV] THEN MESON_TAC[]);;

let PERMUTES_INVERSE_EQ = prove
 (`!p s. p permutes s ==> !x y. inverse p y = x <=> p x = y`,
  REWRITE_TAC[permutes; inverse] THEN MESON_TAC[]);;

let PERMUTES_SWAP = prove
 (`!a b s. a IN s /\ b IN s ==> swap(a,b) permutes s`,
  REWRITE_TAC[permutes; swap] THEN MESON_TAC[]);;

let PERMUTES_SUPERSET = prove
 (`!p s t. p permutes s /\ (!x. x IN (s DIFF t) ==> p(x) = x)
           ==> p permutes t`,
  REWRITE_TAC[permutes; IN_DIFF] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Group properties.                                                         *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_I = prove
 (`!s. I permutes s`,
  REWRITE_TAC[permutes; I_THM] THEN MESON_TAC[]);;

let PERMUTES_COMPOSE = prove
 (`!p q s. p permutes s /\ q permutes s ==> (q o p) permutes s`,
  REWRITE_TAC[permutes; o_THM] THEN MESON_TAC[]);;

let PERMUTES_INVERSE = prove
 (`!p s. p permutes s ==> inverse(p) permutes s`,
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_INVERSE_EQ) THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[permutes] THEN MESON_TAC[]);;

let PERMUTES_INVERSE_INVERSE = prove
 (`!p. p permutes s ==> inverse(inverse p) = p`,
  SIMP_TAC[FUN_EQ_THM] THEN MESON_TAC[PERMUTES_INVERSE_EQ; PERMUTES_INVERSE]);;

(* ------------------------------------------------------------------------- *)
(* The number of permutations on a finite set.                               *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_INSERT_LEMMA = prove
 (`!p a:A s. p permutes (a INSERT s) ==> (swap(a,p(a)) o p) permutes s`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC PERMUTES_SUPERSET THEN
  EXISTS_TAC `(a:A) INSERT s` THEN CONJ_TAC THENL
   [ASM_MESON_TAC[PERMUTES_SWAP; PERMUTES_IN_IMAGE;
                  IN_INSERT; PERMUTES_COMPOSE];
    REWRITE_TAC[o_THM; swap; IN_INSERT; IN_DIFF] THEN ASM_MESON_TAC[]]);;

let PERMUTES_INSERT = prove
 (`{p:A->A | p permutes (a INSERT s)} =
        IMAGE (\(b,p). swap(a,b) o p)
              {(b,p) | b IN a INSERT s /\ p IN {p | p permutes s}}`,
  REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; IN_IMAGE; EXISTS_PAIR_THM] THEN
  X_GEN_TAC `p:A->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN EQ_TAC THENL
   [DISCH_TAC THEN MAP_EVERY EXISTS_TAC
      [`(p:A->A) a`; `swap(a,p a) o (p:A->A)`] THEN
    ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID; PERMUTES_INSERT_LEMMA] THEN
    ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT];
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`b:A`; `q:A->A`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC PERMUTES_COMPOSE THEN
    CONJ_TAC THENL
     [ASM_MESON_TAC[PERMUTES_SUBSET; SUBSET; IN_INSERT];
      MATCH_MP_TAC PERMUTES_SWAP THEN
      ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT]]]);;

let HAS_SIZE_PERMUTATIONS = prove
 (`!s:A->bool n. s HAS_SIZE n ==> {p | p permutes s} HAS_SIZE (FACT n)`,
  REWRITE_TAC[HAS_SIZE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PERMUTES_EMPTY; CARD_CLAUSES; SET_RULE `{x | x = a} = {a}`] THEN
  SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
  REWRITE_TAC[NOT_IN_EMPTY] THEN CONJ_TAC THENL
   [GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC NUM_REDUCE_CONV;
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN REWRITE_TAC[GSYM HAS_SIZE] THEN
  STRIP_TAC THEN X_GEN_TAC `k:num` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
  REWRITE_TAC[FACT; PERMUTES_INSERT] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
  ASM_SIMP_TAC[HAS_SIZE_PRODUCT; HAS_SIZE; FINITE_INSERT; CARD_CLAUSES] THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_ELIM_THM; PAIR_EQ] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  MAP_EVERY X_GEN_TAC [`b:A`; `q:A->A`; `c:A`; `r:A->A`] THEN
  STRIP_TAC THEN SUBGOAL_THEN `c:A = b` SUBST_ALL_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o C AP_THM `a:A`) THEN REWRITE_TAC[o_THM; swap] THEN
    SUBGOAL_THEN `(q:A->A) a = a /\ (r:A->A) a = a` (fun t -> SIMP_TAC[t]) THEN
    ASM_MESON_TAC[permutes];
    FIRST_X_ASSUM(MP_TAC o AP_TERM `(\q:A->A. swap(a:A,b) o q)`) THEN
    ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID]]);;

