1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
|
(* ========================================================================= *)
(* Multivariate calculus in Euclidean space. *)
(* *)
(* (c) Copyright, John Harrison 1998-2008 *)
(* ========================================================================= *)
needs "Multivariate/dimension.ml";;
(* ------------------------------------------------------------------------- *)
(* Derivatives. The definition is slightly tricky since we make it work over *)
(* nets of a particular form. This lets us prove theorems generally and use *)
(* "at a" or "at a within s" for restriction to a set (1-sided on R etc.) *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("has_derivative",(12,"right"));;
let has_derivative = new_definition
`(f has_derivative f') net <=>
linear f' /\
((\y. inv(norm(y - netlimit net)) %
(f(y) -
(f(netlimit net) + f'(y - netlimit net)))) --> vec 0) net`;;
(* ------------------------------------------------------------------------- *)
(* These are the only cases we'll care about, probably. *)
(* ------------------------------------------------------------------------- *)
let has_derivative_within = prove
(`!f:real^M->real^N f' x s.
(f has_derivative f') (at x within s) <=>
linear f' /\
((\y. inv(norm(y - x)) % (f(y) - (f(x) + f'(y - x)))) --> vec 0)
(at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_derivative] THEN AP_TERM_TAC THEN
ASM_CASES_TAC `trivial_limit(at (x:real^M) within s)` THENL
[ASM_REWRITE_TAC[LIM]; ASM_SIMP_TAC[NETLIMIT_WITHIN]]);;
let has_derivative_at = prove
(`!f:real^M->real^N f' x.
(f has_derivative f') (at x) <=>
linear f' /\
((\y. inv(norm(y - x)) % (f(y) - (f(x) + f'(y - x)))) --> vec 0)
(at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[has_derivative_within]);;
(* ------------------------------------------------------------------------- *)
(* More explicit epsilon-delta forms. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_WITHIN = prove
(`(f has_derivative f')(at x within s) <=>
linear f' /\
!e. &0 < e
==> ?d. &0 < d /\
!x'. x' IN s /\
&0 < norm(x' - x) /\ norm(x' - x) < d
==> norm(f(x') - f(x) - f'(x' - x)) /
norm(x' - x) < e`,
SIMP_TAC[has_derivative_within; LIM_WITHIN] THEN AP_TERM_TAC THEN
REWRITE_TAC[dist; VECTOR_ARITH `(x' - (x + d)) = x' - x - d:real^N`] THEN
REWRITE_TAC[real_div; VECTOR_SUB_RZERO; NORM_MUL] THEN
REWRITE_TAC[REAL_MUL_AC; REAL_ABS_INV; REAL_ABS_NORM]);;
let HAS_DERIVATIVE_AT = prove
(`(f has_derivative f')(at x) <=>
linear f' /\
!e. &0 < e
==> ?d. &0 < d /\
!x'. &0 < norm(x' - x) /\ norm(x' - x) < d
==> norm(f(x') - f(x) - f'(x' - x)) /
norm(x' - x) < e`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[HAS_DERIVATIVE_WITHIN; IN_UNIV]);;
let HAS_DERIVATIVE_AT_WITHIN = prove
(`!f x s. (f has_derivative f') (at x)
==> (f has_derivative f') (at x within s)`,
REWRITE_TAC[HAS_DERIVATIVE_WITHIN; HAS_DERIVATIVE_AT] THEN MESON_TAC[]);;
let HAS_DERIVATIVE_WITHIN_OPEN = prove
(`!f f' a s.
a IN s /\ open s
==> ((f has_derivative f') (at a within s) <=>
(f has_derivative f') (at a))`,
SIMP_TAC[has_derivative_within; has_derivative_at; LIM_WITHIN_OPEN]);;
(* ------------------------------------------------------------------------- *)
(* Combining theorems. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_LINEAR = prove
(`!f net. linear f ==> (f has_derivative f) net`,
REWRITE_TAC[has_derivative; linear] THEN
SIMP_TAC[VECTOR_ARITH `x - y = x + --(&1) % y`] THEN
REWRITE_TAC[VECTOR_ARITH `x + --(&1) % (y + x + --(&1) % y) = vec 0`] THEN
REWRITE_TAC[VECTOR_MUL_RZERO; LIM_CONST]);;
let HAS_DERIVATIVE_ID = prove
(`!net. ((\x. x) has_derivative (\h. h)) net`,
SIMP_TAC[HAS_DERIVATIVE_LINEAR; LINEAR_ID]);;
let HAS_DERIVATIVE_CONST = prove
(`!c net. ((\x. c) has_derivative (\h. vec 0)) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_derivative; linear] THEN
REWRITE_TAC[VECTOR_ADD_RID; VECTOR_SUB_REFL; VECTOR_MUL_RZERO; LIM_CONST]);;
let HAS_DERIVATIVE_CMUL = prove
(`!f f' net c. (f has_derivative f') net
==> ((\x. c % f(x)) has_derivative (\h. c % f'(h))) net`,
REPEAT GEN_TAC THEN SIMP_TAC[has_derivative; LINEAR_COMPOSE_CMUL] THEN
DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP LIM_CMUL o CONJUNCT2) THEN
REWRITE_TAC[VECTOR_MUL_RZERO] THEN
MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_THM_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN VECTOR_ARITH_TAC);;
let HAS_DERIVATIVE_CMUL_EQ = prove
(`!f f' net c.
~(c = &0)
==> (((\x. c % f(x)) has_derivative (\h. c % f'(h))) net <=>
(f has_derivative f') net)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_DERIVATIVE_CMUL) THENL
[DISCH_THEN(MP_TAC o SPEC `inv(c):real`);
DISCH_THEN(MP_TAC o SPEC `c:real`)] THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; ETA_AX]);;
let HAS_DERIVATIVE_NEG = prove
(`!f f' net. (f has_derivative f') net
==> ((\x. --(f(x))) has_derivative (\h. --(f'(h)))) net`,
ONCE_REWRITE_TAC[VECTOR_NEG_MINUS1] THEN
SIMP_TAC[HAS_DERIVATIVE_CMUL]);;
let HAS_DERIVATIVE_NEG_EQ = prove
(`!f f' net. ((\x. --(f(x))) has_derivative (\h. --(f'(h)))) net <=>
(f has_derivative f') net`,
REPEAT GEN_TAC THEN EQ_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_DERIVATIVE_NEG) THEN
REWRITE_TAC[VECTOR_NEG_NEG; ETA_AX]);;
let HAS_DERIVATIVE_ADD = prove
(`!f f' g g' net.
(f has_derivative f') net /\ (g has_derivative g') net
==> ((\x. f(x) + g(x)) has_derivative (\h. f'(h) + g'(h))) net`,
REPEAT GEN_TAC THEN SIMP_TAC[has_derivative; LINEAR_COMPOSE_ADD] THEN
DISCH_THEN(MP_TAC o MATCH_MP (TAUT `(a /\ b) /\ (c /\ d) ==> b /\ d`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP LIM_ADD) THEN REWRITE_TAC[VECTOR_ADD_LID] THEN
MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_THM_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN VECTOR_ARITH_TAC);;
let HAS_DERIVATIVE_SUB = prove
(`!f f' g g' net.
(f has_derivative f') net /\ (g has_derivative g') net
==> ((\x. f(x) - g(x)) has_derivative (\h. f'(h) - g'(h))) net`,
SIMP_TAC[VECTOR_SUB; HAS_DERIVATIVE_ADD; HAS_DERIVATIVE_NEG]);;
let HAS_DERIVATIVE_VSUM = prove
(`!f net s.
FINITE s /\
(!a. a IN s ==> ((f a) has_derivative (f' a)) net)
==> ((\x. vsum s (\a. f a x)) has_derivative (\h. vsum s (\a. f' a h)))
net`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[VSUM_CLAUSES; HAS_DERIVATIVE_CONST] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_ADD THEN
REWRITE_TAC[ETA_AX] THEN ASM_SIMP_TAC[IN_INSERT]);;
let HAS_DERIVATIVE_VSUM_NUMSEG = prove
(`!f net m n.
(!i. m <= i /\ i <= n ==> ((f i) has_derivative (f' i)) net)
==> ((\x. vsum (m..n) (\i. f i x)) has_derivative
(\h. vsum (m..n) (\i. f' i h))) net`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_VSUM THEN
ASM_REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG]);;
(* ------------------------------------------------------------------------- *)
(* Somewhat different results for derivative of scalar multiplier. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_VMUL_COMPONENT = prove
(`!c:real^M->real^N c' k v:real^P.
1 <= k /\ k <= dimindex(:N) /\ (c has_derivative c') net
==> ((\x. c(x)$k % v) has_derivative (\x. c'(x)$k % v)) net`,
SIMP_TAC[has_derivative; LINEAR_VMUL_COMPONENT] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[GSYM VECTOR_ADD_RDISTRIB; GSYM VECTOR_SUB_RDISTRIB] THEN
SUBST1_TAC(VECTOR_ARITH `vec 0 = &0 % (v:real^P)`) THEN
REWRITE_TAC[VECTOR_MUL_ASSOC] THEN MATCH_MP_TAC LIM_VMUL THEN
ASM_SIMP_TAC[GSYM VECTOR_SUB_COMPONENT; GSYM VECTOR_ADD_COMPONENT] THEN
ASM_SIMP_TAC[GSYM VECTOR_MUL_COMPONENT] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM]) THEN REWRITE_TAC[LIM] THEN
REWRITE_TAC[dist; LIFT_NUM; VECTOR_SUB_RZERO; o_THM; NORM_LIFT] THEN
ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; REAL_ABS_MUL; NORM_MUL] THEN
ASM_MESON_TAC[REAL_LET_TRANS; COMPONENT_LE_NORM;
REAL_LE_LMUL; REAL_ABS_POS]);;
let HAS_DERIVATIVE_VMUL_DROP = prove
(`!c c' v. (c has_derivative c') net
==> ((\x. drop(c(x)) % v) has_derivative (\x. drop(c'(x)) % v)) net`,
SIMP_TAC[drop; LE_REFL; DIMINDEX_1; HAS_DERIVATIVE_VMUL_COMPONENT]);;
let HAS_DERIVATIVE_LIFT_DOT = prove
(`!f:real^M->real^N f'.
(f has_derivative f') net
==> ((\x. lift(v dot f(x))) has_derivative (\t. lift(v dot (f' t)))) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_derivative] THEN
REWRITE_TAC[GSYM LIFT_SUB; GSYM LIFT_ADD; GSYM LIFT_CMUL] THEN
REWRITE_TAC[GSYM DOT_RADD; GSYM DOT_RSUB; GSYM DOT_RMUL] THEN
SUBGOAL_THEN
`(\t. lift (v dot (f':real^M->real^N) t)) = (\y. lift(v dot y)) o f'`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN
SIMP_TAC[LINEAR_COMPOSE; LINEAR_LIFT_DOT] THEN
DISCH_THEN(MP_TAC o MATCH_MP LIM_LIFT_DOT o CONJUNCT2) THEN
SIMP_TAC[o_DEF; DOT_RZERO; LIFT_NUM]);;
(* ------------------------------------------------------------------------- *)
(* Limit transformation for derivatives. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_TRANSFORM_WITHIN = prove
(`!f f' g x s d.
&0 < d /\ x IN s /\
(!x'. x' IN s /\ dist (x',x) < d ==> f x' = g x') /\
(f has_derivative f') (at x within s)
==> (g has_derivative f') (at x within s)`,
REPEAT GEN_TAC THEN SIMP_TAC[has_derivative_within; IMP_CONJ] THEN
REPLICATE_TAC 4 DISCH_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`]
LIM_TRANSFORM_WITHIN) THEN
EXISTS_TAC `d:real` THEN ASM_SIMP_TAC[DIST_REFL]);;
let HAS_DERIVATIVE_TRANSFORM_AT = prove
(`!f f' g x d.
&0 < d /\ (!x'. dist (x',x) < d ==> f x' = g x') /\
(f has_derivative f') (at x)
==> (g has_derivative f') (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
MESON_TAC[HAS_DERIVATIVE_TRANSFORM_WITHIN; IN_UNIV]);;
let HAS_DERIVATIVE_TRANSFORM_WITHIN_OPEN = prove
(`!f g:real^M->real^N s x.
open s /\ x IN s /\
(!y. y IN s ==> f y = g y) /\
(f has_derivative f') (at x)
==> (g has_derivative f') (at x)`,
REPEAT GEN_TAC THEN SIMP_TAC[has_derivative_at; IMP_CONJ] THEN
REPLICATE_TAC 4 DISCH_TAC THEN
MATCH_MP_TAC(REWRITE_RULE
[TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`]
LIM_TRANSFORM_WITHIN_OPEN) THEN
EXISTS_TAC `s:real^M->bool` THEN ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Differentiability. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("differentiable",(12,"right"));;
parse_as_infix ("differentiable_on",(12,"right"));;
let differentiable = new_definition
`f differentiable net <=> ?f'. (f has_derivative f') net`;;
let differentiable_on = new_definition
`f differentiable_on s <=> !x. x IN s ==> f differentiable (at x within s)`;;
let HAS_DERIVATIVE_IMP_DIFFERENTIABLE = prove
(`!f f' net. (f has_derivative f') net ==> f differentiable net`,
REWRITE_TAC[differentiable] THEN MESON_TAC[]);;
let DIFFERENTIABLE_AT_WITHIN = prove
(`!f s x. f differentiable (at x)
==> f differentiable (at x within s)`,
REWRITE_TAC[differentiable] THEN MESON_TAC[HAS_DERIVATIVE_AT_WITHIN]);;
let DIFFERENTIABLE_WITHIN_OPEN = prove
(`!f a s.
a IN s /\ open s
==> (f differentiable (at a within s) <=> (f differentiable (at a)))`,
SIMP_TAC[differentiable; HAS_DERIVATIVE_WITHIN_OPEN]);;
let DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON = prove
(`!f s. (!x. x IN s ==> f differentiable at x) ==> f differentiable_on s`,
REWRITE_TAC[differentiable_on] THEN MESON_TAC[DIFFERENTIABLE_AT_WITHIN]);;
let DIFFERENTIABLE_ON_EQ_DIFFERENTIABLE_AT = prove
(`!f s. open s ==> (f differentiable_on s <=>
!x. x IN s ==> f differentiable at x)`,
SIMP_TAC[differentiable_on; DIFFERENTIABLE_WITHIN_OPEN]);;
let DIFFERENTIABLE_TRANSFORM_WITHIN = prove
(`!f g x s d.
&0 < d /\ x IN s /\
(!x'. x' IN s /\ dist (x',x) < d ==> f x' = g x') /\
f differentiable (at x within s)
==> g differentiable (at x within s)`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_TRANSFORM_WITHIN]);;
let DIFFERENTIABLE_TRANSFORM_AT = prove
(`!f g x d.