let FINITE_PERMUTATIONS = prove
 (`!s. FINITE s ==> FINITE {p | p permutes s}`,
  MESON_TAC[HAS_SIZE_PERMUTATIONS; HAS_SIZE]);;

let CARD_PERMUTATIONS = prove
 (`!s. FINITE s ==> CARD {p | p permutes s} = FACT(CARD s)`,
  MESON_TAC[HAS_SIZE; HAS_SIZE_PERMUTATIONS]);;

(* ------------------------------------------------------------------------- *)
(* Alternative characterizations of permutation of finite set.               *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_FINITE_INJECTIVE = prove
 (`!s:A->bool p.
        FINITE s
        ==> (p permutes s <=>
             (!x. ~(x IN s) ==> p x = x) /\
             (!x. x IN s ==> p x IN s) /\
             (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y))`,
  REWRITE_TAC[permutes] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN
  DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `p:A->A` o MATCH_MP
   (REWRITE_RULE[IMP_CONJ] SURJECTIVE_IFF_INJECTIVE)) THEN
  ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_IMP; GSYM CONJ_ASSOC] THEN
  STRIP_TAC THEN X_GEN_TAC `y:A` THEN
  ASM_CASES_TAC `(y:A) IN s` THEN ASM_MESON_TAC[]);;

let PERMUTES_FINITE_SURJECTIVE = prove
 (`!s:A->bool p.
        FINITE s
        ==> (p permutes s <=>
             (!x. ~(x IN s) ==> p x = x) /\ (!x. x IN s ==> p x IN s) /\
             (!y. y IN s ==> ?x. x IN s /\ p x = y))`,
  REWRITE_TAC[permutes] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN
  DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `p:A->A` o MATCH_MP
   (REWRITE_RULE[IMP_CONJ] SURJECTIVE_IFF_INJECTIVE)) THEN
  ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_IMP; GSYM CONJ_ASSOC] THEN
  STRIP_TAC THEN X_GEN_TAC `y:A` THEN
  ASM_CASES_TAC `(y:A) IN s` THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Permutations of index set for iterated operations.                        *)
(* ------------------------------------------------------------------------- *)

let ITERATE_PERMUTE = prove
 (`!op. monoidal op
        ==> !f p s. p permutes s ==> iterate op s f = iterate op s (f o p)`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_BIJECTION) THEN
  ASM_MESON_TAC[permutes]);;

let NSUM_PERMUTE = prove
 (`!f p s. p permutes s ==> nsum s f = nsum s (f o p)`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_PERMUTE_NUMSEG = prove
 (`!f p m n. p permutes m..n ==> nsum(m..n) f = nsum(m..n) (f o p)`,
  MESON_TAC[NSUM_PERMUTE; FINITE_NUMSEG]);;

let SUM_PERMUTE = prove
 (`!f p s. p permutes s ==> sum s f = sum s (f o p)`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_PERMUTE_NUMSEG = prove
 (`!f p m n. p permutes m..n ==> sum(m..n) f = sum(m..n) (f o p)`,
  MESON_TAC[SUM_PERMUTE; FINITE_NUMSEG]);;

(* ------------------------------------------------------------------------- *)
(* Various combinations of transpositions with 2, 1 and 0 common elements.   *)
(* ------------------------------------------------------------------------- *)

let SWAP_COMMON = prove
 (`!a b c:A. ~(a = c) /\ ~(b = c)
             ==> swap(a,b) o swap(a,c) = swap(b,c) o swap(a,b)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN
  DISCH_TAC THEN X_GEN_TAC `x:A` THEN
  MAP_EVERY ASM_CASES_TAC [`x:A = a`; `x:A = b`; `x:A = c`] THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[]);;

let SWAP_COMMON' = prove
 (`!a b c:A. ~(a = b) /\ ~(a = c)
             ==> swap(a,c) o swap(b,c) = swap(b,c) o swap(a,b)`,
  REPEAT STRIP_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SWAP_SYM] THEN
  ASM_SIMP_TAC[GSYM SWAP_COMMON] THEN REWRITE_TAC[SWAP_SYM]);;

let SWAP_INDEPENDENT = prove
 (`!a b c d:A. ~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d)
               ==> swap(a,b) o swap(c,d) = swap(c,d) o swap(a,b)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN
  DISCH_TAC THEN X_GEN_TAC `x:A` THEN
  MAP_EVERY ASM_CASES_TAC [`x:A = a`; `x:A = b`; `x:A = c`] THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Permutations as transposition sequences.                                  *)
(* ------------------------------------------------------------------------- *)

let swapseq_RULES,swapseq_INDUCT,swapseq_CASES = new_inductive_definition
 `(swapseq 0 I) /\
  (!a b p n. swapseq n p /\ ~(a = b) ==> swapseq (SUC n) (swap(a,b) o p))`;;

let permutation = new_definition
 `permutation p <=> ?n. swapseq n p`;;