&0 < d /\
(!x'. dist (x',x) < d ==> f x' = g x') /\
f differentiable at x
==> g differentiable at x`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_TRANSFORM_AT]);;
(* ------------------------------------------------------------------------- *)
(* Frechet derivative and Jacobian matrix. *)
(* ------------------------------------------------------------------------- *)
let frechet_derivative = new_definition
`frechet_derivative f net = @f'. (f has_derivative f') net`;;
let FRECHET_DERIVATIVE_WORKS = prove
(`!f net. f differentiable net <=>
(f has_derivative (frechet_derivative f net)) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[frechet_derivative] THEN
CONV_TAC(RAND_CONV SELECT_CONV) THEN REWRITE_TAC[differentiable]);;
let LINEAR_FRECHET_DERIVATIVE = prove
(`!f net. f differentiable net ==> linear(frechet_derivative f net)`,
SIMP_TAC[FRECHET_DERIVATIVE_WORKS; has_derivative]);;
let jacobian = new_definition
`jacobian f net = matrix(frechet_derivative f net)`;;
let JACOBIAN_WORKS = prove
(`!f net. f differentiable net <=>
(f has_derivative (\h. jacobian f net ** h)) net`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[differentiable]] THEN
REWRITE_TAC[FRECHET_DERIVATIVE_WORKS] THEN
SIMP_TAC[jacobian; MATRIX_WORKS; has_derivative] THEN SIMP_TAC[ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* Differentiability implies continuity. *)
(* ------------------------------------------------------------------------- *)
let LIM_MUL_NORM_WITHIN = prove
(`!f a s. (f --> vec 0) (at a within s)
==> ((\x. norm(x - a) % f(x)) --> vec 0) (at a within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM_WITHIN] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[dist; VECTOR_SUB_RZERO] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d (&1)` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_LT_01] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_MUL; REAL_ABS_NORM] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
ASM_SIMP_TAC[REAL_LT_MUL2; NORM_POS_LE]);;
let DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN = prove
(`!f:real^M->real^N s.
f differentiable (at x within s) ==> f continuous (at x within s)`,
REWRITE_TAC[differentiable; has_derivative_within; CONTINUOUS_WITHIN] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `f':real^M->real^N` MP_TAC) THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP LIM_MUL_NORM_WITHIN) THEN
SUBGOAL_THEN
`((f':real^M->real^N) o (\y. y - x)) continuous (at x within s)`
MP_TAC THENL
[MATCH_MP_TAC CONTINUOUS_WITHIN_COMPOSE THEN
ASM_SIMP_TAC[LINEAR_CONTINUOUS_WITHIN] THEN
SIMP_TAC[CONTINUOUS_SUB; CONTINUOUS_CONST; CONTINUOUS_WITHIN_ID];
ALL_TAC] THEN
REWRITE_TAC[CONTINUOUS_WITHIN; o_DEF] THEN
ASM_REWRITE_TAC[VECTOR_MUL_ASSOC; IMP_IMP; IN_UNIV] THEN
DISCH_THEN(MP_TAC o MATCH_MP LIM_ADD) THEN
SIMP_TAC[LIM_WITHIN; GSYM DIST_NZ; REAL_MUL_RINV; NORM_EQ_0;
VECTOR_ARITH `(x - y = vec 0) <=> (x = y)`;
VECTOR_MUL_LID; VECTOR_SUB_REFL] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP LINEAR_0) THEN
REWRITE_TAC[dist; VECTOR_SUB_RZERO] THEN
REWRITE_TAC[VECTOR_ARITH `(a + b - (c + a)) - (vec 0 + vec 0) = b - c`]);;
let DIFFERENTIABLE_IMP_CONTINUOUS_AT = prove
(`!f:real^M->real^N x. f differentiable (at x) ==> f continuous (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN]);;
let DIFFERENTIABLE_IMP_CONTINUOUS_ON = prove
(`!f:real^M->real^N s. f differentiable_on s ==> f continuous_on s`,
SIMP_TAC[differentiable_on; CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN]);;
let HAS_DERIVATIVE_WITHIN_SUBSET = prove
(`!f s t x. (f has_derivative f') (at x within s) /\ t SUBSET s
==> (f has_derivative f') (at x within t)`,
REWRITE_TAC[has_derivative_within] THEN MESON_TAC[LIM_WITHIN_SUBSET]);;
let DIFFERENTIABLE_WITHIN_SUBSET = prove
(`!f:real^M->real^N s t.
f differentiable (at x within t) /\ s SUBSET t
==> f differentiable (at x within s)`,
REWRITE_TAC[differentiable] THEN MESON_TAC[HAS_DERIVATIVE_WITHIN_SUBSET]);;
let DIFFERENTIABLE_ON_SUBSET = prove
(`!f:real^M->real^N s t.
f differentiable_on t /\ s SUBSET t ==> f differentiable_on s`,
REWRITE_TAC[differentiable_on] THEN
MESON_TAC[SUBSET; DIFFERENTIABLE_WITHIN_SUBSET]);;
let DIFFERENTIABLE_ON_EMPTY = prove
(`!f. f differentiable_on {}`,
REWRITE_TAC[differentiable_on; NOT_IN_EMPTY]);;
(* ------------------------------------------------------------------------- *)
(* Several results are easier using a "multiplied-out" variant. *)
(* (I got this idea from Dieudonne's proof of the chain rule). *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_WITHIN_ALT = prove
(`!f:real^M->real^N f' s x.
(f has_derivative f') (at x within s) <=>
linear f' /\
!e. &0 < e
==> ?d. &0 < d /\
!y. y IN s /\ norm(y - x) < d
==> norm(f(y) - f(x) - f'(y - x)) <=
e * norm(y - x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_derivative_within; LIM_WITHIN] THEN
ASM_REWRITE_TAC[dist; VECTOR_SUB_RZERO] THEN
ASM_CASES_TAC `linear(f':real^M->real^N)` THEN
ASM_REWRITE_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
SIMP_TAC[GSYM real_div; REAL_LT_LDIV_EQ] THEN
REWRITE_TAC[VECTOR_ARITH `a - (b + c) = a - b - c :real^M`] THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^M` THEN DISCH_TAC THEN
ASM_CASES_TAC `&0 < norm(y - x :real^M)` THENL
[ASM_SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [NORM_POS_LT]) THEN
ASM_SIMP_TAC[VECTOR_SUB_EQ; VECTOR_SUB_REFL; NORM_0; REAL_MUL_RZERO;
VECTOR_ARITH `vec 0 - x = --x`; NORM_NEG] THEN
ASM_MESON_TAC[LINEAR_0; NORM_0; REAL_LE_REFL];
FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^M` THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `e / &2 * norm(y - x :real^M)` THEN
ASM_SIMP_TAC[REAL_LT_RMUL_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
UNDISCH_TAC `&0 < e` THEN REAL_ARITH_TAC]);;
let HAS_DERIVATIVE_AT_ALT = prove
(`!f:real^M->real^N f' x.
(f has_derivative f') (at x) <=>
linear f' /\
!e. &0 < e
==> ?d. &0 < d /\
!y. norm(y - x) < d
==> norm(f(y) - f(x) - f'(y - x)) <= e * norm(y - x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[HAS_DERIVATIVE_WITHIN_ALT; IN_UNIV]);;
(* ------------------------------------------------------------------------- *)
(* The chain rule. *)
(* ------------------------------------------------------------------------- *)
let DIFF_CHAIN_WITHIN = prove
(`!f:real^M->real^N g:real^N->real^P f' g' x s.
(f has_derivative f') (at x within s) /\
(g has_derivative g') (at (f x) within (IMAGE f s))
==> ((g o f) has_derivative (g' o f'))(at x within s)`,
REPEAT GEN_TAC THEN SIMP_TAC[HAS_DERIVATIVE_WITHIN_ALT; LINEAR_COMPOSE] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
FIRST_ASSUM(X_CHOOSE_TAC `B1:real` o MATCH_MP LINEAR_BOUNDED_POS) THEN
DISCH_THEN(fun th -> X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC th) THEN
DISCH_THEN(CONJUNCTS_THEN2
(fun th -> ASSUME_TAC th THEN X_CHOOSE_TAC `B2:real` (MATCH_MP
LINEAR_BOUNDED_POS th)) MP_TAC) THEN
FIRST_X_ASSUM(fun th -> MP_TAC th THEN MP_TAC(SPEC `e / &2 / B2` th)) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o SPEC `e / &2 / (&1 + B1)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; REAL_LT_ADD] THEN
DISCH_THEN(X_CHOOSE_THEN `de:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `&1`) THEN
REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN
DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_ADD; REAL_LT_01] THEN
DISCH_THEN(X_CHOOSE_THEN `d0:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d0:real`; `de / (B1 + &1)`] REAL_DOWN2) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_ADD; REAL_LT_01] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^M` THEN
DISCH_TAC THEN UNDISCH_TAC
`!y. y IN s /\ norm(y - x) < d2
==> norm ((f:real^M->real^N) y - f x - f'(y - x)) <= norm(y - x)` THEN
DISCH_THEN(MP_TAC o SPEC `y:real^M`) THEN ANTS_TAC THENL
[ASM_MESON_TAC[REAL_LT_TRANS]; DISCH_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `y:real^M`) THEN ANTS_TAC THENL
[ASM_MESON_TAC[REAL_LT_TRANS]; DISCH_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(f:real^M->real^N) y`) THEN ANTS_TAC THENL
[CONJ_TAC THENL [ASM_MESON_TAC[IN_IMAGE]; ALL_TAC] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC
`norm(f'(y - x)) + norm((f:real^M->real^N) y - f x - f'(y - x))` THEN
REWRITE_TAC[NORM_TRIANGLE_SUB] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `B1 * norm(y - x) + norm(y - x :real^M)` THEN
ASM_SIMP_TAC[REAL_LE_ADD2] THEN
REWRITE_TAC[REAL_ARITH `a * x + x = x * (a + &1)`] THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_ADD; REAL_LT_01] THEN
ASM_MESON_TAC[REAL_LT_TRANS];
DISCH_TAC] THEN
REWRITE_TAC[o_THM] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `norm((g:real^N->real^P)(f(y:real^M)) - g(f x) - g'(f y - f x)) +
norm((g(f y) - g(f x) - g'(f'(y - x))) -
(g(f y) - g(f x) - g'(f y - f x)))` THEN
REWRITE_TAC[NORM_TRIANGLE_SUB] THEN
REWRITE_TAC[VECTOR_ARITH `(a - b - c1) - (a - b - c2) = c2 - c1:real^M`] THEN
ASM_SIMP_TAC[GSYM LINEAR_SUB] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`a <= d ==> b <= ee - d ==> a + b <= ee`)) THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `B2 * norm((f:real^M->real^N) y - f x - f'(y - x))` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `B2 * e / &2 / B2 * norm(y - x :real^M)` THEN
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_LT_IMP_LE] THEN REWRITE_TAC[real_div] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`b * ((e * h) * b') * x <= e * x - d <=>
d <= e * (&1 - h * b' * b) * x`] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_ADD; REAL_LT_01] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`norm(f'(y - x)) + norm((f:real^M->real^N) y - f x - f'(y - x))` THEN
REWRITE_TAC[NORM_TRIANGLE_SUB] THEN MATCH_MP_TAC(REAL_ARITH
`u <= x * b /\ v <= b ==> u + v <= b * (&1 + x)`) THEN
ASM_REWRITE_TAC[]);;
let DIFF_CHAIN_AT = prove
(`!f:real^M->real^N g:real^N->real^P f' g' x.
(f has_derivative f') (at x) /\
(g has_derivative g') (at (f x))
==> ((g o f) has_derivative (g' o f')) (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
ASM_MESON_TAC[DIFF_CHAIN_WITHIN; LIM_WITHIN_SUBSET; SUBSET_UNIV;
HAS_DERIVATIVE_WITHIN_SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Composition rules stated just for differentiability. *)
(* ------------------------------------------------------------------------- *)
let DIFFERENTIABLE_CONST = prove
(`!c net. (\z. c) differentiable net`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_CONST]);;
let DIFFERENTIABLE_ID = prove
(`!net. (\z. z) differentiable net`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_ID]);;
let DIFFERENTIABLE_CMUL = prove
(`!net f c. f differentiable net ==> (\x. c % f(x)) differentiable net`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_CMUL]);;
let DIFFERENTIABLE_NEG = prove
(`!f net. f differentiable net ==> (\z. --(f z)) differentiable net`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_NEG]);;
let DIFFERENTIABLE_ADD = prove
(`!f g net.
f differentiable net /\
g differentiable net
==> (\z. f z + g z) differentiable net`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_ADD]);;
let DIFFERENTIABLE_SUB = prove
(`!f g net.
f differentiable net /\
g differentiable net
==> (\z. f z - g z) differentiable net`,
REWRITE_TAC[differentiable] THEN
MESON_TAC[HAS_DERIVATIVE_SUB]);;
let DIFFERENTIABLE_VSUM = prove
(`!f net s.
FINITE s /\
(!a. a IN s ==> (f a) differentiable net)
==> (\x. vsum s (\a. f a x)) differentiable net`,
REPEAT GEN_TAC THEN REWRITE_TAC[differentiable] THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; RIGHT_AND_EXISTS_THM] THEN
DISCH_THEN(CHOOSE_THEN (MP_TAC o MATCH_MP HAS_DERIVATIVE_VSUM)) THEN
MESON_TAC[]);;
let DIFFERENTIABLE_VSUM_NUMSEG = prove
(`!f net m n.
FINITE s /\
(!i. m <= i /\ i <= n ==> (f i) differentiable net)
==> (\x. vsum (m..n) (\a. f a x)) differentiable net`,
SIMP_TAC[DIFFERENTIABLE_VSUM; FINITE_NUMSEG; IN_NUMSEG]);;
let DIFFERENTIABLE_CHAIN_AT = prove
(`!f g x.
f differentiable (at x) /\
g differentiable (at(f x))
==> (g o f) differentiable (at x)`,
REWRITE_TAC[differentiable] THEN MESON_TAC[DIFF_CHAIN_AT]);;
let DIFFERENTIABLE_CHAIN_WITHIN = prove
(`!f g x s.
f differentiable (at x within s) /\
g differentiable (at(f x) within IMAGE f s)
==> (g o f) differentiable (at x within s)`,
REWRITE_TAC[differentiable] THEN MESON_TAC[DIFF_CHAIN_WITHIN]);;
(* ------------------------------------------------------------------------- *)
(* Similarly for "differentiable_on". *)
(* ------------------------------------------------------------------------- *)
let DIFFERENTIABLE_ON_CONST = prove
(`!s c. (\z. c) differentiable_on s`,
REWRITE_TAC[differentiable_on; DIFFERENTIABLE_CONST]);;
let DIFFERENTIABLE_ON_ID = prove
(`!s. (\z. z) differentiable_on s`,
REWRITE_TAC[differentiable_on; DIFFERENTIABLE_ID]);;
let DIFFERENTIABLE_ON_COMPOSE = prove
(`!f g s. f differentiable_on s /\ g differentiable_on (IMAGE f s)
==> (g o f) differentiable_on s`,
SIMP_TAC[differentiable_on; FORALL_IN_IMAGE] THEN
MESON_TAC[DIFFERENTIABLE_CHAIN_WITHIN]);;
let DIFFERENTIABLE_ON_NEG = prove
(`!f s. f differentiable_on s ==> (\z. --(f z)) differentiable_on s`,
SIMP_TAC[differentiable_on; DIFFERENTIABLE_NEG]);;
let DIFFERENTIABLE_ON_ADD = prove
(`!f g s.
f differentiable_on s /\ g differentiable_on s
==> (\z. f z + g z) differentiable_on s`,
SIMP_TAC[differentiable_on; DIFFERENTIABLE_ADD]);;
let DIFFERENTIABLE_ON_SUB = prove
(`!f g s.
f differentiable_on s /\ g differentiable_on s
==> (\z. f z - g z) differentiable_on s`,
SIMP_TAC[differentiable_on; DIFFERENTIABLE_SUB]);;
(* ------------------------------------------------------------------------- *)
(* Uniqueness of derivative. *)
(* *)
(* The general result is a bit messy because we need approachability of the *)
(* limit point from any direction. But OK for nontrivial intervals etc. *)
(* ------------------------------------------------------------------------- *)
let FRECHET_DERIVATIVE_UNIQUE_WITHIN = prove
(`!f:real^M->real^N f' f'' x s.
(f has_derivative f') (at x within s) /\
(f has_derivative f'') (at x within s) /\
(!i e. 1 <= i /\ i <= dimindex(:M) /\ &0 < e
==> ?d. &0 < abs(d) /\ abs(d) < e /\ (x + d % basis i) IN s)
==> f' = f''`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_derivative] THEN
ONCE_REWRITE_TAC[CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `(x:real^M) limit_point_of s` ASSUME_TAC THENL
[REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`1`; `e:real`]) THEN
ASM_REWRITE_TAC[DIMINDEX_GE_1; LE_REFL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(x:real^M) + d % basis 1` THEN
ASM_REWRITE_TAC[dist] THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
ASM_SIMP_TAC[VECTOR_ADD_SUB; NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL;
VECTOR_MUL_EQ_0; REAL_MUL_RID; DE_MORGAN_THM; REAL_ABS_NZ;
BASIS_NONZERO];
ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_SUB) THEN
SUBGOAL_THEN `netlimit(at x within s) = x:real^M` SUBST_ALL_TAC THENL
[ASM_MESON_TAC[NETLIMIT_WITHIN; TRIVIAL_LIMIT_WITHIN]; ALL_TAC] THEN
REWRITE_TAC[GSYM VECTOR_SUB_LDISTRIB; NORM_MUL] THEN
REWRITE_TAC[VECTOR_ARITH
`fx - (fa + f'') - (fx - (fa + f')):real^M = f' - f''`] THEN
DISCH_TAC THEN MATCH_MP_TAC LINEAR_EQ_STDBASIS THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
GEN_REWRITE_TAC I [TAUT `p = ~ ~p`] THEN
PURE_REWRITE_TAC[GSYM NORM_POS_LT] THEN DISCH_TAC THEN ABBREV_TAC
`e = norm((f':real^M->real^N) (basis i) - f''(basis i :real^M))` THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_WITHIN]) THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[dist; VECTOR_SUB_RZERO] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`i:num`; `d:real`]) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(x:real^M) + c % basis i`) THEN
ASM_REWRITE_TAC[VECTOR_ADD_SUB; NORM_MUL] THEN
ASM_SIMP_TAC[NORM_BASIS; REAL_MUL_RID] THEN
ASM_SIMP_TAC[LINEAR_CMUL; GSYM VECTOR_SUB_LDISTRIB; NORM_MUL] THEN
REWRITE_TAC[REAL_ABS_INV; REAL_ABS_ABS] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ; REAL_MUL_ASSOC] THEN
REWRITE_TAC[REAL_MUL_LID; REAL_LT_REFL]);;
let FRECHET_DERIVATIVE_UNIQUE_AT = prove
(`!f:real^M->real^N f' f'' x.
(f has_derivative f') (at x) /\ (f has_derivative f'') (at x)
==> f' = f''`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FRECHET_DERIVATIVE_UNIQUE_WITHIN THEN
MAP_EVERY EXISTS_TAC
[`f:real^M->real^N`; `x:real^M`; `(:real^M)`] THEN
ASM_REWRITE_TAC[IN_UNIV; WITHIN_UNIV] THEN
MESON_TAC[REAL_ARITH `&0 < e ==> &0 < abs(e / &2) /\ abs(e / &2) < e`]);;
let HAS_FRECHET_DERIVATIVE_UNIQUE_AT = prove
(`!f:real^M->real^N f' x.
(f has_derivative f') (at x)
==> frechet_derivative f (at x) = f'`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FRECHET_DERIVATIVE_UNIQUE_AT THEN
MAP_EVERY EXISTS_TAC [`f:real^M->real^N`; `x:real^M`] THEN
ASM_REWRITE_TAC[frechet_derivative] THEN CONV_TAC SELECT_CONV THEN
ASM_MESON_TAC[]);;
let FRECHET_DERIVATIVE_CONST_AT = prove
(`!c:real^N a:real^M. frechet_derivative (\x. c) (at a) = \h. vec 0`,
REPEAT GEN_TAC THEN MATCH_MP_TAC HAS_FRECHET_DERIVATIVE_UNIQUE_AT THEN
REWRITE_TAC[HAS_DERIVATIVE_CONST]);;
let FRECHET_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL = prove
(`!f:real^M->real^N f' f'' x a b.
(!i. 1 <= i /\ i <= dimindex(:M) ==> a$i < b$i) /\
x IN interval[a,b] /\
(f has_derivative f') (at x within interval[a,b]) /\
(f has_derivative f'') (at x within interval[a,b])
==> f' = f''`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FRECHET_DERIVATIVE_UNIQUE_WITHIN THEN
MAP_EVERY EXISTS_TAC
[`f:real^M->real^N`; `x:real^M`; `interval[a:real^M,b]`] THEN
ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `e:real`] THEN STRIP_TAC THEN
MATCH_MP_TAC(MESON[] `(?a. P a \/ P(--a)) ==> (?a:real. P a)`) THEN
EXISTS_TAC `(min ((b:real^M)$i - (a:real^M)$i) e) / &2` THEN
REWRITE_TAC[REAL_ABS_NEG; GSYM LEFT_OR_DISTRIB] THEN
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
[UNDISCH_TAC `&0 < e` THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
UNDISCH_TAC `(x:real^M) IN interval[a,b]` THEN REWRITE_TAC[IN_INTERVAL] THEN
DISCH_TAC THEN
ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
BASIS_COMPONENT] THEN
SUBGOAL_THEN
`!P. (!j. 1 <= j /\ j <= dimindex(:M) ==> P j) <=>
P i /\
(!j. 1 <= j /\ j <= dimindex(:M) /\ ~(j = i) ==> P j)`
(fun th -> ONCE_REWRITE_TAC[th])
THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN
UNDISCH_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let FRECHET_DERIVATIVE_UNIQUE_WITHIN_OPEN_INTERVAL = prove
(`!f:real^M->real^N f' f'' x a b.
x IN interval(a,b) /\
(f has_derivative f') (at x within interval(a,b)) /\
(f has_derivative f'') (at x within interval(a,b))
==> f' = f''`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FRECHET_DERIVATIVE_UNIQUE_WITHIN THEN
MAP_EVERY EXISTS_TAC
[`f:real^M->real^N`; `x:real^M`; `interval(a:real^M,b)`] THEN
ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `e:real`] THEN STRIP_TAC THEN
MATCH_MP_TAC(MESON[] `(?a. P a \/ P(--a)) ==> (?a:real. P a)`) THEN
EXISTS_TAC `(min ((b:real^M)$i - (a:real^M)$i) e) / &3` THEN
REWRITE_TAC[REAL_ABS_NEG; GSYM LEFT_OR_DISTRIB] THEN
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
[UNDISCH_TAC `&0 < e` THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL]) THEN
DISCH_THEN(MP_TAC o SPEC `i:num`) THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
UNDISCH_TAC `(x:real^M) IN interval(a,b)` THEN REWRITE_TAC[IN_INTERVAL] THEN
DISCH_TAC THEN
ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
BASIS_COMPONENT] THEN
SUBGOAL_THEN
`!P. (!j. 1 <= j /\ j <= dimindex(:M) ==> P j) <=>
P i /\
(!j. 1 <= j /\ j <= dimindex(:M) /\ ~(j = i) ==> P j)`
(fun th -> ONCE_REWRITE_TAC[th])
THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN
UNDISCH_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let FRECHET_DERIVATIVE_AT = prove
(`!f:real^M->real^N f' x.
(f has_derivative f') (at x) ==> (f' = frechet_derivative f (at x))`,
MESON_TAC[has_derivative; FRECHET_DERIVATIVE_WORKS;
differentiable; FRECHET_DERIVATIVE_UNIQUE_AT]);;
let FRECHET_DERIVATIVE_WITHIN_CLOSED_INTERVAL = prove
(`!f:real^M->real^N f' x a b.
(!i. 1 <= i /\ i <= dimindex(:M) ==> a$i < b$i) /\
x IN interval[a,b] /\
(f has_derivative f') (at x within interval[a,b])
==> frechet_derivative f (at x within interval[a,b]) = f'`,
ASM_MESON_TAC[has_derivative; FRECHET_DERIVATIVE_WORKS;
differentiable; FRECHET_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL]);;
(* ------------------------------------------------------------------------- *)
(* Component of the differential must be zero if it exists at a local *)
(* maximum or minimum for that corresponding component. Start with slightly *)
(* sharper forms that fix the sign of the derivative on the boundary. *)
(* ------------------------------------------------------------------------- *)
let DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM = prove
(`!f:real^M->real^N f' x s k e.
1 <= k /\ k <= dimindex(:N) /\
x IN s /\ convex s /\ (f has_derivative f') (at x within s) /\
&0 < e /\ (!w. w IN s INTER ball(x,e) ==> (f x)$k <= (f w)$k)
==> !y. y IN s ==> &0 <= (f'(y - x))$k`,
REWRITE_TAC[has_derivative_within] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `y:real^M = x` THENL
[ASM_MESON_TAC[VECTOR_SUB_REFL; LINEAR_0; VEC_COMPONENT; REAL_LE_REFL];
ALL_TAC] THEN
ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_WITHIN]) THEN
DISCH_THEN(MP_TAC o SPEC
`--((f':real^M->real^N)(y - x)$k) / norm(y - x)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ;
NOT_EXISTS_THM; REAL_ARITH `&0 < --x <=> x < &0`] THEN
X_GEN_TAC `d:real` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ABBREV_TAC `de = min (&1) ((min d e) / &2 / norm(y - x:real^M))` THEN
DISCH_THEN(MP_TAC o SPEC `x + de % (y - x):real^M`) THEN
REWRITE_TAC[dist; VECTOR_ADD_SUB; NOT_IMP; GSYM CONJ_ASSOC] THEN
SUBGOAL_THEN `norm(de % (y - x):real^M) < min d e` MP_TAC THENL
[ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LT_RDIV_EQ;
NORM_POS_LT; VECTOR_SUB_EQ] THEN
EXPAND_TAC "de" THEN MATCH_MP_TAC(REAL_ARITH
`&0 < de / x ==> abs(min (&1) (de / &2 / x)) < de / x`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_MIN; NORM_POS_LT; VECTOR_SUB_EQ];
REWRITE_TAC[REAL_LT_MIN] THEN STRIP_TAC] THEN
SUBGOAL_THEN `&0 < de /\ de <= &1` STRIP_ASSUME_TAC THENL
[EXPAND_TAC "de" THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
ASM_SIMP_TAC[REAL_LT_MIN; REAL_LT_01; REAL_HALF; REAL_LT_DIV;
NORM_POS_LT; VECTOR_SUB_EQ];
ALL_TAC] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[REWRITE_TAC[VECTOR_ARITH
`x + a % (y - x):real^N = (&1 - a) % x + a % y`] THEN
MATCH_MP_TAC IN_CONVEX_SET THEN ASM_SIMP_TAC[REAL_LT_IMP_LE];
DISCH_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[NORM_MUL] THEN
ASM_SIMP_TAC[REAL_LT_MUL; REAL_ARITH `&0 < x ==> &0 < abs x`;
NORM_POS_LT; VECTOR_SUB_EQ; VECTOR_SUB_RZERO] THEN
MATCH_MP_TAC(NORM_ARITH
`abs(y$k) <= norm(y) /\ ~(abs(y$k) < e) ==> ~(norm y < e)`) THEN
ASM_SIMP_TAC[COMPONENT_LE_NORM] THEN REWRITE_TAC[VECTOR_MUL_COMPONENT] THEN
REWRITE_TAC[REAL_ABS_INV; REAL_ABS_MUL; REAL_ABS_NORM; REAL_ABS_ABS] THEN
REWRITE_TAC[REAL_NOT_LT; REAL_INV_MUL; REAL_ARITH
`d <= (a * inv b) * c <=> d <= (c * a) / b`] THEN
ASM_SIMP_TAC[REAL_LE_DIV2_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_RDIV_EQ; VECTOR_SUB_COMPONENT;
VECTOR_ADD_COMPONENT; REAL_ARITH `&0 < x ==> &0 < abs x`] THEN
MATCH_MP_TAC(REAL_ARITH
`fx <= fy /\ a = --b /\ b < &0 ==> a <= abs(fy - (fx + b))`) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_CMUL th]) THEN
ASM_SIMP_TAC[real_abs; VECTOR_MUL_COMPONENT; REAL_LT_IMP_LE] THEN
ONCE_REWRITE_TAC[REAL_ARITH `x * y < &0 <=> &0 < x * --y`] THEN
ASM_SIMP_TAC[REAL_LT_MUL_EQ] THEN
CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; ASM_REAL_ARITH_TAC] THEN
ASM_REWRITE_TAC[IN_INTER; IN_BALL; NORM_ARITH
`dist(x:real^M,x + e) = norm e`]);;
let DIFFERENTIAL_COMPONENT_NEG_AT_MAXIMUM = prove
(`!f:real^M->real^N f' x s k e.
1 <= k /\ k <= dimindex(:N) /\
x IN s /\ convex s /\ (f has_derivative f') (at x within s) /\
&0 < e /\ (!w. w IN s INTER ball(x,e) ==> (f w)$k <= (f x)$k)
==> !y. y IN s ==> (f'(y - x))$k <= &0`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`\x. --((f:real^M->real^N) x)`; `\x. --((f':real^M->real^N) x)`;
`x:real^M`; `s:real^M->bool`; `k:num`; `e:real`]
DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM) THEN
ASM_SIMP_TAC[HAS_DERIVATIVE_NEG] THEN
ASM_SIMP_TAC[REAL_LE_NEG2; VECTOR_NEG_COMPONENT; REAL_NEG_GE0]);;
let DROP_DIFFERENTIAL_POS_AT_MINIMUM = prove
(`!f:real^N->real^1 f' x s e.
x IN s /\ convex s /\ (f has_derivative f') (at x within s) /\
&0 < e /\ (!w. w IN s INTER ball(x,e) ==> drop(f x) <= drop(f w))
==> !y. y IN s ==> &0 <= drop(f'(y - x))`,
REPEAT GEN_TAC THEN REWRITE_TAC[drop] THEN STRIP_TAC THEN
MATCH_MP_TAC DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM THEN
MAP_EVERY EXISTS_TAC [`f:real^N->real^1`; `e:real`] THEN
ASM_REWRITE_TAC[DIMINDEX_1; LE_REFL]);;
let DROP_DIFFERENTIAL_NEG_AT_MAXIMUM = prove
(`!f:real^N->real^1 f' x s e.
x IN s /\ convex s /\ (f has_derivative f') (at x within s) /\
&0 < e /\ (!w. w IN s INTER ball(x,e) ==> drop(f w) <= drop(f x))
==> !y. y IN s ==> drop(f'(y - x)) <= &0`,
REPEAT GEN_TAC THEN REWRITE_TAC[drop] THEN STRIP_TAC THEN
MATCH_MP_TAC DIFFERENTIAL_COMPONENT_NEG_AT_MAXIMUM THEN
MAP_EVERY EXISTS_TAC [`f:real^N->real^1`; `e:real`] THEN
ASM_REWRITE_TAC[DIMINDEX_1; LE_REFL]);;
let DIFFERENTIAL_COMPONENT_ZERO_AT_MAXMIN = prove
(`!f:real^M->real^N f' x s k.
1 <= k /\ k <= dimindex(:N) /\
x IN s /\ open s /\ (f has_derivative f') (at x) /\
((!w. w IN s ==> (f w)$k <= (f x)$k) \/
(!w. w IN s ==> (f x)$k <= (f w)$k))
==> !h. (f' h)$k = &0`,
REPEAT GEN_TAC THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN
DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[SUBSET] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM DISJ_CASES_TAC THENL
[MP_TAC(ISPECL [`f:real^M->real^N`; `f':real^M->real^N`;
`x:real^M`; `cball(x:real^M,e)`; `k:num`; `e:real`]
DIFFERENTIAL_COMPONENT_NEG_AT_MAXIMUM);
MP_TAC(ISPECL [`f:real^M->real^N`; `f':real^M->real^N`;
`x:real^M`; `cball(x:real^M,e)`; `k:num`; `e:real`]
DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM)] THEN
ASM_SIMP_TAC[HAS_DERIVATIVE_AT_WITHIN; CENTRE_IN_CBALL;
CONVEX_CBALL; REAL_LT_IMP_LE; IN_INTER] THEN
DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `h:real^M` THEN
FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [has_derivative_at]) THEN
(ASM_CASES_TAC `h:real^M = vec 0` THENL
[ASM_MESON_TAC[LINEAR_0; VEC_COMPONENT]; ALL_TAC]) THEN
REMOVE_THEN "*" (fun th ->
MP_TAC(SPEC `x + e / norm h % h:real^M` th) THEN
MP_TAC(SPEC `x - e / norm h % h:real^M` th)) THEN
REWRITE_TAC[IN_CBALL; NORM_ARITH
`dist(x:real^N,x - e) = norm e /\ dist(x:real^N,x + e) = norm e`] THEN
REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
ASM_SIMP_TAC[real_abs; REAL_DIV_RMUL; NORM_EQ_0; REAL_LT_IMP_LE;
REAL_LE_REFL] THEN
REWRITE_TAC[VECTOR_ARITH `x - e - x:real^N = --e /\ (x + e) - x = e`] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_NEG th]) THEN
REWRITE_TAC[IMP_IMP; REAL_ARITH `&0 <= --x /\ &0 <= x <=> x = &0`;
VECTOR_NEG_COMPONENT; REAL_ARITH `--x <= &0 /\ x <= &0 <=> x = &0`] THEN
DISCH_THEN(MP_TAC o AP_TERM `(*) (norm(h:real^M) / e)`) THEN
REWRITE_TAC[GSYM VECTOR_MUL_COMPONENT] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_CMUL th)]) THEN
REWRITE_TAC[REAL_MUL_RZERO; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_FIELD `~(x = &0) /\ ~(y = &0) ==> x / y * y / x = &1`;
NORM_EQ_0; REAL_LT_IMP_NZ; VECTOR_MUL_LID]);;
let DIFFERENTIAL_ZERO_MAXMIN_COMPONENT = prove
(`!f:real^M->real^N x e k.