(* ------------------------------------------------------------------------- *)
(* Some closure properties of the set of permutations, with lengths.         *)
(* ------------------------------------------------------------------------- *)

let SWAPSEQ_I = CONJUNCT1 swapseq_RULES;;

let PERMUTATION_I = prove
 (`permutation I`,
  REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_I]);;

let SWAPSEQ_SWAP = prove
 (`!a b. swapseq (if a = b then 0 else 1) (swap(a,b))`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[num_CONV `1`] THEN
  ASM_MESON_TAC[swapseq_RULES; I_O_ID; SWAPSEQ_I; SWAP_REFL]);;

let PERMUTATION_SWAP = prove
 (`!a b. permutation(swap(a,b))`,
  REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_SWAP]);;

let SWAPSEQ_COMPOSE = prove
 (`!n p m q. swapseq n p /\ swapseq m q ==> swapseq (n + m) (p o q)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN
  MATCH_MP_TAC swapseq_INDUCT THEN
  REWRITE_TAC[ADD_CLAUSES; I_O_ID; GSYM o_ASSOC] THEN
  MESON_TAC[swapseq_RULES]);;

let PERMUTATION_COMPOSE = prove
 (`!p q. permutation p /\ permutation q ==> permutation(p o q)`,
  REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_COMPOSE]);;

let SWAPSEQ_ENDSWAP = prove
 (`!n p a b:A. swapseq n p /\ ~(a = b) ==> swapseq (SUC n) (p o swap(a,b))`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN
  MATCH_MP_TAC swapseq_INDUCT THEN REWRITE_TAC[I_O_ID; GSYM o_ASSOC] THEN
  MESON_TAC[o_ASSOC; swapseq_RULES; I_O_ID]);;

let SWAPSEQ_INVERSE_EXISTS = prove
 (`!n p:A->A. swapseq n p ==> ?q. swapseq n q /\ p o q = I /\ q o p = I`,
  MATCH_MP_TAC swapseq_INDUCT THEN CONJ_TAC THENL
   [MESON_TAC[I_O_ID; swapseq_RULES]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `q:A->A`; `a:A`; `b:A`] SWAPSEQ_ENDSWAP) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  EXISTS_TAC `(q:A->A) o swap (a,b)` THEN
  ASM_REWRITE_TAC[GSYM o_ASSOC] THEN
  GEN_REWRITE_TAC (BINOP_CONV o LAND_CONV o RAND_CONV) [o_ASSOC] THEN
  ASM_REWRITE_TAC[SWAP_IDEMPOTENT; I_O_ID]);;

let SWAPSEQ_INVERSE = prove
 (`!n p. swapseq n p ==> swapseq n (inverse p)`,
  MESON_TAC[SWAPSEQ_INVERSE_EXISTS; INVERSE_UNIQUE_o]);;

let PERMUTATION_INVERSE = prove
 (`!p. permutation p ==> permutation(inverse p)`,
  REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_INVERSE]);;

(* ------------------------------------------------------------------------- *)
(* The identity map only has even transposition sequences.                   *)
(* ------------------------------------------------------------------------- *)

let SYMMETRY_LEMMA = prove
 (`(!a b c d. P a b c d ==> P a b d c) /\
   (!a b c d. ~(a = b) /\ ~(c = d) /\
              (a = c /\ b = d \/ a = c /\ ~(b = d) \/ ~(a = c) /\ b = d \/
               ~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d))
              ==> P a b c d)
   ==> (!a b c d:A. ~(a = b) /\ ~(c = d) ==> P a b c d)`,
  REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC
   [`a:A = c`; `a:A = d`; `b:A = c`; `b:A = d`] THEN
  ASM_MESON_TAC[]);;