1 <= k /\ k <= dimindex(:N) /\ &0 < e /\
((!y. y IN ball(x,e) ==> (f y)$k <= (f x)$k) \/
(!y. y IN ball(x,e) ==> (f x)$k <= (f y)$k)) /\
f differentiable (at x)
==> (jacobian f (at x) $ k = vec 0)`,
REWRITE_TAC[JACOBIAN_WORKS] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`f:real^M->real^N`; `\h. jacobian (f:real^M->real^N) (at x) ** h`;
`x:real^M`; `ball(x:real^M,e)`; `k:num`]
DIFFERENTIAL_COMPONENT_ZERO_AT_MAXMIN) THEN
ASM_REWRITE_TAC[CENTRE_IN_BALL; OPEN_BALL] THEN
ASM_SIMP_TAC[MATRIX_VECTOR_MUL_COMPONENT; FORALL_DOT_EQ_0]);;
let DIFFERENTIAL_ZERO_MAXMIN = prove
(`!f:real^N->real^1 f' x s.
x IN s /\ open s /\ (f has_derivative f') (at x) /\
((!y. y IN s ==> drop(f y) <= drop(f x)) \/
(!y. y IN s ==> drop(f x) <= drop(f y)))
==> (f' = \v. vec 0)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real^N->real^1`; `f':real^N->real^1`;
`x:real^N`; `s:real^N->bool`; `1:num`]
DIFFERENTIAL_COMPONENT_ZERO_AT_MAXMIN) THEN
ASM_REWRITE_TAC[GSYM drop; DIMINDEX_1; LE_REFL] THEN
REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM; FUN_EQ_THM; LIFT_DROP]);;
(* ------------------------------------------------------------------------- *)
(* The traditional Rolle theorem in one dimension. *)
(* ------------------------------------------------------------------------- *)
let ROLLE = prove
(`!f:real^1->real^1 f' a b.
drop a < drop b /\ (f a = f b) /\
f continuous_on interval[a,b] /\
(!x. x IN interval(a,b) ==> (f has_derivative f'(x)) (at x))
==> ?x. x IN interval(a,b) /\ (f'(x) = \v. vec 0)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?x. x:real^1 IN interval(a,b) /\
((!y. y IN interval(a,b) ==> drop(f x) <= drop(f y)) \/
(!y. y IN interval(a,b) ==> drop(f y) <= drop(f x)))`
MP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[DIFFERENTIAL_ZERO_MAXMIN; OPEN_INTERVAL]] THEN
MAP_EVERY (MP_TAC o ISPECL
[`drop o (f:real^1->real^1)`; `interval[a:real^1,b]`])
[CONTINUOUS_ATTAINS_SUP; CONTINUOUS_ATTAINS_INF] THEN
REWRITE_TAC[COMPACT_INTERVAL; o_ASSOC] THEN
ASM_SIMP_TAC[CONTINUOUS_ON_COMPOSE; CONTINUOUS_ON_LIFT_COMPONENT; o_DEF] THEN
ASM_REWRITE_TAC[LIFT_DROP; ETA_AX] THEN
REWRITE_TAC[INTERVAL_EQ_EMPTY; DIMINDEX_1; CONJ_ASSOC; LE_ANTISYM] THEN
ASM_SIMP_TAC[UNWIND_THM1; GSYM drop; REAL_NOT_LT; REAL_LT_IMP_LE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real^1` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(d:real^1) IN interval(a,b)` THENL
[ASM_MESON_TAC[SUBSET; INTERVAL_OPEN_SUBSET_CLOSED]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `c:real^1` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(c:real^1) IN interval(a,b)` THENL
[ASM_MESON_TAC[SUBSET; INTERVAL_OPEN_SUBSET_CLOSED]; ALL_TAC] THEN
SUBGOAL_THEN `?x:real^1. x IN interval(a,b)` MP_TAC THENL
[REWRITE_TAC[MEMBER_NOT_EMPTY; INTERVAL_EQ_EMPTY; DIMINDEX_1] THEN
ASM_MESON_TAC[LE_ANTISYM; drop; REAL_NOT_LE];
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^1` THEN DISCH_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP INTERVAL_CASES_1)) THEN
ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC)) THEN
ASM_MESON_TAC[REAL_LE_ANTISYM; SUBSET; INTERVAL_OPEN_SUBSET_CLOSED]);;
(* ------------------------------------------------------------------------- *)
(* One-dimensional mean value theorem. *)
(* ------------------------------------------------------------------------- *)
let MVT = prove
(`!f:real^1->real^1 f' a b.
drop a < drop b /\
f continuous_on interval[a,b] /\
(!x. x IN interval(a,b) ==> (f has_derivative f'(x)) (at x))
==> ?x. x IN interval(a,b) /\ (f(b) - f(a) = f'(x) (b - a))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`\x. f(x) - (drop(f b - f a) / drop(b - a)) % x`;
`\k:real^1 x:real^1.
f'(k)(x) - (drop(f b - f a) / drop(b - a)) % x`;
`a:real^1`; `b:real^1`]
ROLLE) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CMUL; CONTINUOUS_ON_ID] THEN
CONJ_TAC THENL
[REWRITE_TAC[VECTOR_ARITH
`(fa - k % a = fb - k % b) <=> (fb - fa = k % (b - a))`];
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_SUB THEN
ASM_SIMP_TAC[HAS_DERIVATIVE_CMUL; HAS_DERIVATIVE_ID; ETA_AX]];
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[FUN_EQ_THM] THEN
X_GEN_TAC `x:real^1` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `b - a:real^1`))] THEN
SIMP_TAC[VECTOR_SUB_EQ; GSYM DROP_EQ; DROP_SUB; DROP_CMUL] THEN
ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_SUB_LT; REAL_LT_IMP_NZ]);;
let MVT_SIMPLE = prove
(`!f:real^1->real^1 f' a b.
drop a < drop b /\
(!x. x IN interval[a,b]
==> (f has_derivative f'(x)) (at x within interval[a,b]))
==> ?x. x IN interval(a,b) /\ (f(b) - f(a) = f'(x) (b - a))`,
MP_TAC MVT THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[MATCH_MP_TAC DIFFERENTIABLE_IMP_CONTINUOUS_ON THEN
ASM_MESON_TAC[differentiable_on; differentiable];
ASM_MESON_TAC[HAS_DERIVATIVE_WITHIN_OPEN; OPEN_INTERVAL;
HAS_DERIVATIVE_WITHIN_SUBSET; INTERVAL_OPEN_SUBSET_CLOSED;
SUBSET]]);;
let MVT_VERY_SIMPLE = prove
(`!f:real^1->real^1 f' a b.
drop a <= drop b /\
(!x. x IN interval[a,b]
==> (f has_derivative f'(x)) (at x within interval[a,b]))
==> ?x. x IN interval[a,b] /\ (f(b) - f(a) = f'(x) (b - a))`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^1 = a` THENL
[ASM_REWRITE_TAC[VECTOR_SUB_REFL] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `a:real^1`) THEN
REWRITE_TAC[INTERVAL_SING; IN_SING; has_derivative; UNWIND_THM2] THEN
MESON_TAC[LINEAR_0];
ASM_REWRITE_TAC[REAL_LE_LT; DROP_EQ] THEN
DISCH_THEN(MP_TAC o MATCH_MP MVT_SIMPLE) THEN
MATCH_MP_TAC MONO_EXISTS THEN
SIMP_TAC[REWRITE_RULE[SUBSET] INTERVAL_OPEN_SUBSET_CLOSED]]);;
(* ------------------------------------------------------------------------- *)
(* A nice generalization (see Havin's proof of 5.19 from Rudin's book). *)
(* ------------------------------------------------------------------------- *)
let MVT_GENERAL = prove
(`!f:real^1->real^N f' a b.
drop a < drop b /\
f continuous_on interval[a,b] /\
(!x. x IN interval(a,b) ==> (f has_derivative f'(x)) (at x))
==> ?x. x IN interval(a,b) /\
norm(f(b) - f(a)) <= norm(f'(x) (b - a))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`(lift o (\y. (f(b) - f(a)) dot y)) o (f:real^1->real^N)`;
`\x t. lift((f(b:real^1) - f(a)) dot
((f':real^1->real^1->real^N) x t))`;
`a:real^1`; `b:real^1`] MVT) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_DOT; CONTINUOUS_ON_COMPOSE] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_DEF] THEN
MATCH_MP_TAC HAS_DERIVATIVE_LIFT_DOT THEN ASM_SIMP_TAC[ETA_AX];
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^1` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[o_THM; GSYM LIFT_SUB; GSYM DOT_RSUB; LIFT_EQ] THEN
DISCH_TAC THEN ASM_CASES_TAC `(f:real^1->real^N) b = f a` THENL
[ASM_REWRITE_TAC[VECTOR_SUB_REFL; NORM_0; NORM_POS_LE]; ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
EXISTS_TAC `norm((f:real^1->real^N) b - f a)` THEN
ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_SUB_EQ; GSYM REAL_POW_2] THEN
ASM_REWRITE_TAC[NORM_POW_2; NORM_CAUCHY_SCHWARZ]);;
(* ------------------------------------------------------------------------- *)
(* Still more general bound theorem. *)
(* ------------------------------------------------------------------------- *)
let DIFFERENTIABLE_BOUND = prove
(`!f:real^M->real^N f' s B.
convex s /\
(!x. x IN s ==> (f has_derivative f'(x)) (at x within s)) /\
(!x. x IN s ==> onorm(f'(x)) <= B)
==> !x y. x IN s /\ y IN s ==> norm(f(x) - f(y)) <= B * norm(x - y)`,
ONCE_REWRITE_TAC[NORM_SUB] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!x y. x IN s ==> norm((f':real^M->real^M->real^N)(x) y) <= B * norm(y)`
ASSUME_TAC THENL
[ASM_MESON_TAC[ONORM; has_derivative; REAL_LE_TRANS; NORM_POS_LE;
REAL_LE_RMUL]; ALL_TAC] THEN
SUBGOAL_THEN
`!u. u IN interval[vec 0,vec 1] ==> (x + drop u % (y - x) :real^M) IN s`
ASSUME_TAC THENL
[REWRITE_TAC[IN_INTERVAL; FORALL_DIMINDEX_1; drop] THEN
SIMP_TAC[VEC_COMPONENT; LE_REFL; DIMINDEX_1] THEN
REWRITE_TAC[VECTOR_ARITH `x + u % (y - x) = (&1 - u) % x + u % y`] THEN
ASM_MESON_TAC[CONVEX_ALT];
ALL_TAC] THEN
SUBGOAL_THEN
`!u. u IN interval(vec 0,vec 1) ==> (x + drop u % (y - x) :real^M) IN s`
ASSUME_TAC THENL
[ASM_MESON_TAC[SUBSET; INTERVAL_OPEN_SUBSET_CLOSED]; ALL_TAC] THEN
MP_TAC(SPECL
[`(f:real^M->real^N) o (\u. x + drop u % (y - x))`;
`\u. (f':real^M->real^M->real^N) (x + drop u % (y - x)) o
(\u. vec 0 + drop u % (y - x))`;
`vec 0:real^1`; `vec 1:real^1`] MVT_GENERAL) THEN
REWRITE_TAC[o_THM; DROP_VEC; VECTOR_ARITH `x + &1 % (y - x) = y`;
VECTOR_MUL_LZERO; VECTOR_SUB_RZERO; VECTOR_ADD_RID] THEN
REWRITE_TAC[VECTOR_MUL_LID] THEN ANTS_TAC THENL
[ALL_TAC; ASM_MESON_TAC[VECTOR_ADD_LID; REAL_LE_TRANS]] THEN
REWRITE_TAC[REAL_LT_01] THEN CONJ_TAC THENL
[MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_CONST; CONTINUOUS_ON_VMUL;
o_DEF; LIFT_DROP; CONTINUOUS_ON_ID] THEN
MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `s:real^M->bool` THEN
ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN; differentiable;
CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN];
ALL_TAC] THEN
X_GEN_TAC `a:real^1` THEN DISCH_TAC THEN
SUBGOAL_THEN `a IN interval(vec 0:real^1,vec 1) /\
open(interval(vec 0:real^1,vec 1))`
MP_TAC THENL [ASM_MESON_TAC[OPEN_INTERVAL]; ALL_TAC] THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP
HAS_DERIVATIVE_WITHIN_OPEN th)]) THEN
MATCH_MP_TAC DIFF_CHAIN_WITHIN THEN
ASM_SIMP_TAC[HAS_DERIVATIVE_ADD; HAS_DERIVATIVE_CONST;
HAS_DERIVATIVE_VMUL_DROP; HAS_DERIVATIVE_ID] THEN
MATCH_MP_TAC HAS_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `s:real^M->bool` THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[INTERVAL_OPEN_SUBSET_CLOSED; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* In particular. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_ZERO_CONSTANT = prove
(`!f:real^M->real^N s.
convex s /\
(!x. x IN s ==> (f has_derivative (\h. vec 0)) (at x within s))
==> ?c. !x. x IN s ==> f(x) = c`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real^M->real^N`; `(\x h. vec 0):real^M->real^M->real^N`;
`s:real^M->bool`; `&0`] DIFFERENTIABLE_BOUND) THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; ONORM_CONST; NORM_0; REAL_LE_REFL] THEN
SIMP_TAC[NORM_LE_0; VECTOR_SUB_EQ] THEN MESON_TAC[]);;
let HAS_DERIVATIVE_ZERO_UNIQUE = prove
(`!f s a c. convex s /\ a IN s /\ f a = c /\
(!x. x IN s ==> (f has_derivative (\h. vec 0)) (at x within s))
==> !x. x IN s ==> f x = c`,
MESON_TAC[HAS_DERIVATIVE_ZERO_CONSTANT]);;
let HAS_DERIVATIVE_ZERO_CONNECTED_CONSTANT = prove
(`!f:real^M->real^N s.
open s /\ connected s /\
(!x. x IN s ==> (f has_derivative (\h. vec 0)) (at x))
==> ?c. !x. x IN s ==> f(x) = c`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real^M`) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_CLOPEN]) THEN
DISCH_THEN(MP_TAC o SPEC `{x | x IN s /\ (f:real^M->real^N) x = f a}`) THEN
ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THENL
[SIMP_TAC[open_in; SUBSET; IN_ELIM_THM] THEN
X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real` THEN
REWRITE_TAC[SUBSET; IN_BALL] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`f:real^M->real^N`; `ball(x:real^M,e)`]
HAS_DERIVATIVE_ZERO_CONSTANT) THEN
REWRITE_TAC[IN_BALL; CONVEX_BALL] THEN
ASM_MESON_TAC[HAS_DERIVATIVE_AT_WITHIN; DIST_SYM; DIST_REFL];
MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE_CONSTANT THEN
MATCH_MP_TAC DIFFERENTIABLE_IMP_CONTINUOUS_ON THEN
ASM_SIMP_TAC[DIFFERENTIABLE_ON_EQ_DIFFERENTIABLE_AT] THEN
ASM_MESON_TAC[differentiable]]);;
let HAS_DERIVATIVE_ZERO_CONNECTED_UNIQUE = prove
(`!f s a c. open s /\ connected s /\ a IN s /\ f a = c /\
(!x. x IN s ==> (f has_derivative (\h. vec 0)) (at x))
==> !x. x IN s ==> f x = c`,
MESON_TAC[HAS_DERIVATIVE_ZERO_CONNECTED_CONSTANT]);;
(* ------------------------------------------------------------------------- *)
(* Differentiability of inverse function (most basic form). *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE_BASIC = prove
(`!f:real^M->real^N g f' g' t y.
(f has_derivative f') (at (g y)) /\ linear g' /\ (g' o f' = I) /\
g continuous (at y) /\
open t /\ y IN t /\ (!z. z IN t ==> (f(g(z)) = z))
==> (g has_derivative g') (at y)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(X_CHOOSE_TAC `C:real` o MATCH_MP LINEAR_BOUNDED_POS) THEN
SUBGOAL_THEN
`!e. &0 < e ==> ?d. &0 < d /\
!z. norm(z - y) < d
==> norm((g:real^N->real^M)(z) - g(y) - g'(z - y))
<= e * norm(g(z) - g(y))`
ASSUME_TAC THENL
[X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAS_DERIVATIVE_AT_ALT]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e / C`)) THEN
ASM_SIMP_TAC[REAL_LT_DIV] THEN
DISCH_THEN(X_CHOOSE_THEN `d0:real`
(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(ASSUME_TAC o GEN `z:real^N` o SPEC `(g:real^N->real^M) z`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [continuous_at]) THEN
DISCH_THEN(MP_TAC o SPEC `d0:real`) THEN ASM_REWRITE_TAC[dist] THEN
DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N` o
GEN_REWRITE_RULE I [open_def]) THEN
ASM_REWRITE_TAC[dist] THEN
DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN
X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `C * (e / C) * norm((g:real^N->real^M) z - g y)` THEN
CONJ_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_LE_RMUL; REAL_DIV_LMUL;
REAL_EQ_IMP_LE; REAL_LT_IMP_NZ; NORM_POS_LE]] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `C * norm(f((g:real^N->real^M) z) - y - f'(g z - g y))` THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LT_TRANS; REAL_LE_LMUL_EQ]] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`norm(g'(f((g:real^N->real^M) z) - y - f'(g z - g y)):real^M)` THEN
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[LINEAR_SUB] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM NORM_NEG] THEN
REWRITE_TAC[VECTOR_ARITH
`--(gz:real^N - gy - (z - y)) = z - y - (gz - gy)`] THEN
ASM_MESON_TAC[REAL_LE_REFL; REAL_LT_TRANS];
ALL_TAC] THEN
SUBGOAL_THEN
`?B d. &0 < B /\ &0 < d /\
!z. norm(z - y) < d
==> norm((g:real^N->real^M)(z) - g(y)) <= B * norm(z - y)`
STRIP_ASSUME_TAC THENL
[EXISTS_TAC `&2 * C` THEN
FIRST_X_ASSUM(MP_TAC o SPEC `&1 / &2`) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
ASM_SIMP_TAC[REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `z:real^N` THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`norm(dg) <= norm(dg') + norm(dg - dg') /\
((&2 * (&1 - h)) * norm(dg) = &1 * norm(dg)) /\
norm(dg') <= c * norm(d)
==> norm(dg - dg') <= h * norm(dg)
==> norm(dg) <= (&2 * c) * norm(d)`) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[NORM_TRIANGLE_SUB];
ALL_TAC] THEN
REWRITE_TAC[HAS_DERIVATIVE_AT_ALT] THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e / B`) THEN
ASM_SIMP_TAC[REAL_LT_DIV] THEN
DISCH_THEN(X_CHOOSE_THEN `d':real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d:real`; `d':real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:real^N` THEN
DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `e / B * norm ((g:real^N->real^M) z - g y)` THEN
CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN
ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_LE_LMUL_EQ] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ] THEN
ASM_MESON_TAC[REAL_MUL_SYM; REAL_LT_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Simply rewrite that based on the domain point x. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE_BASIC_X = prove
(`!f:real^M->real^N g f' g' t x.
(f has_derivative f') (at x) /\ linear g' /\ (g' o f' = I) /\
g continuous (at (f(x))) /\ (g(f(x)) = x) /\
open t /\ f(x) IN t /\ (!y. y IN t ==> (f(g(y)) = y))
==> (g has_derivative g') (at (f(x)))`,
MESON_TAC[HAS_DERIVATIVE_INVERSE_BASIC]);;
(* ------------------------------------------------------------------------- *)
(* This is the version in Dieudonne', assuming continuity of f and g. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE_DIEUDONNE = prove
(`!f:real^M->real^N g s.
open s /\ open (IMAGE f s) /\
f continuous_on s /\ g continuous_on (IMAGE f s) /\
(!x. x IN s ==> (g(f(x)) = x))
==> !f' g' x. x IN s /\ (f has_derivative f') (at x) /\
linear g' /\ (g' o f' = I)
==> (g has_derivative g') (at (f(x)))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_BASIC_X THEN
EXISTS_TAC `f':real^M->real^N` THEN
EXISTS_TAC `IMAGE (f:real^M->real^N) s` THEN
ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; IN_IMAGE]);;
(* ------------------------------------------------------------------------- *)
(* Here's the simplest way of not assuming much about g. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE = prove
(`!f:real^M->real^N g f' g' s x.
compact s /\ x IN s /\ f(x) IN interior(IMAGE f s) /\
f continuous_on s /\ (!x. x IN s ==> (g(f(x)) = x)) /\
(f has_derivative f') (at x) /\ linear g' /\ (g' o f' = I)
==> (g has_derivative g') (at (f(x)))`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_BASIC_X THEN
EXISTS_TAC `f':real^M->real^N` THEN
EXISTS_TAC `interior(IMAGE (f:real^M->real^N) s)` THEN
ASM_MESON_TAC[CONTINUOUS_ON_INTERIOR; CONTINUOUS_ON_INVERSE;
OPEN_INTERIOR; IN_IMAGE; INTERIOR_SUBSET; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Proving surjectivity via Brouwer fixpoint theorem. *)
(* ------------------------------------------------------------------------- *)
let BROUWER_SURJECTIVE = prove
(`!f:real^N->real^N s t.
compact t /\ convex t /\ ~(t = {}) /\ f continuous_on t /\
(!x y. x IN s /\ y IN t ==> x + (y - f(y)) IN t)
==> !x. x IN s ==> ?y. y IN t /\ (f(y) = x)`,
REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[VECTOR_ARITH
`((f:real^N->real^N)(y) = x) <=> (x + (y - f(y)) = y)`] THEN
ASM_SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_CONST; CONTINUOUS_ON_SUB;
BROUWER; SUBSET; FORALL_IN_IMAGE; CONTINUOUS_ON_ID]);;
let BROUWER_SURJECTIVE_CBALL = prove
(`!f:real^N->real^N s a e.
&0 < e /\
f continuous_on cball(a,e) /\
(!x y. x IN s /\ y IN cball(a,e) ==> x + (y - f(y)) IN cball(a,e))
==> !x. x IN s ==> ?y. y IN cball(a,e) /\ (f(y) = x)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC BROUWER_SURJECTIVE THEN
ASM_REWRITE_TAC[COMPACT_CBALL; CONVEX_CBALL] THEN
ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT]);;
(* ------------------------------------------------------------------------- *)
(* See Sussmann: "Multidifferential calculus", Theorem 2.1.1 *)
(* ------------------------------------------------------------------------- *)
let SUSSMANN_OPEN_MAPPING = prove
(`!f:real^M->real^N f' g' s x.
open s /\ f continuous_on s /\
x IN s /\ (f has_derivative f') (at x) /\ linear g' /\ (f' o g' = I)
==> !t. t SUBSET s /\ x IN interior(t)
==> f(x) IN interior(IMAGE f t)`,
REWRITE_TAC[HAS_DERIVATIVE_AT_ALT] THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN REPEAT STRIP_TAC THEN
MP_TAC(MATCH_MP LINEAR_BOUNDED_POS (ASSUME `linear(g':real^N->real^M)`)) THEN
DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `&1 / (&2 * B)`) THEN
ASM_SIMP_TAC[REAL_LT_MUL; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `e0:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR_CBALL]) THEN
DISCH_THEN(X_CHOOSE_THEN `e1:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`e0 / B`; `e1 / B`] REAL_DOWN2) THEN
ASM_SIMP_TAC[REAL_LT_DIV] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL
[`\y. (f:real^M->real^N)(x + g'(y - f(x)))`;
`cball((f:real^M->real^N) x,e / &2)`; `(f:real^M->real^N) x`; `e:real`]
BROUWER_SURJECTIVE_CBALL) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL
[MATCH_MP_TAC CONTINUOUS_ON_ADD THEN
REWRITE_TAC[CONTINUOUS_ON_CONST] THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST;
CONTINUOUS_ON_ID; LINEAR_CONTINUOUS_ON];
ALL_TAC] THEN
MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN
EXISTS_TAC `cball(x:real^M,e1)` THEN CONJ_TAC THENL
[ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_TRANS]; ALL_TAC] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `y:real^N` THEN
REWRITE_TAC[IN_CBALL; dist] THEN
REWRITE_TAC[VECTOR_ARITH `x - (x + y) = --y:real^N`] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [NORM_SUB] THEN
DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `B * norm(y - (f:real^M->real^N) x)` THEN
ASM_REWRITE_TAC[NORM_NEG] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ] THEN
ASM_MESON_TAC[REAL_LE_TRANS; REAL_LT_IMP_LE];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`y:real^N`; `z:real^N`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x + g'(z - (f:real^M->real^N) x)`) THEN
ASM_REWRITE_TAC[VECTOR_ADD_SUB] THEN ANTS_TAC THENL
[MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `B * norm(z - (f:real^M->real^N) x)` THEN
ASM_REWRITE_TAC[NORM_NEG] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THEN
ASM_MESON_TAC[IN_CBALL; dist; NORM_SUB; REAL_LET_TRANS];
ALL_TAC] THEN
REWRITE_TAC[VECTOR_ARITH `a - b - (c - b) = a - c:real^N`] THEN
DISCH_TAC THEN REWRITE_TAC[IN_CBALL; dist] THEN
ONCE_REWRITE_TAC[VECTOR_ARITH
`f0 - (y + z - f1) = (f1 - z) + (f0 - y):real^N`] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`norm(f(x + g'(z - (f:real^M->real^N) x)) - z) + norm(f x - y)` THEN
REWRITE_TAC[NORM_TRIANGLE] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`x <= a ==> y <= b - a ==> x + y <= b`)) THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `e / &2` THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_CBALL; dist]; ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH `e / &2 <= e - x <=> x <= e / &2`] THEN
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_MUL_ASSOC] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
SIMP_TAC[REAL_ARITH `(&1 / &2 * b) * x <= e * &1 / &2 <=> x * b <= e`] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `B * norm(z - (f:real^M->real^N) x)` THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[REAL_LE_LMUL_EQ; REAL_MUL_SYM; IN_CBALL; dist; DIST_SYM];
ALL_TAC] THEN
REWRITE_TAC[IN_INTERIOR] THEN
DISCH_THEN(fun th -> EXISTS_TAC `e / &2` THEN MP_TAC th) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; SUBSET] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:real^N` THEN
MATCH_MP_TAC MONO_IMP THEN
REWRITE_TAC[REWRITE_RULE[SUBSET] BALL_SUBSET_CBALL] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real^N` (STRIP_ASSUME_TAC o GSYM)) THEN
ASM_REWRITE_TAC[IN_IMAGE] THEN
EXISTS_TAC `x + g'(z - (f:real^M->real^N) x)` THEN REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN
REWRITE_TAC[IN_CBALL; dist; VECTOR_ARITH `x - (x + y) = --y:real^N`] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `B * norm(z - (f:real^M->real^N) x)` THEN
ASM_REWRITE_TAC[NORM_NEG] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ] THEN
ASM_MESON_TAC[IN_CBALL; dist; NORM_SUB; REAL_LT_IMP_LE; REAL_LE_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Hence the following eccentric variant of the inverse function theorem. *)
(* This has no continuity assumptions, but we do need the inverse function. *)
(* We could put f' o g = I but this happens to fit with the minimal linear *)
(* algebra theory I've set up so far. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE_STRONG = prove
(`!f:real^N->real^N g f' g' s x.
open s /\ x IN s /\ f continuous_on s /\
(!x. x IN s ==> (g(f(x)) = x)) /\
(f has_derivative f') (at x) /\ (f' o g' = I)
==> (g has_derivative g') (at (f(x)))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_BASIC_X THEN
SUBGOAL_THEN `linear (g':real^N->real^N) /\ (g' o f' = I)`
STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[has_derivative; RIGHT_INVERSE_LINEAR; LINEAR_INVERSE_LEFT];
ALL_TAC] THEN
EXISTS_TAC `f':real^N->real^N` THEN
EXISTS_TAC `interior (IMAGE (f:real^N->real^N) s)` THEN
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[];
REWRITE_TAC[OPEN_INTERIOR];
ASM_MESON_TAC[INTERIOR_OPEN; SUSSMANN_OPEN_MAPPING; LINEAR_INVERSE_LEFT;
SUBSET_REFL; has_derivative];
ASM_MESON_TAC[IN_IMAGE; SUBSET; INTERIOR_SUBSET]] THEN
REWRITE_TAC[continuous_at] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
SUBGOAL_THEN
`!t. t SUBSET s /\ x IN interior(t)
==> (f:real^N->real^N)(x) IN interior(IMAGE f t)`
MP_TAC THENL
[ASM_MESON_TAC[SUSSMANN_OPEN_MAPPING; LINEAR_INVERSE_LEFT; has_derivative];
ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `ball(x:real^N,e) INTER s`) THEN ANTS_TAC THENL
[ASM_SIMP_TAC[IN_INTER; OPEN_BALL; INTERIOR_OPEN; OPEN_INTER;
INTER_SUBSET; CENTRE_IN_BALL];
ALL_TAC] THEN
REWRITE_TAC[IN_INTERIOR] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
ASM_CASES_TAC `&0 < d` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUBSET; IN_BALL; IN_IMAGE; IN_INTER] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:real^N` THEN
REWRITE_TAC[DIST_SYM] THEN MATCH_MP_TAC MONO_IMP THEN
ASM_MESON_TAC[DIST_SYM]);;
(* ------------------------------------------------------------------------- *)
(* A rewrite based on the other domain. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE_STRONG_X = prove
(`!f:real^N->real^N g f' g' s y.
open s /\ (g y) IN s /\ f continuous_on s /\
(!x. x IN s ==> (g(f(x)) = x)) /\
(f has_derivative f') (at (g y)) /\ (f' o g' = I) /\
f(g y) = y
==> (g has_derivative g') (at y)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM th]) THEN
MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_STRONG THEN
MAP_EVERY EXISTS_TAC [`f':real^N->real^N`; `s:real^N->bool`] THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* On a region. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_INVERSE_ON = prove
(`!f:real^N->real^N s.
open s /\
(!x. x IN s ==> (f has_derivative f'(x)) (at x) /\ (g(f(x)) = x) /\
(f'(x) o g'(x) = I))
==> !x. x IN s ==> (g has_derivative g'(x)) (at (f(x)))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_STRONG THEN
EXISTS_TAC `(f':real^N->real^N->real^N) x` THEN
EXISTS_TAC `s:real^N->bool` THEN
ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT;
DIFFERENTIABLE_IMP_CONTINUOUS_AT; differentiable]);;
(* ------------------------------------------------------------------------- *)
(* Invertible derivative continous at a point implies local injectivity. *)
(* It's only for this we need continuity of the derivative, except of course *)
(* if we want the fact that the inverse derivative is also continuous. So if *)
(* we know for some other reason that the inverse function exists, it's OK. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_LOCALLY_INJECTIVE = prove
(`!f:real^M->real^N f' g' s a.