let SWAP_GENERAL = prove
 (`!a b c d:A.
        ~(a = b) /\ ~(c = d)
        ==> swap(a,b) o swap(c,d) = I \/
            ?x y z. ~(x = a) /\ ~(y = a) /\ ~(z = a) /\ ~(x = y) /\
                    swap(a,b) o swap(c,d) = swap(x,y) o swap(a,z)`,
  MATCH_MP_TAC SYMMETRY_LEMMA THEN CONJ_TAC THENL
   [REWRITE_TAC[SWAP_SYM] THEN SIMP_TAC[]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THENL
   [MESON_TAC[SWAP_IDEMPOTENT];
    DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`b:A`; `d:A`; `b:A`] THEN
    ASM_MESON_TAC[SWAP_COMMON];
    DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`c:A`; `d:A`; `c:A`] THEN
    ASM_MESON_TAC[SWAP_COMMON'];
    DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`c:A`; `d:A`; `b:A`] THEN
    ASM_MESON_TAC[SWAP_INDEPENDENT]]);;

let FIXING_SWAPSEQ_DECREASE = prove
 (`!n p a b:A.
      swapseq n p /\ ~(a = b) /\ (swap(a,b) o p) a = a
      ==> ~(n = 0) /\ swapseq (n - 1) (swap(a,b) o p)`,
  INDUCT_TAC THEN REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [swapseq_CASES] THEN
  REWRITE_TAC[NOT_SUC] THENL
   [DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    ASM_REWRITE_TAC[I_THM; o_THM; swap] THEN MESON_TAC[];
    ALL_TAC] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`c:A`; `d:A`; `q:A->A`; `m:num`] THEN
  REWRITE_TAC[SUC_INJ; GSYM CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[o_ASSOC] THEN STRIP_TAC THEN
  MP_TAC(SPECL [`a:A`; `b:A`; `c:A`; `d:A`] SWAP_GENERAL) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THEN
  ASM_REWRITE_TAC[I_O_ID; SUC_SUB1; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
   [`q:A->A`; `a:A`; `z:A`]) THEN
  ANTS_TAC THENL
   [ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o check(is_eq o concl)) THEN
    REWRITE_TAC[GSYM o_ASSOC] THEN
    ABBREV_TAC `r:A->A = swap(a:A,z) o q` THEN
    ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; swap] THEN ASM_MESON_TAC[];
    SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
    REWRITE_TAC[NOT_SUC; SUC_SUB1; GSYM o_ASSOC] THEN
    ASM_MESON_TAC[swapseq_RULES]]);;

let SWAPSEQ_IDENTITY_EVEN = prove
 (`!n. swapseq n (I:A->A) ==> EVEN n`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [swapseq_CASES] THEN
  DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o CONJUNCT1) MP_TAC) THEN
  REWRITE_TAC[EVEN; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`; `m:num`] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
  MP_TAC(SPECL [`m:num`; `p:A->A`; `a:A`; `b:A`] FIXING_SWAPSEQ_DECREASE) THEN
  ASM_REWRITE_TAC[I_THM] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m - 1`) THEN
  UNDISCH_THEN `SUC m = n` (SUBST_ALL_TAC o SYM) THEN
  ASM_REWRITE_TAC[ARITH_RULE `m - 1 < SUC m`] THEN UNDISCH_TAC `~(m = 0)` THEN
  SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THEN
  REWRITE_TAC[SUC_SUB1; EVEN]);;

(* ------------------------------------------------------------------------- *)
(* Therefore we have a welldefined notion of parity.                         *)
(* ------------------------------------------------------------------------- *)

let evenperm = new_definition `evenperm(p) = EVEN(@n. swapseq n p)`;;

let SWAPSEQ_EVEN_EVEN = prove
 (`!m n p:A->A. swapseq m p /\ swapseq n p ==> (EVEN m <=> EVEN n)`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP SWAPSEQ_INVERSE_EXISTS) THEN
  STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `swapseq (n + m) :(A->A)->bool`) THEN
  ASM_SIMP_TAC[SWAPSEQ_COMPOSE] THEN
  DISCH_THEN(MP_TAC o MATCH_MP SWAPSEQ_IDENTITY_EVEN) THEN
  SIMP_TAC[EVEN_ADD]);;

let EVENPERM_UNIQUE = prove
 (`!n p b. swapseq n p /\ EVEN n = b ==> evenperm p = b`,
  REWRITE_TAC[evenperm] THEN MESON_TAC[SWAPSEQ_EVEN_EVEN]);;

(* ------------------------------------------------------------------------- *)
(* And it has the expected composition properties.                           *)
(* ------------------------------------------------------------------------- *)

let EVENPERM_I = prove
 (`evenperm I = T`,
  MATCH_MP_TAC EVENPERM_UNIQUE THEN MESON_TAC[swapseq_RULES; EVEN]);;

let EVENPERM_SWAP = prove
 (`!a b:A. evenperm(swap(a,b)) = (a = b)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC EVENPERM_UNIQUE THEN
  MESON_TAC[SWAPSEQ_SWAP; NUM_RED_CONV `EVEN 0`; NUM_RED_CONV `EVEN 1`]);;

let EVENPERM_COMPOSE = prove
 (`!p q. permutation p /\ permutation q
         ==> evenperm (p o q) = (evenperm p = evenperm q)`,
  REWRITE_TAC[permutation; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN
               ASSUME_TAC(MATCH_MP SWAPSEQ_COMPOSE th)) THEN
  ASM_MESON_TAC[EVENPERM_UNIQUE; SWAPSEQ_COMPOSE; EVEN_ADD]);;

let EVENPERM_INVERSE = prove
 (`!p. permutation p ==> evenperm(inverse p) = evenperm p`,
  REWRITE_TAC[permutation] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC EVENPERM_UNIQUE THEN
  ASM_MESON_TAC[SWAPSEQ_INVERSE; EVENPERM_UNIQUE]);;

(* ------------------------------------------------------------------------- *)
(* A more abstract characterization of permutations.                         *)
(* ------------------------------------------------------------------------- *)

let PERMUTATION_BIJECTIVE = prove
 (`!p. permutation p ==> !y. ?!x. p(x) = y`,
  REWRITE_TAC[permutation] THEN REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP SWAPSEQ_INVERSE_EXISTS) THEN
  REWRITE_TAC[FUN_EQ_THM; I_THM; o_THM; LEFT_IMP_EXISTS_THM] THEN
  MESON_TAC[]);;

let PERMUTATION_FINITE_SUPPORT = prove
 (`!p. permutation p ==> FINITE {x:A | ~(p x = x)}`,
  REWRITE_TAC[permutation; LEFT_IMP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC swapseq_INDUCT THEN
  REWRITE_TAC[I_THM; FINITE_RULES; SET_RULE `{x | F} = {}`] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`] THEN
  STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `(a:A) INSERT b INSERT {x | ~(p x = x)}` THEN
  ASM_REWRITE_TAC[FINITE_INSERT; SUBSET; IN_INSERT; IN_ELIM_THM] THEN
  REWRITE_TAC[o_THM; swap] THEN MESON_TAC[]);;

let PERMUTATION_LEMMA = prove
 (`!s p:A->A.
       FINITE s /\
       (!y. ?!x. p(x) = y) /\ (!x. ~(x IN s) ==> p x = x)
       ==> permutation p`,
  ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
   [REWRITE_TAC[NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN
    SUBGOAL_THEN `p:A->A = I` (fun th -> REWRITE_TAC[th; PERMUTATION_I]) THEN
    ASM_REWRITE_TAC[FUN_EQ_THM; I_THM];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN STRIP_TAC THEN
  REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `permutation((swap(a,p(a)) o swap(a,p(a))) o (p:A->A))`
  MP_TAC THENL [ALL_TAC; REWRITE_TAC[SWAP_IDEMPOTENT; I_O_ID]] THEN
  REWRITE_TAC[GSYM o_ASSOC] THEN MATCH_MP_TAC PERMUTATION_COMPOSE THEN
  REWRITE_TAC[PERMUTATION_SWAP] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  CONJ_TAC THENL
   [UNDISCH_TAC `!y. ?!x. (p:A->A) x = y` THEN
    REWRITE_TAC[EXISTS_UNIQUE_THM; swap; o_THM] THEN
    ASM_CASES_TAC `(p:A->A) a = a` THEN ASM_REWRITE_TAC[] THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[TAUT
     `(if p then x else y) = a <=> if p then x = a else y = a`] THEN
    REWRITE_TAC[TAUT `(if p then x else y) <=> p /\ x \/ ~p /\ y`] THEN
    ASM_MESON_TAC[];
    REWRITE_TAC[swap; o_THM] THEN
    ASM_CASES_TAC `(p:A->A) a = a` THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[]]);;

let PERMUTATION = prove
 (`!p. permutation p <=> (!y. ?!x. p(x) = y) /\ FINITE {x:A | ~(p(x) = x)}`,
  GEN_TAC THEN EQ_TAC THEN
  SIMP_TAC[PERMUTATION_BIJECTIVE; PERMUTATION_FINITE_SUPPORT] THEN
  STRIP_TAC THEN MATCH_MP_TAC PERMUTATION_LEMMA THEN
  EXISTS_TAC `{x:A | ~(p x = x)}` THEN
  ASM_SIMP_TAC[IN_ELIM_THM]);;