a IN s /\ open s /\ linear g' /\ (g' o f'(a) = I) /\
(!x. x IN s ==> (f has_derivative f'(x)) (at x)) /\
(!e. &0 < e
==> ?d. &0 < d /\
!x. dist(a,x) < d ==> onorm(\v. f'(x) v - f'(a) v) < e)
==> ?t. a IN t /\ open t /\
!x x'. x IN t /\ x' IN t /\ (f x' = f x) ==> (x' = x)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `&0 < onorm(g':real^N->real^M)` ASSUME_TAC THENL
[ASM_SIMP_TAC[ONORM_POS_LT] THEN ASM_MESON_TAC[VEC_EQ; ARITH_EQ];
ALL_TAC] THEN
ABBREV_TAC `k = &1 / onorm(g':real^N->real^M) / &2` THEN
SUBGOAL_THEN
`?d. &0 < d /\ ball(a,d) SUBSET s /\
!x. x IN ball(a,d)
==> onorm(\v. (f':real^M->real^M->real^N)(x) v - f'(a) v) < k`
STRIP_ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `k:real`) THEN EXPAND_TAC "k" THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
DISCH_THEN(MP_TAC o SPEC `a:real^M`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUBSET; IN_BALL] THEN DISCH_THEN(X_CHOOSE_TAC `d2:real`) THEN
EXISTS_TAC `min d1 d2` THEN ASM_REWRITE_TAC[REAL_LT_MIN; IN_BALL] THEN
ASM_MESON_TAC[REAL_LT_TRANS];
ALL_TAC] THEN
EXISTS_TAC `ball(a:real^M,d)` THEN
ASM_SIMP_TAC[OPEN_BALL; CENTRE_IN_BALL] THEN
MAP_EVERY X_GEN_TAC [`x:real^M`; `x':real^M`] THEN STRIP_TAC THEN
ABBREV_TAC `ph = \w. w - g'(f(w) - (f:real^M->real^N)(x))` THEN
SUBGOAL_THEN `norm((ph:real^M->real^M) x' - ph x) <= norm(x' - x) / &2`
MP_TAC THENL
[ALL_TAC;
EXPAND_TAC "ph" THEN ASM_REWRITE_TAC[VECTOR_SUB_REFL] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_0 th]) THEN
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
REWRITE_TAC[VECTOR_SUB_RZERO; GSYM NORM_LE_0] THEN REAL_ARITH_TAC] THEN
SUBGOAL_THEN
`!u v:real^M. u IN ball(a,d) /\ v IN ball(a,d)
==> norm(ph u - ph v :real^M) <= norm(u - v) / &2`
(fun th -> ASM_SIMP_TAC[th]) THEN
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_MP_TAC DIFFERENTIABLE_BOUND THEN
REWRITE_TAC[CONVEX_BALL; OPEN_BALL] THEN
EXISTS_TAC `\x v. v - g'((f':real^M->real^M->real^N) x v)` THEN
CONJ_TAC THEN X_GEN_TAC `u:real^M` THEN DISCH_TAC THEN REWRITE_TAC[] THENL
[EXPAND_TAC "ph" THEN
MATCH_MP_TAC HAS_DERIVATIVE_SUB THEN REWRITE_TAC[HAS_DERIVATIVE_ID] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_SUB th]) THEN
GEN_REWRITE_TAC (RATOR_CONV o BINDER_CONV) [GSYM VECTOR_SUB_RZERO] THEN
MATCH_MP_TAC HAS_DERIVATIVE_SUB THEN REWRITE_TAC[HAS_DERIVATIVE_CONST] THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC DIFF_CHAIN_WITHIN THEN
ONCE_REWRITE_TAC[ETA_AX] THEN
ASM_MESON_TAC[HAS_DERIVATIVE_LINEAR; SUBSET; HAS_DERIVATIVE_AT_WITHIN];
ALL_TAC] THEN
SUBGOAL_THEN
`(\w. w - g'((f':real^M->real^M->real^N) u w)) =
g' o (\w. f' a w - f' u w)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM] THEN ASM_MESON_TAC[LINEAR_SUB];
ALL_TAC] THEN
SUBGOAL_THEN `linear(\w. f' a w - (f':real^M->real^M->real^N) u w)`
ASSUME_TAC THENL
[MATCH_MP_TAC LINEAR_COMPOSE_SUB THEN ONCE_REWRITE_TAC[ETA_AX] THEN
ASM_MESON_TAC[has_derivative; SUBSET; CENTRE_IN_BALL];
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`onorm(g':real^N->real^M) *
onorm(\w. f' a w - (f':real^M->real^M->real^N) u w)` THEN
ASM_SIMP_TAC[ONORM_COMPOSE] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ] THEN
REWRITE_TAC[real_div; REAL_ARITH `inv(&2) * x = (&1 * x) * inv(&2)`] THEN
ASM_REWRITE_TAC[GSYM real_div] THEN
SUBGOAL_THEN `onorm(\w. (f':real^M->real^M->real^N) a w - f' u w) =
onorm(\w. f' u w - f' a w)`
(fun th -> ASM_SIMP_TAC[th; REAL_LT_IMP_LE]) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_NEG_SUB] THEN
MATCH_MP_TAC ONORM_NEG THEN ONCE_REWRITE_TAC[GSYM VECTOR_NEG_SUB] THEN
ASM_SIMP_TAC[LINEAR_COMPOSE_NEG]);;
(* ------------------------------------------------------------------------- *)
(* Uniformly convergent sequence of derivatives. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_SEQUENCE_LIPSCHITZ = prove
(`!s f:num->real^M->real^N f' g'.
convex s /\
(!n x. x IN s ==> ((f n) has_derivative (f' n x)) (at x within s)) /\
(!e. &0 < e
==> ?N. !n x h. n >= N /\ x IN s
==> norm(f' n x h - g' x h) <= e * norm(h))
==> !e. &0 < e
==> ?N. !m n x y. m >= N /\ n >= N /\ x IN s /\ y IN s
==> norm((f m x - f n x) - (f m y - f n y))
<= e * norm(x - y)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `N:num` THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `m:num >= N` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `n:num >= N` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC DIFFERENTIABLE_BOUND THEN
EXISTS_TAC `\x h. (f':num->real^M->real^M->real^N) m x h - f' n x h` THEN
ASM_SIMP_TAC[HAS_DERIVATIVE_SUB; ETA_AX] THEN
X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
SUBGOAL_THEN
`!h. norm((f':num->real^M->real^M->real^N) m x h - f' n x h) <= e * norm(h)`
MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_DERIVATIVE_WITHIN_ALT]) THEN
ASM_SIMP_TAC[ONORM; LINEAR_COMPOSE_SUB; ETA_AX] THEN
X_GEN_TAC `h:real^M` THEN SUBST1_TAC(VECTOR_ARITH
`(f':num->real^M->real^M->real^N) m x h - f' n x h =
(f' m x h - g' x h) + --(f' n x h - g' x h)`) THEN
MATCH_MP_TAC NORM_TRIANGLE_LE THEN
ASM_SIMP_TAC[NORM_NEG; REAL_ARITH
`a <= e / &2 * h /\ b <= e / &2 * h ==> a + b <= e * h`]);;
let HAS_DERIVATIVE_SEQUENCE = prove
(`!s f:num->real^M->real^N f' g'.
convex s /\
(!n x. x IN s ==> ((f n) has_derivative (f' n x)) (at x within s)) /\
(!e. &0 < e
==> ?N. !n x h. n >= N /\ x IN s
==> norm(f' n x h - g' x h) <= e * norm(h)) /\
(?x l. x IN s /\ ((\n. f n x) --> l) sequentially)
==> ?g. !x. x IN s
==> ((\n. f n x) --> g x) sequentially /\
(g has_derivative g'(x)) (at x within s)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "O") MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `x0:real^M` STRIP_ASSUME_TAC) THEN
SUBGOAL_TAC "A"
`!e. &0 < e
==> ?N. !m n x y. m >= N /\ n >= N /\ x IN s /\ y IN s
==> norm(((f:num->real^M->real^N) m x - f n x) -
(f m y - f n y))
<= e * norm(x - y)`
[MATCH_MP_TAC HAS_DERIVATIVE_SEQUENCE_LIPSCHITZ THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]] THEN
SUBGOAL_THEN
`?g:real^M->real^N. !x. x IN s ==> ((\n. f n x) --> g x) sequentially`
MP_TAC THENL
[REWRITE_TAC[GSYM SKOLEM_THM; RIGHT_EXISTS_IMP_THM] THEN
X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
GEN_REWRITE_TAC I [CONVERGENT_EQ_CAUCHY] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP CONVERGENT_IMP_CAUCHY) THEN
REWRITE_TAC[cauchy; dist] THEN DISCH_THEN(LABEL_TAC "B") THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
ASM_CASES_TAC `x:real^M = x0` THEN ASM_SIMP_TAC[] THEN
REMOVE_THEN "B" (MP_TAC o SPEC `e / &2`) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` STRIP_ASSUME_TAC) THEN
REMOVE_THEN "A" (MP_TAC o SPEC `e / &2 / norm(x - x0:real^M)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; REAL_HALF; VECTOR_SUB_EQ] THEN
DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN
EXISTS_TAC `N1 + N2:num` THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (STRIP_ASSUME_TAC o MATCH_MP
(ARITH_RULE `m >= N1 + N2:num ==> m >= N1 /\ m >= N2`))) THEN
SUBST1_TAC(VECTOR_ARITH
`(f:num->real^M->real^N) m x - f n x =
(f m x - f n x - (f m x0 - f n x0)) + (f m x0 - f n x0)`) THEN
MATCH_MP_TAC NORM_TRIANGLE_LT THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`m:num`; `n:num`; `x:real^M`; `x0:real^M`]) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`]) THEN
ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[] THEN
DISCH_THEN(LABEL_TAC "B") THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
REWRITE_TAC[HAS_DERIVATIVE_WITHIN_ALT] THEN
SUBGOAL_TAC "C"
`!e. &0 < e
==> ?N. !n x y. n >= N /\ x IN s /\ y IN s
==> norm(((f:num->real^M->real^N) n x - f n y) -
(g x - g y))
<= e * norm(x - y)`
[X_GEN_TAC `e:real` THEN DISCH_TAC THEN
REMOVE_THEN "A" (MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:num` THEN
DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`u:real^M`; `v:real^M`] THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN `m:num` o SPECL
[`m:num`; `u:real^M`; `v:real^M`]) THEN
DISCH_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN
EXISTS_TAC
`\m. ((f:num->real^M->real^N) n u - f n v) - (f m u - f m v)` THEN
REWRITE_TAC[eventually; TRIVIAL_LIMIT_SEQUENTIALLY] THEN
ASM_SIMP_TAC[SEQUENTIALLY; LIM_SUB; LIM_CONST] THEN EXISTS_TAC `N:num` THEN
ONCE_REWRITE_TAC[VECTOR_ARITH
`(x - y) - (u - v) = (x - u) - (y - v):real^N`] THEN
ASM_MESON_TAC[GE_REFL]] THEN
CONJ_TAC THENL
[SUBGOAL_TAC "D"
`!u. ((\n. (f':num->real^M->real^M->real^N) n x u) --> g' x u) sequentially`
[REWRITE_TAC[LIM_SEQUENTIALLY; dist] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `u = vec 0:real^M` THENL
[REMOVE_THEN "O" (MP_TAC o SPEC `e:real`);
REMOVE_THEN "O" (MP_TAC o SPEC `e / &2 / norm(u:real^M)`)] THEN
ASM_SIMP_TAC[NORM_POS_LT; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
DISCH_THEN(MP_TAC o SPECL [`x:real^M`; `u:real^M`]) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[GE; NORM_0; REAL_MUL_RZERO; NORM_LE_0] THEN
ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0] THEN
UNDISCH_TAC `&0 < e` THEN REAL_ARITH_TAC] THEN
REWRITE_TAC[linear] THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`u:real^M`; `v:real^M`];
MAP_EVERY X_GEN_TAC [`c:real`; `u:real^M`]] THEN
MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THENL
[EXISTS_TAC
`\n. (f':num->real^M->real^M->real^N) n x (u + v) -
(f' n x u + f' n x v)`;
EXISTS_TAC
`\n. (f':num->real^M->real^M->real^N) n x (c % u) -
c % f' n x u`] THEN
ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LIM_SUB; LIM_ADD; LIM_CMUL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[has_derivative_within; linear]) THEN
ASM_SIMP_TAC[VECTOR_SUB_REFL; LIM_CONST];
ALL_TAC] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
MAP_EVERY (fun s -> REMOVE_THEN s (MP_TAC o SPEC `e / &3`)) ["C"; "O"] THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` (LABEL_TAC "C")) THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` (LABEL_TAC "A")) THEN
REMOVE_THEN "C" (MP_TAC o GEN `y:real^M` o
SPECL [`N1 + N2:num`; `x:real^M`; `y - x:real^M`]) THEN
REMOVE_THEN "A" (MP_TAC o GEN `y:real^M` o
SPECL [`N1 + N2:num`; `y:real^M`; `x:real^M`]) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`N1 + N2:num`; `x:real^M`]) THEN
ASM_REWRITE_TAC[ARITH_RULE `m + n >= m:num /\ m + n >= n`] THEN
REWRITE_TAC[HAS_DERIVATIVE_WITHIN_ALT] THEN
DISCH_THEN(MP_TAC o SPEC `e / &3` o CONJUNCT2) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(LABEL_TAC "D1") THEN DISCH_THEN(LABEL_TAC "D2") THEN
EXISTS_TAC `d1:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^M` THEN
DISCH_TAC THEN REMOVE_THEN "D2" (MP_TAC o SPEC `y:real^M`) THEN
REMOVE_THEN "D1" (MP_TAC o SPEC `y:real^M`) THEN ANTS_TAC THENL
[ASM_MESON_TAC[REAL_LT_TRANS; NORM_SUB]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `y:real^M`) THEN ANTS_TAC THENL
[ASM_MESON_TAC[REAL_LT_TRANS; NORM_SUB]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`d <= a + b + c
==> a <= e / &3 * n ==> b <= e / &3 * n ==> c <= e / &3 * n
==> d <= e * n`) THEN
GEN_REWRITE_TAC (funpow 2 RAND_CONV o LAND_CONV) [NORM_SUB] THEN
MATCH_MP_TAC(REAL_ARITH
`(norm(x + y + z) = norm(a)) /\
norm(x + y + z) <= norm(x) + norm(y + z) /\
norm(y + z) <= norm(y) + norm(z)
==> norm(a) <= norm(x) + norm(y) + norm(z)`) THEN
REWRITE_TAC[NORM_TRIANGLE] THEN AP_TERM_TAC THEN VECTOR_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Can choose to line up antiderivatives if we want. *)
(* ------------------------------------------------------------------------- *)
let HAS_ANTIDERIVATIVE_SEQUENCE = prove
(`!s f:num->real^M->real^N f' g'.
convex s /\
(!n x. x IN s ==> ((f n) has_derivative (f' n x)) (at x within s)) /\
(!e. &0 < e
==> ?N. !n x h. n >= N /\ x IN s
==> norm(f' n x h - g' x h) <= e * norm(h))
==> ?g. !x. x IN s ==> (g has_derivative g'(x)) (at x within s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(s:real^M->bool) = {}` THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real^M`) THEN
MP_TAC(ISPECL
[`s:real^M->bool`;
`\n x. (f:num->real^M->real^N) n x + (f 0 a - f n a)`;
`f':num->real^M->real^M->real^N`;
`g':real^M->real^M->real^N`]
HAS_DERIVATIVE_SEQUENCE) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
CONJ_TAC THENL
[REPEAT STRIP_TAC THEN
SUBGOAL_THEN `(f':num->real^M->real^M->real^N) n x =
\h. f' n x h + vec 0`
SUBST1_TAC THENL [SIMP_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC HAS_DERIVATIVE_ADD THEN
ASM_SIMP_TAC[HAS_DERIVATIVE_CONST; ETA_AX];
MAP_EVERY EXISTS_TAC [`a:real^M`; `f 0 (a:real^M) :real^N`] THEN
ASM_REWRITE_TAC[VECTOR_ARITH `a + b - a = b:real^N`; LIM_CONST]]);;
let HAS_ANTIDERIVATIVE_LIMIT = prove
(`!s g':real^M->real^M->real^N.
convex s /\
(!e. &0 < e
==> ?f f'. !x. x IN s
==> (f has_derivative (f' x)) (at x within s) /\
(!h. norm(f' x h - g' x h) <= e * norm(h)))
==> ?g. !x. x IN s ==> (g has_derivative g'(x)) (at x within s)`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN `n:num` o SPEC `inv(&n + &1)`) THEN
REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
REWRITE_TAC[SKOLEM_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC HAS_ANTIDERIVATIVE_SEQUENCE THEN
UNDISCH_TAC `convex(s:real^M->bool)` THEN SIMP_TAC[] THEN
DISCH_THEN(K ALL_TAC) THEN POP_ASSUM MP_TAC THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->real^M->real^N` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f':num->real^M->real^M->real^N` THEN
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_ARCH_INV]) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[GE] THEN
MAP_EVERY X_GEN_TAC [`x:real^M`; `h:real^M`] THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `inv(&n + &1) * norm(h:real^M)` THEN
ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
REWRITE_TAC[NORM_POS_LE] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `inv(&N)` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Differentiation of a series. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_SERIES = prove
(`!s f:num->real^M->real^N f' g' k.
convex s /\
(!n x. x IN s ==> ((f n) has_derivative (f' n x)) (at x within s)) /\
(!e. &0 < e
==> ?N. !n x h. n >= N /\ x IN s
==> norm(vsum(k INTER (0..n)) (\i. f' i x h) -
g' x h) <= e * norm(h)) /\
(?x l. x IN s /\ ((\n. f n x) sums l) k)
==> ?g. !x. x IN s ==> ((\n. f n x) sums (g x)) k /\
(g has_derivative g'(x)) (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
MATCH_MP_TAC HAS_DERIVATIVE_SEQUENCE THEN EXISTS_TAC
`\n:num x:real^M h:real^M. vsum(k INTER (0..n)) (\n. f' n x h):real^N` THEN
ASM_SIMP_TAC[ETA_AX; FINITE_INTER_NUMSEG; HAS_DERIVATIVE_VSUM]);;
(* ------------------------------------------------------------------------- *)
(* Derivative with composed bilinear function. *)
(* ------------------------------------------------------------------------- *)
let HAS_DERIVATIVE_BILINEAR_WITHIN = prove
(`!h:real^M->real^N->real^P f g f' g' x:real^Q s.