let PERMUTATION_INVERSE_WORKS = prove
 (`!p. permutation p ==> inverse p o p = I /\ p o inverse p = I`,
  MESON_TAC[PERMUTATION_BIJECTIVE; SURJECTIVE_INVERSE_o;
            INJECTIVE_INVERSE_o]);;

let PERMUTATION_INVERSE_COMPOSE = prove
 (`!p q. permutation p /\ permutation q
         ==> inverse(p o q) = inverse q o inverse p`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC INVERSE_UNIQUE_o THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP PERMUTATION_INVERSE_WORKS)) THEN
  REWRITE_TAC[GSYM o_ASSOC] THEN REPEAT STRIP_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [o_ASSOC] THEN
  ASM_REWRITE_TAC[I_O_ID]);;

let PERMUTATION_COMPOSE_EQ = prove
 (`(!p q:A->A. permutation(p) ==> (permutation(p o q) <=> permutation q)) /\
   (!p q:A->A. permutation(q) ==> (permutation(p o q) <=> permutation p))`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP PERMUTATION_INVERSE) THEN
  EQ_TAC THEN ASM_SIMP_TAC[PERMUTATION_COMPOSE] THENL
   [DISCH_THEN(MP_TAC o SPEC `inverse(p:A->A)` o MATCH_MP
     (REWRITE_RULE[IMP_CONJ_ALT] PERMUTATION_COMPOSE));
    DISCH_THEN(MP_TAC o SPEC `inverse(q:A->A)` o MATCH_MP
     (REWRITE_RULE[IMP_CONJ] PERMUTATION_COMPOSE))] THEN
  ASM_SIMP_TAC[GSYM o_ASSOC; PERMUTATION_INVERSE_WORKS] THEN
  ASM_SIMP_TAC[o_ASSOC; PERMUTATION_INVERSE_WORKS] THEN
  REWRITE_TAC[I_O_ID]);;

let PERMUTATION_COMPOSE_SWAP = prove
 (`(!p a b:A. permutation(swap(a,b) o p) <=> permutation p) /\
   (!p a b:A. permutation(p o swap(a,b)) <=> permutation p)`,
  SIMP_TAC[PERMUTATION_COMPOSE_EQ; PERMUTATION_SWAP]);;

(* ------------------------------------------------------------------------- *)
(* Relation to "permutes".                                                   *)
(* ------------------------------------------------------------------------- *)

let PERMUTATION_PERMUTES = prove
 (`!p:A->A. permutation p <=> ?s. FINITE s /\ p permutes s`,
  GEN_TAC THEN REWRITE_TAC[PERMUTATION; permutes] THEN
  EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [EXISTS_TAC `{x:A | ~(p x = x)}` THEN ASM_SIMP_TAC[IN_ELIM_THM];
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool` THEN
    ASM_SIMP_TAC[IN_ELIM_THM; SUBSET] THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Hence a sort of induction principle composing by swaps.                   *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_INDUCT = prove
 (`!P s. FINITE s /\
         P I /\
         (!a b:A p. a IN s /\ b IN s /\ P p /\ permutation p
                    ==> P (swap(a,b) o p))
         ==> (!p. p permutes s ==> P p)`,
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b ==> a ==> c ==> d`] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_REWRITE_TAC[PERMUTES_EMPTY; IN_INSERT] THEN REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `p = swap(x,p x) o swap(x,p x) o (p:A->A)` SUBST1_TAC THENL
   [REWRITE_TAC[o_ASSOC; SWAP_IDEMPOTENT; I_O_ID]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN ASSUME_TAC th) THEN
  ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT; PERMUTES_INSERT_LEMMA;
                PERMUTATION_PERMUTES; FINITE_INSERT; PERMUTATION_COMPOSE;
                PERMUTATION_SWAP]);;

(* ------------------------------------------------------------------------- *)
(* Sign of a permutation as a real number.                                   *)
(* ------------------------------------------------------------------------- *)

let sign = new_definition
 `(sign p):real = if evenperm p then &1 else -- &1`;;

let SIGN_NZ = prove
 (`!p. ~(sign p = &0)`,
  REWRITE_TAC[sign] THEN REAL_ARITH_TAC);;

let SIGN_I = prove
 (`sign I = &1`,
  REWRITE_TAC[sign; EVENPERM_I]);;

let SIGN_INVERSE = prove
 (`!p. permutation p ==> sign(inverse p) = sign p`,
  SIMP_TAC[sign; EVENPERM_INVERSE] THEN REAL_ARITH_TAC);;