(f has_derivative f') (at x within s) /\
(g has_derivative g') (at x within s) /\
bilinear h
==> ((\x. h (f x) (g x)) has_derivative
(\d. h (f x) (g' d) + h (f' d) (g x))) (at x within s)`,
REPEAT STRIP_TAC THEN
SUBGOAL_TAC "contg" `((g:real^Q->real^N) --> g(x)) (at x within s)`
[REWRITE_TAC[GSYM CONTINUOUS_WITHIN] THEN
ASM_MESON_TAC[differentiable; DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN]] THEN
UNDISCH_TAC `((f:real^Q->real^M) has_derivative f') (at x within s)` THEN
REWRITE_TAC[has_derivative_within] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "df")) THEN
SUBGOAL_TAC "contf"
`((\y. (f:real^Q->real^M)(x) + f'(y - x)) --> f(x)) (at x within s)`
[GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_ADD_RID] THEN
MATCH_MP_TAC LIM_ADD THEN REWRITE_TAC[LIM_CONST] THEN
SUBGOAL_THEN `vec 0 = (f':real^Q->real^M)(x - x)` SUBST1_TAC THENL
[ASM_MESON_TAC[LINEAR_0; VECTOR_SUB_REFL]; ALL_TAC] THEN
ASM_SIMP_TAC[LIM_LINEAR; LIM_SUB; LIM_CONST; LIM_WITHIN_ID]] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_derivative_within]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "dg")) THEN
CONJ_TAC THENL
[FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [bilinear]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[linear]) THEN ASM_REWRITE_TAC[linear] THEN
REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC;
ALL_TAC] THEN
MP_TAC(ISPECL [`at (x:real^Q) within s`; `h:real^M->real^N->real^P`]
LIM_BILINEAR) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
REMOVE_THEN "contg" MP_TAC THEN REMOVE_THEN "df" MP_TAC THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REMOVE_THEN "dg" MP_TAC THEN REMOVE_THEN "contf" MP_TAC THEN
ONCE_REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_ADD) THEN
SUBGOAL_THEN
`((\y:real^Q. inv(norm(y - x)) %
(h:real^M->real^N->real^P) (f'(y - x)) (g'(y - x)))
--> vec 0) (at x within s)`
MP_TAC THENL
[FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o MATCH_MP
BILINEAR_BOUNDED_POS) THEN
X_CHOOSE_THEN `C:real` STRIP_ASSUME_TAC
(MATCH_MP LINEAR_BOUNDED_POS (ASSUME `linear (f':real^Q->real^M)`)) THEN
X_CHOOSE_THEN `D:real` STRIP_ASSUME_TAC
(MATCH_MP LINEAR_BOUNDED_POS (ASSUME `linear (g':real^Q->real^N)`)) THEN
REWRITE_TAC[LIM_WITHIN; dist; VECTOR_SUB_RZERO] THEN
X_GEN_TAC `e:real` THEN STRIP_TAC THEN EXISTS_TAC `e / (B * C * D)` THEN
ASM_SIMP_TAC[REAL_LT_DIV; NORM_MUL; REAL_LT_MUL] THEN
X_GEN_TAC `x':real^Q` THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NORM; REAL_ABS_INV] THEN
STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `inv(norm(x' - x :real^Q)) *
B * (C * norm(x' - x)) * (D * norm(x' - x))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_LMUL THEN SIMP_TAC[REAL_LE_INV_EQ; NORM_POS_LE] THEN
ASM_MESON_TAC[REAL_LE_LMUL; REAL_LT_IMP_LE; REAL_LE_MUL2; NORM_POS_LE;
REAL_LE_TRANS];
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`i * b * (c * x) * (d * x) = (i * x) * x * (b * c * d)`] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ; REAL_MUL_LID] THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_MUL]];
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_ADD) THEN
REWRITE_TAC (map (C MATCH_MP (ASSUME `bilinear(h:real^M->real^N->real^P)`))
[BILINEAR_RZERO; BILINEAR_LZERO; BILINEAR_LADD; BILINEAR_RADD;
BILINEAR_LMUL; BILINEAR_RMUL; BILINEAR_LSUB; BILINEAR_RSUB]) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
BINOP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC]);;
let HAS_DERIVATIVE_BILINEAR_AT = prove
(`!h:real^M->real^N->real^P f g f' g' x:real^Q.
(f has_derivative f') (at x) /\
(g has_derivative g') (at x) /\
bilinear h
==> ((\x. h (f x) (g x)) has_derivative
(\d. h (f x) (g' d) + h (f' d) (g x))) (at x)`,
REWRITE_TAC[has_derivative_at] THEN
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[GSYM has_derivative_within; HAS_DERIVATIVE_BILINEAR_WITHIN]);;
(* ------------------------------------------------------------------------- *)
(* Considering derivative R(^1)->R^n as a vector. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("has_vector_derivative",(12,"right"));;
let has_vector_derivative = new_definition
`(f has_vector_derivative f') net <=>
(f has_derivative (\x. drop(x) % f')) net`;;
let vector_derivative = new_definition
`vector_derivative (f:real^1->real^N) net =
@f'. (f has_vector_derivative f') net`;;
let VECTOR_DERIVATIVE_WORKS = prove
(`!net f:real^1->real^N.
f differentiable net <=>
(f has_vector_derivative (vector_derivative f net)) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[vector_derivative] THEN
CONV_TAC(RAND_CONV SELECT_CONV) THEN
SIMP_TAC[FRECHET_DERIVATIVE_WORKS; has_vector_derivative] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FRECHET_DERIVATIVE_WORKS; differentiable]] THEN
DISCH_TAC THEN EXISTS_TAC `column 1 (jacobian (f:real^1->real^N) net)` THEN
FIRST_ASSUM MP_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[jacobian] THEN
MATCH_MP_TAC LINEAR_FROM_REALS THEN
RULE_ASSUM_TAC(REWRITE_RULE[has_derivative]) THEN ASM_REWRITE_TAC[]);;
let VECTOR_DERIVATIVE_UNIQUE_AT = prove
(`!f:real^1->real^N x f' f''.
(f has_vector_derivative f') (at x) /\
(f has_vector_derivative f'') (at x)
==> f' = f''`,
REWRITE_TAC[has_vector_derivative; drop] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real^1->real^N`;
`\x. drop x % (f':real^N)`; `\x. drop x % (f'':real^N)`;
`x:real^1`] FRECHET_DERIVATIVE_UNIQUE_AT) THEN
ASM_SIMP_TAC[DIMINDEX_1; LE_ANTISYM; drop] THEN
REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `vec 1:real^1`) THEN
SIMP_TAC[VEC_COMPONENT; DIMINDEX_1; ARITH; VECTOR_MUL_LID]);;
let HAS_VECTOR_DERIVATIVE_UNIQUE_AT = prove
(`!f:real^1->real^N f' x.
(f has_vector_derivative f') (at x)
==> vector_derivative f (at x) = f'`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_DERIVATIVE_UNIQUE_AT THEN
MAP_EVERY EXISTS_TAC [`f:real^1->real^N`; `x:real^1`] THEN
ASM_REWRITE_TAC[vector_derivative] THEN CONV_TAC SELECT_CONV THEN
ASM_MESON_TAC[]);;
let VECTOR_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL = prove
(`!f:real^1->real^N a b x f' f''.
drop a < drop b /\
x IN interval [a,b] /\
(f has_vector_derivative f') (at x within interval [a,b]) /\
(f has_vector_derivative f'') (at x within interval [a,b])
==> f' = f''`,
REWRITE_TAC[has_vector_derivative; drop] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real^1->real^N`;
`\x. drop x % (f':real^N)`; `\x. drop x % (f'':real^N)`;
`x:real^1`; `a:real^1`; `b:real^1`]
FRECHET_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL) THEN
ASM_SIMP_TAC[DIMINDEX_1; LE_ANTISYM; drop] THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[FUN_EQ_THM] THEN
DISCH_THEN(MP_TAC o SPEC `vec 1:real^1`) THEN
SIMP_TAC[VEC_COMPONENT; DIMINDEX_1; ARITH; VECTOR_MUL_LID]);;
let VECTOR_DERIVATIVE_AT = prove
(`(f has_vector_derivative f') (at x) ==> vector_derivative f (at x) = f'`,
ASM_MESON_TAC[VECTOR_DERIVATIVE_UNIQUE_AT;
VECTOR_DERIVATIVE_WORKS; differentiable; has_vector_derivative]);;
let VECTOR_DERIVATIVE_WITHIN_CLOSED_INTERVAL = prove
(`!f:real^1->real^N f' x a b.
drop a < drop b /\ x IN interval[a,b] /\
(f has_vector_derivative f') (at x within interval [a,b])
==> vector_derivative f (at x within interval [a,b]) = f'`,
ASM_MESON_TAC[VECTOR_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL;
VECTOR_DERIVATIVE_WORKS; differentiable; has_vector_derivative]);;
let HAS_VECTOR_DERIVATIVE_WITHIN_SUBSET = prove
(`!f s t x. (f has_vector_derivative f') (at x within s) /\ t SUBSET s
==> (f has_vector_derivative f') (at x within t)`,
REWRITE_TAC[has_vector_derivative; HAS_DERIVATIVE_WITHIN_SUBSET]);;
let HAS_VECTOR_DERIVATIVE_CONST = prove
(`!c net. ((\x. c) has_vector_derivative vec 0) net`,
REWRITE_TAC[has_vector_derivative] THEN
REWRITE_TAC[VECTOR_MUL_RZERO; HAS_DERIVATIVE_CONST]);;
let VECTOR_DERIVATIVE_CONST_AT = prove
(`!c:real^N a. vector_derivative (\x. c) (at a) = vec 0`,
REPEAT GEN_TAC THEN MATCH_MP_TAC HAS_VECTOR_DERIVATIVE_UNIQUE_AT THEN
REWRITE_TAC[HAS_VECTOR_DERIVATIVE_CONST]);;
let HAS_VECTOR_DERIVATIVE_ID = prove
(`!net. ((\x. x) has_vector_derivative (vec 1)) net`,
REWRITE_TAC[has_vector_derivative] THEN
SUBGOAL_THEN `(\x. drop x % vec 1) = (\x. x)`
(fun th -> REWRITE_TAC[HAS_DERIVATIVE_ID; th]) THEN
REWRITE_TAC[FUN_EQ_THM; GSYM DROP_EQ; DROP_CMUL; DROP_VEC] THEN
REAL_ARITH_TAC);;
let HAS_VECTOR_DERIVATIVE_CMUL = prove
(`!f f' net c. (f has_vector_derivative f') net
==> ((\x. c % f(x)) has_vector_derivative (c % f')) net`,
SIMP_TAC[has_vector_derivative] THEN
ONCE_REWRITE_TAC[VECTOR_ARITH `a % b % x = b % a % x`] THEN
SIMP_TAC[HAS_DERIVATIVE_CMUL]);;
let HAS_VECTOR_DERIVATIVE_CMUL_EQ = prove
(`!f f' net c.
~(c = &0)
==> (((\x. c % f(x)) has_vector_derivative (c % f')) net <=>
(f has_vector_derivative f') net)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_VECTOR_DERIVATIVE_CMUL) THENL
[DISCH_THEN(MP_TAC o SPEC `inv(c):real`);
DISCH_THEN(MP_TAC o SPEC `c:real`)] THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; ETA_AX]);;
let HAS_VECTOR_DERIVATIVE_NEG = prove
(`!f f' net. (f has_vector_derivative f') net
==> ((\x. --(f(x))) has_vector_derivative (--f')) net`,
SIMP_TAC[has_vector_derivative; VECTOR_MUL_RNEG; HAS_DERIVATIVE_NEG]);;
let HAS_VECTOR_DERIVATIVE_NEG_EQ = prove
(`!f f' net. ((\x. --(f(x))) has_vector_derivative --f') net <=>
(f has_vector_derivative f') net`,
SIMP_TAC[has_vector_derivative; HAS_DERIVATIVE_NEG_EQ; VECTOR_MUL_RNEG]);;
let HAS_VECTOR_DERIVATIVE_ADD = prove
(`!f f' g g' net.
(f has_vector_derivative f') net /\ (g has_vector_derivative g') net
==> ((\x. f(x) + g(x)) has_vector_derivative (f' + g')) net`,
SIMP_TAC[has_vector_derivative; VECTOR_ADD_LDISTRIB; HAS_DERIVATIVE_ADD]);;
let HAS_VECTOR_DERIVATIVE_SUB = prove
(`!f f' g g' net.
(f has_vector_derivative f') net /\ (g has_vector_derivative g') net
==> ((\x. f(x) - g(x)) has_vector_derivative (f' - g')) net`,
SIMP_TAC[has_vector_derivative; VECTOR_SUB_LDISTRIB; HAS_DERIVATIVE_SUB]);;
let HAS_VECTOR_DERIVATIVE_BILINEAR_WITHIN = prove
(`!h:real^M->real^N->real^P f g f' g' x s.
(f has_vector_derivative f') (at x within s) /\
(g has_vector_derivative g') (at x within s) /\
bilinear h
==> ((\x. h (f x) (g x)) has_vector_derivative
(h (f x) g' + h f' (g x))) (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_vector_derivative] THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_DERIVATIVE_BILINEAR_WITHIN) THEN
RULE_ASSUM_TAC(REWRITE_RULE[bilinear; linear]) THEN
ASM_REWRITE_TAC[VECTOR_ADD_LDISTRIB]);;
let HAS_VECTOR_DERIVATIVE_BILINEAR_AT = prove
(`!h:real^M->real^N->real^P f g f' g' x.
(f has_vector_derivative f') (at x) /\
(g has_vector_derivative g') (at x) /\
bilinear h
==> ((\x. h (f x) (g x)) has_vector_derivative
(h (f x) g' + h f' (g x))) (at x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_vector_derivative] THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_DERIVATIVE_BILINEAR_AT) THEN
RULE_ASSUM_TAC(REWRITE_RULE[bilinear; linear]) THEN
ASM_REWRITE_TAC[VECTOR_ADD_LDISTRIB]);;
let HAS_VECTOR_DERIVATIVE_AT_WITHIN = prove
(`!f x s. (f has_vector_derivative f') (at x)
==> (f has_vector_derivative f') (at x within s)`,
SIMP_TAC[has_vector_derivative; HAS_DERIVATIVE_AT_WITHIN]);;
let HAS_VECTOR_DERIVATIVE_TRANSFORM_WITHIN = prove
(`!f f' g x s d.
&0 < d /\ x IN s /\
(!x'. x' IN s /\ dist (x',x) < d ==> f x' = g x') /\
(f has_vector_derivative f') (at x within s)
==> (g has_vector_derivative f') (at x within s)`,
REWRITE_TAC[has_vector_derivative; HAS_DERIVATIVE_TRANSFORM_WITHIN]);;
let HAS_VECTOR_DERIVATIVE_TRANSFORM_AT = prove
(`!f f' g x d.