let SIGN_COMPOSE = prove
 (`!p q. permutation p /\ permutation q ==> sign(p o q) = sign(p) * sign(q)`,
  SIMP_TAC[sign; EVENPERM_COMPOSE] THEN REAL_ARITH_TAC);;

let SIGN_SWAP = prove
 (`!a b. sign(swap(a,b)) = if a = b then &1 else -- &1`,
  REWRITE_TAC[sign; EVENPERM_SWAP]);;

let SIGN_IDEMPOTENT = prove
 (`!p. sign(p) * sign(p) = &1`,
  GEN_TAC THEN REWRITE_TAC[sign] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;

let REAL_ABS_SIGN = prove
 (`!p. abs(sign p) = &1`,
  REWRITE_TAC[sign] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* More lemmas about permutations.                                           *)
(* ------------------------------------------------------------------------- *)

let PERMUTES_NUMSET_LE = prove
 (`!p s:num->bool. p permutes s /\ (!i. i IN s ==> p(i) <= i) ==> p = I`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; I_THM] THEN STRIP_TAC THEN
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  ASM_CASES_TAC `(n:num) IN s` THENL [ALL_TAC; ASM_MESON_TAC[permutes]] THEN
  ASM_SIMP_TAC[GSYM LE_ANTISYM] THEN REWRITE_TAC[GSYM NOT_LT] THEN
  ASM_MESON_TAC[PERMUTES_INJECTIVE; LT_REFL]);;

let PERMUTES_NUMSET_GE = prove
 (`!p s:num->bool. p permutes s /\ (!i. i IN s ==> i <= p(i)) ==> p = I`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`inverse(p:num->num)`; `s:num->bool`] PERMUTES_NUMSET_LE) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[PERMUTES_INVERSE; PERMUTES_INVERSES; PERMUTES_IN_IMAGE];
    ASM_MESON_TAC[PERMUTES_INVERSE_INVERSE; INVERSE_I]]);;

let IMAGE_INVERSE_PERMUTATIONS = prove
 (`!s:A->bool. {inverse p | p permutes s} = {p | p permutes s}`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
  MESON_TAC[PERMUTES_INVERSE_INVERSE; PERMUTES_INVERSE]);;

let IMAGE_COMPOSE_PERMUTATIONS_L = prove
 (`!s q:A->A. q permutes s ==> {q o p | p permutes s} = {p | p permutes s}`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  X_GEN_TAC `p:A->A` THEN EQ_TAC THENL
   [ASM_MESON_TAC[PERMUTES_COMPOSE];
    DISCH_TAC THEN EXISTS_TAC `inverse(q:A->A) o (p:A->A)` THEN
    ASM_SIMP_TAC[o_ASSOC; PERMUTES_INVERSE; PERMUTES_COMPOSE] THEN
    ASM_MESON_TAC[PERMUTES_INVERSES_o; I_O_ID]]);;

let IMAGE_COMPOSE_PERMUTATIONS_R = prove
 (`!s q:A->A. q permutes s ==> {p o q | p permutes s} = {p | p permutes s}`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  X_GEN_TAC `p:A->A` THEN EQ_TAC THENL
   [ASM_MESON_TAC[PERMUTES_COMPOSE];
    DISCH_TAC THEN EXISTS_TAC `(p:A->A) o inverse(q:A->A)` THEN
    ASM_SIMP_TAC[GSYM o_ASSOC; PERMUTES_INVERSE; PERMUTES_COMPOSE] THEN
    ASM_MESON_TAC[PERMUTES_INVERSES_o; I_O_ID]]);;

let PERMUTES_IN_NUMSEG = prove
 (`!p n i. p permutes 1..n /\ i IN 1..n ==> 1 <= p(i) /\ p(i) <= n`,
  REWRITE_TAC[permutes; IN_NUMSEG] THEN MESON_TAC[]);;

let SUM_PERMUTATIONS_INVERSE = prove
 (`!f m n. sum {p | p permutes m..n} f =
           sum {p | p permutes m..n} (\p. f(inverse p))`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM IMAGE_INVERSE_PERMUTATIONS] THEN
  GEN_REWRITE_TAC (funpow 2 LAND_CONV)
   [SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
  MATCH_MP_TAC SUM_IMAGE THEN
  SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN
  MESON_TAC[PERMUTES_INVERSE_INVERSE]);;