&0 < d /\ (!x'. dist (x',x) < d ==> f x' = g x') /\
(f has_vector_derivative f') (at x)
==> (g has_vector_derivative f') (at x)`,
REWRITE_TAC[has_vector_derivative; HAS_DERIVATIVE_TRANSFORM_AT]);;
let HAS_VECTOR_DERIVATIVE_TRANSFORM_WITHIN_OPEN = prove
(`!f g s x.
open s /\ x IN s /\
(!y. y IN s ==> f y = g y) /\
(f has_vector_derivative f') (at x)
==> (g has_vector_derivative f') (at x)`,
REWRITE_TAC[has_vector_derivative; HAS_DERIVATIVE_TRANSFORM_WITHIN_OPEN]);;
let VECTOR_DIFF_CHAIN_AT = prove
(`!f g f' g' x.
(f has_vector_derivative f') (at x) /\
(g has_vector_derivative g') (at (f x))
==> ((g o f) has_vector_derivative (drop f' % g')) (at x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_vector_derivative] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIFF_CHAIN_AT) THEN
REWRITE_TAC[o_DEF; DROP_CMUL; GSYM VECTOR_MUL_ASSOC]);;
let VECTOR_DIFF_CHAIN_WITHIN = prove
(`!f g f' g' s x.
(f has_vector_derivative f') (at x within s) /\
(g has_vector_derivative g') (at (f x) within IMAGE f s)
==> ((g o f) has_vector_derivative (drop f' % g')) (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_vector_derivative] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIFF_CHAIN_WITHIN) THEN
REWRITE_TAC[o_DEF; DROP_CMUL; GSYM VECTOR_MUL_ASSOC]);;
(* ------------------------------------------------------------------------- *)
(* Various versions of Kachurovskii's theorem. *)
(* ------------------------------------------------------------------------- *)
let CONVEX_ON_DERIVATIVE_SECANT_IMP = prove
(`!f f' s x y:real^N.
f convex_on s /\ segment[x,y] SUBSET s /\
((lift o f) has_derivative (lift o f')) (at x within s)
==> f'(y - x) <= f y - f x`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `(x:real^N) IN s /\ (y:real^N) IN s` ASSUME_TAC THENL
[ASM_MESON_TAC[SUBSET; ENDS_IN_SEGMENT]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_derivative_within]) THEN
REWRITE_TAC[LIM_WITHIN; DIST_0; o_THM] THEN
REWRITE_TAC[GSYM LIFT_ADD; GSYM LIFT_SUB; GSYM LIFT_CMUL; NORM_LIFT] THEN
STRIP_TAC THEN ASM_CASES_TAC `y:real^N = x` THENL
[FIRST_X_ASSUM(MP_TAC o MATCH_MP LINEAR_0) THEN
REWRITE_TAC[o_THM; VECTOR_SUB_REFL; GSYM DROP_EQ; DROP_VEC; LIFT_DROP] THEN
ASM_SIMP_TAC[REAL_SUB_REFL; REAL_LE_REFL; VECTOR_SUB_REFL];
ALL_TAC] THEN
ABBREV_TAC `e = (f':real^N->real)(y - x) - (f y - f x)` THEN
ASM_CASES_TAC `&0 < e` THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e / &2 / norm(y - x:real^N)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; NORM_POS_LT; VECTOR_SUB_EQ] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ABBREV_TAC `u = min (&1 / &2) (d / &2 / norm (y - x:real^N))` THEN
SUBGOAL_THEN `&0 < u /\ u < &1` STRIP_ASSUME_TAC THENL
[EXPAND_TAC "u" THEN REWRITE_TAC[REAL_LT_MIN; REAL_MIN_LT] THEN
ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; REAL_HALF; VECTOR_SUB_EQ] THEN
CONV_TAC REAL_RAT_REDUCE_CONV;
ALL_TAC] THEN
ABBREV_TAC `z:real^N = (&1 - u) % x + u % y` THEN
SUBGOAL_THEN `(z:real^N) IN segment(x,y)` MP_TAC THENL
[ASM_MESON_TAC[IN_SEGMENT]; ALL_TAC] THEN
SIMP_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
STRIP_TAC THEN DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN
SUBGOAL_THEN `(z:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[DIST_POS_LT] THEN
EXPAND_TAC "z" THEN REWRITE_TAC[dist; NORM_MUL; VECTOR_ARITH
`((&1 - u) % x + u % y) - x:real^N = u % (y - x)`] THEN
ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN
ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONVEX_ON_LEFT_SECANT]) THEN
DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `y:real^N`; `z:real^N`]) THEN
ASM_REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[REAL_ARITH `inv y * (z - (x + d)):real = (z - x) / y - d / y`] THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`z <= y / n /\ abs(z - d) < e / n ==> d <= (y + e) / n`)) THEN
SUBGOAL_THEN
`(f':real^N->real)(z - x) / norm(z - x) = f'(y - x) / norm(y - x)`
SUBST1_TAC THENL
[EXPAND_TAC "z" THEN
REWRITE_TAC[VECTOR_ARITH
`((&1 - u) % x + u % y) - x:real^N = u % (y - x)`] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LINEAR_CMUL) THEN
DISCH_THEN(MP_TAC o SPECL [`u:real`; `y - x:real^N`]) THEN
ASM_REWRITE_TAC[GSYM LIFT_CMUL; o_THM; LIFT_EQ] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[NORM_MUL] THEN
ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE] THEN
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_MUL_ASSOC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC REAL_DIV_LMUL THEN
ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[REAL_LE_DIV2_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN
ASM_REAL_ARITH_TAC]);;
let CONVEX_ON_SECANT_DERIVATIVE_IMP = prove
(`!f f' s x y:real^N.
f convex_on s /\ segment[x,y] SUBSET s /\
((lift o f) has_derivative (lift o f')) (at y within s)
==> f y - f x <= f'(y - x)`,
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`f:real^N->real`; `f':real^N->real`; `s:real^N->bool`;
`y:real^N`; `x:real^N`] CONVEX_ON_DERIVATIVE_SECANT_IMP) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SEGMENT_SYM] THEN
MATCH_MP_TAC(REAL_ARITH
`f' = --f'' ==> f' <= x - y ==> y - x <= f''`) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM VECTOR_NEG_SUB] THEN
GEN_REWRITE_TAC I [GSYM LIFT_EQ] THEN REWRITE_TAC[LIFT_NEG] THEN
SPEC_TAC(`y - x:real^N`,`z:real^N`) THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_FORALL_IMP_THM] LINEAR_NEG) THEN
REWRITE_TAC[GSYM o_DEF] THEN ASM_MESON_TAC[has_derivative]);;
let CONVEX_ON_DERIVATIVES_IMP = prove
(`!f f'x f'y s x y:real^N.
f convex_on s /\ segment[x,y] SUBSET s /\
((lift o f) has_derivative (lift o f'x)) (at x within s) /\
((lift o f) has_derivative (lift o f'y)) (at y within s)
==> f'x(y - x) <= f'y(y - x)`,
ASM_MESON_TAC[CONVEX_ON_DERIVATIVE_SECANT_IMP;
CONVEX_ON_SECANT_DERIVATIVE_IMP;
SEGMENT_SYM; REAL_LE_TRANS]);;
let CONVEX_ON_DERIVATIVE_SECANT,CONVEX_ON_DERIVATIVES =
(CONJ_PAIR o prove)
(`(!f f' s:real^N->bool.
convex s /\
(!x. x IN s ==> ((lift o f) has_derivative (lift o f'(x)))
(at x within s))
==> (f convex_on s <=>
!x y. x IN s /\ y IN s ==> f'(x)(y - x) <= f y - f x)) /\
(!f f' s:real^N->bool.
convex s /\
(!x. x IN s ==> ((lift o f) has_derivative (lift o f'(x)))
(at x within s))
==> (f convex_on s <=>
!x y. x IN s /\ y IN s ==> f'(x)(y - x) <= f'(y)(y - x)))`,
REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN
STRIP_TAC THEN MATCH_MP_TAC(TAUT
`(a ==> b) /\ (b ==> c) /\ (c ==> a) ==> (a <=> b) /\ (a <=> c)`) THEN
REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN MATCH_MP_TAC CONVEX_ON_DERIVATIVE_SECANT_IMP THEN
EXISTS_TAC `s:real^N->bool` THEN ASM_SIMP_TAC[ETA_AX] THEN
ASM_MESON_TAC[CONVEX_CONTAINS_SEGMENT];
DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN
STRIP_TAC THEN FIRST_X_ASSUM(fun th ->
MP_TAC(ISPECL [`x:real^N`; `y:real^N`] th) THEN
MP_TAC(ISPECL [`y:real^N`; `x:real^N`] th)) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`f''' = --f'' ==> f''' <= x - y ==> f' <= y - x ==> f' <= f''`) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM VECTOR_NEG_SUB] THEN
GEN_REWRITE_TAC I [GSYM LIFT_EQ] THEN REWRITE_TAC[LIFT_NEG] THEN
SPEC_TAC(`y - x:real^N`,`z:real^N`) THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_FORALL_IMP_THM] LINEAR_NEG) THEN
REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[GSYM I_DEF; I_O_ID] THEN
ASM_MESON_TAC[has_derivative];
ALL_TAC] THEN
DISCH_TAC THEN REWRITE_TAC[convex_on] THEN
MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> e /\ a /\ b /\ c /\ d`] THEN
REWRITE_TAC[IMP_CONJ; REAL_ARITH `u + v = &1 <=> u = &1 - v`] THEN
REWRITE_TAC[FORALL_UNWIND_THM2; REAL_SUB_LE] THEN X_GEN_TAC `u:real` THEN
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `u = &0` THEN
ASM_SIMP_TAC[REAL_SUB_RZERO; VECTOR_MUL_LZERO; VECTOR_MUL_LID; REAL_LE_REFL;
REAL_MUL_LZERO; REAL_MUL_LID; VECTOR_ADD_RID; REAL_ADD_RID] THEN
ASM_CASES_TAC `u = &1` THEN
ASM_SIMP_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_MUL_LID; REAL_LE_REFL;
REAL_MUL_LZERO; REAL_MUL_LID; VECTOR_ADD_LID; REAL_ADD_LID] THEN
SUBGOAL_THEN `&0 < u /\ u < &1` STRIP_ASSUME_TAC THENL
[ASM_REWRITE_TAC[REAL_LT_LE]; ALL_TAC] THEN
MP_TAC(ISPECL
[`lift o (f:real^N->real) o (\u. (&1 - drop u) % a + drop u % b)`;
`\x:real^1. lift o f'((&1 - drop x) % a + drop x % b) o
(\u. --(drop u) % a + drop u % b:real^N)`] MVT_VERY_SIMPLE) THEN
DISCH_THEN(fun th ->
MP_TAC(ISPECL [`vec 0:real^1`; `lift u`] th) THEN
MP_TAC(ISPECL [`lift u`; `vec 1:real^1`] th)) THEN
ASM_REWRITE_TAC[LIFT_DROP; o_THM] THEN
ASM_SIMP_TAC[DROP_VEC; VECTOR_MUL_LZERO; REAL_SUB_RZERO; REAL_LT_IMP_LE;
VECTOR_ADD_RID; VECTOR_MUL_LID; VECTOR_SUB_RZERO] THEN
MATCH_MP_TAC(TAUT
`(a1 /\ a2) /\ (b1 ==> b2 ==> c) ==> (a1 ==> b1) ==> (a2 ==> b2) ==> c`) THEN
CONJ_TAC THENL
[CONJ_TAC THEN X_GEN_TAC `v:real^1` THEN DISCH_TAC THEN
(REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC DIFF_CHAIN_WITHIN THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC HAS_DERIVATIVE_ADD THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[VECTOR_ARITH `(&1 - a) % x:real^N = x + --a % x`;
VECTOR_ARITH `--u % a:real^N = vec 0 + --u % a`] THEN
MATCH_MP_TAC HAS_DERIVATIVE_ADD THEN
REWRITE_TAC[HAS_DERIVATIVE_CONST];
ALL_TAC] THEN
MATCH_MP_TAC HAS_DERIVATIVE_LINEAR THEN
REWRITE_TAC[linear; DROP_ADD; DROP_CMUL] THEN VECTOR_ARITH_TAC;
MATCH_MP_TAC HAS_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `s:real^N->bool` THEN CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC;
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN GEN_TAC THEN DISCH_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL_1; LIFT_DROP; DROP_VEC]) THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]);
REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_LID] THEN
REWRITE_TAC[EXISTS_LIFT; LIFT_DROP; IN_INTERVAL_1; DROP_VEC] THEN
REWRITE_TAC[GSYM LIFT_SUB; LIFT_EQ] THEN
REWRITE_TAC[DROP_SUB; DROP_VEC; LIFT_DROP] THEN
REWRITE_TAC[VECTOR_ARITH `--u % a + u % b:real^N = u % (b - a)`] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_IMP_FORALL_THM] THEN
MAP_EVERY X_GEN_TAC [`w:real`; `v:real`] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[TAUT `a ==> b /\ c ==> d <=> b ==> a ==> c ==> d`] THEN
STRIP_TAC THEN REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o AP_TERM `(*) (u:real)`)
(MP_TAC o AP_TERM `(*) (&1 - u:real)`)) THEN
MATCH_MP_TAC(REAL_ARITH
`f1 <= f2 /\ (xa <= xb ==> a <= b)
==> xa = f1 ==> xb = f2 ==> a <= b`) THEN
CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
SUBGOAL_THEN
`((&1 - v) % a + v % b:real^N) IN s /\
((&1 - w) % a + w % b:real^N) IN s`
STRIP_ASSUME_TAC THENL
[CONJ_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN
`linear(lift o (f'((&1 - v) % a + v % b:real^N):real^N->real)) /\
linear(lift o (f'((&1 - w) % a + w % b:real^N):real^N->real))`
MP_TAC THENL [ASM_MESON_TAC[has_derivative]; ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP LINEAR_CMUL)) THEN
ASM_REWRITE_TAC[o_THM; GSYM LIFT_NEG; GSYM LIFT_CMUL; LIFT_EQ] THEN
REPEAT DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[REAL_ARITH `(&1 - u) * u * x = u * (&1 - u) * x`] THEN
REPEAT(MATCH_MP_TAC REAL_LE_LMUL THEN
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`(&1 - v) % a + v % b:real^N`; `(&1 - w) % a + w % b:real^N`]) THEN
ASM_REWRITE_TAC[VECTOR_ARITH
`((&1 - v) % a + v % b) - ((&1 - w) % a + w % b):real^N =
(v - w) % (b - a)`] THEN
ASM_CASES_TAC `v:real = w` THEN ASM_SIMP_TAC[REAL_LE_REFL] THEN
SUBGOAL_THEN `&0 < w - v` (fun th -> SIMP_TAC[th; REAL_LE_LMUL_EQ]) THEN
ASM_REAL_ARITH_TAC]);;
let CONVEX_ON_SECANT_DERIVATIVE = prove
(`!f f' s:real^N->bool.
convex s /\
(!x. x IN s ==> ((lift o f) has_derivative (lift o f'(x)))
(at x within s))
==> (f convex_on s <=>
!x y. x IN s /\ y IN s ==> f y - f x <= f'(y)(y - x))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP CONVEX_ON_DERIVATIVE_SECANT) THEN
GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `x:real^N` THEN REWRITE_TAC[] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `y:real^N` THEN REWRITE_TAC[] THEN
MAP_EVERY ASM_CASES_TAC [`(x:real^N) IN s`; `(y:real^N) IN s`] THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`f' = --f'' ==> (f' <= y - x <=> x - y <= f'')`) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM VECTOR_NEG_SUB] THEN
GEN_REWRITE_TAC I [GSYM LIFT_EQ] THEN REWRITE_TAC[LIFT_NEG] THEN
SPEC_TAC(`x - y:real^N`,`z:real^N`) THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_FORALL_IMP_THM] LINEAR_NEG) THEN
REWRITE_TAC[GSYM o_DEF] THEN
REWRITE_TAC[GSYM I_DEF; I_O_ID] THEN ASM_MESON_TAC[has_derivative]);;
|