let SUM_PERMUTATIONS_COMPOSE_L = prove
 (`!f m n q.
        q permutes m..n
        ==> sum {p | p permutes m..n} f =
            sum {p | p permutes m..n} (\p. f(q o p))`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV)
   [GSYM(MATCH_MP IMAGE_COMPOSE_PERMUTATIONS_L th)]) THEN
  GEN_REWRITE_TAC (funpow 2 LAND_CONV)
   [SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
  MATCH_MP_TAC SUM_IMAGE THEN
  SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `\p:num->num. inverse(q:num->num) o p`) THEN
  REWRITE_TAC[o_ASSOC] THEN
  EVERY_ASSUM(CONJUNCTS_THEN SUBST1_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
  REWRITE_TAC[I_O_ID]);;

let SUM_PERMUTATIONS_COMPOSE_R = prove
 (`!f m n q.
        q permutes m..n
        ==> sum {p | p permutes m..n} f =
            sum {p | p permutes m..n} (\p. f(p o q))`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV)
   [GSYM(MATCH_MP IMAGE_COMPOSE_PERMUTATIONS_R th)]) THEN
  GEN_REWRITE_TAC (funpow 2 LAND_CONV)
   [SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
  MATCH_MP_TAC SUM_IMAGE THEN
  SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `\p:num->num. p o inverse(q:num->num)`) THEN
  REWRITE_TAC[GSYM o_ASSOC] THEN
  EVERY_ASSUM(CONJUNCTS_THEN SUBST1_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
  REWRITE_TAC[I_O_ID]);;

(* ------------------------------------------------------------------------- *)
(* Conversion for `{p | p permutes s}` where s is a set enumeration.         *)
(* ------------------------------------------------------------------------- *)

let PERMSET_CONV =
  let pth_empty = prove
   (`{p | p permutes {}} = {I}`,
    REWRITE_TAC[PERMUTES_EMPTY] THEN SET_TAC[])
  and pth_cross = SET_RULE
    `IMAGE f {x,y | x IN {} /\ y IN t} = {} /\
     IMAGE f {x,y | x IN (a INSERT s) /\ y IN t} =
     (IMAGE (\y. f(a,y)) t) UNION (IMAGE f {x,y | x IN s /\ y IN t})`
  and pth_union = SET_RULE
    `{} UNION t = t /\
     (x INSERT s) UNION t = x INSERT (s UNION t)` in
  let rec PERMSET_CONV tm =
   (GEN_REWRITE_CONV I [pth_empty] ORELSEC
    (GEN_REWRITE_CONV I [PERMUTES_INSERT] THENC
     ONCE_DEPTH_CONV PERMSET_CONV THENC
     REWRITE_CONV[pth_cross] THENC
     REWRITE_CONV[IMAGE_CLAUSES] THENC
     REWRITE_CONV[pth_union] THENC
    REWRITE_CONV[SWAP_REFL; I_O_ID])) tm in
  PERMSET_CONV;;

(* ------------------------------------------------------------------------- *)
(* Sum over a set of permutations (could generalize to iteration).           *)
(* ------------------------------------------------------------------------- *)

let SUM_OVER_PERMUTATIONS_INSERT = prove
 (`!f a s. FINITE s /\ ~(a IN s)
           ==> sum {p:A->A | p permutes (a INSERT s)} f =
               sum (a INSERT s)
                   (\b. sum {p | p permutes s} (\q. f(swap(a,b) o q)))`,
  let lemma = prove
   (`(\(b,p). f (swap (a,b) o p)) = f o (\(b,p). swap(a,b) o p)`,
    REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]) in
  REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTES_INSERT] THEN
  ASM_SIMP_TAC[FINITE_PERMUTATIONS; FINITE_INSERT; SUM_SUM_PRODUCT] THEN
  REWRITE_TAC[lemma] THEN MATCH_MP_TAC SUM_IMAGE THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  MAP_EVERY X_GEN_TAC [`b:A`; `p:A->A`; `c:A`; `q:A->A`] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[PAIR_EQ] THEN
  MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o C AP_THM `a:A`) THEN
    REWRITE_TAC[o_THM; swap] THEN ASM_MESON_TAC[permutes];
    DISCH_THEN SUBST_ALL_TAC THEN
    FIRST_X_ASSUM(MP_TAC o AP_TERM `(\p:A->A. swap(a:A,c) o p)`) THEN
    REWRITE_TAC[o_ASSOC; SWAP_IDEMPOTENT; I_O_ID]]);;

let SUM_OVER_PERMUTATIONS_NUMSEG = prove
 (`!f m n. m <= n
           ==> sum {p | p permutes (m..n)} f =
               sum(m..n) (\i. sum {p | p permutes (m+1..n)}
                                  (\q. f(swap(m,i) o q)))`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC] THEN
  MATCH_MP_TAC SUM_OVER_PERMUTATIONS_INSERT THEN
  REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN ARITH_TAC);;