1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
(* ========================================================================= *)
(* Proof-objects for HOL-light *)
(* *)
(* Steven Obua, TU Mnchen, December 2004 *)
(* *)
(* based on Sebastian Skalberg's HOL4 proof-objects *)
(* ========================================================================= *)
#load "unix.cma";;
module type Proofobject_primitives =
sig
type proof
val proof_REFL : term -> proof
val proof_TRANS : proof * proof -> proof
val proof_MK_COMB : proof * proof -> proof
val proof_ASSUME : term -> proof
val proof_EQ_MP : proof -> proof -> proof
val proof_IMPAS : proof -> proof -> proof
val proof_DISCH : proof -> term -> proof
val proof_DEDUCT_ANTISYM_RULE : proof * term -> proof * term -> proof
val proof_BETA : term -> proof
val proof_ABS : term -> proof -> proof
val proof_INST_TYPE : (hol_type * hol_type) list -> proof -> proof
val proof_INST : (term * term) list -> proof -> proof
val proof_new_definition : string -> hol_type -> term -> proof
val proof_CONJ : proof -> proof -> proof
val proof_CONJUNCT1 : proof -> proof
val proof_CONJUNCT2 : proof -> proof
val proof_new_basic_type_definition :
string -> string * string -> term * term -> proof -> proof
val proof_SPEC : term -> proof -> proof
val proof_SYM : proof -> proof
val proof_GEN : proof -> term -> proof
val proof_DISJ1 : proof -> term -> proof
val proof_DISJ2 : proof -> term -> proof
val proof_NOTI : proof -> proof
val proof_NOTE : proof -> proof
val proof_CONTR : proof -> term -> proof
val proof_DISJCASES : proof -> proof -> proof -> proof
val proof_CHOOSE : term -> proof -> proof -> proof
val proof_EXISTS : term -> term -> proof -> proof
val new_axiom_name : string -> string
val proof_new_axiom : string -> term -> proof
val save_proof : string -> proof -> (term option) -> unit
val proof_database : unit -> ((string * proof * (term option)) list)
val export_proofs : string option -> (string * proof * (term option)) list -> unit
val export_saved_proofs : string option -> unit
end;;
module Proofobjects : Proofobject_primitives = struct
let writeln s p = p;;
(* let q = s^"\n" in
(output stdout q 0 (String.length q); p);;*)
type tag = string
type proof_info_rec =
{disk_info: (string * string) option ref;
status: int ref;
references: int ref;
queued: bool ref}
type proof_info = Info of proof_info_rec
type ('a, 'b) libsubst_rec = {redex:'a; residue:'b}
type ('a, 'b) libsubst = (('a,'b) libsubst_rec) list
let pair2libsubstrec =
fun (a,b) -> {redex=b;residue=a}
(* note: not all of the proof_content constructors are actually used, some are just legacy from the HOL4 proof objects *)
type proof =
Proof of (proof_info * proof_content * (unit -> unit))
and proof_content =
Prefl of term
| Pinstt of proof * ((hol_type,hol_type) libsubst)
| Psubst of proof list * term * proof
| Pabs of proof * term
| Pdisch of proof * term
| Pmp of proof * proof
| Phyp of term
| Paxm of string * term
| Pdef of string * string * term
| Ptmspec of string * string list * proof
| Ptydef of string * string * proof
| Ptyintro of string * string * string * string * term * term * proof
| Poracle of tag * term list * term
| Pdisk
| Pspec of proof * term
| Pinst of proof * (term,term) libsubst
| Pgen of proof * term
| Pgenabs of proof * term option * term list
| Psym of proof
| Ptrans of proof * proof
| Pcomb of proof * proof
| Peqmp of proof * proof
| Peqimp of proof
| Pexists of proof * term * term
| Pchoose of term * proof * proof
| Pconj of proof * proof
| Pconjunct1 of proof
| Pconjunct2 of proof
| Pdisj1 of proof * term
| Pdisj2 of proof * term
| Pdisjcases of proof * proof * proof
| Pnoti of proof
| Pnote of proof
| Pcontr of proof * term
| Pimpas of proof * proof
let THEORY_NAME = "hollight"
let content_of (Proof (_,p,_)) = p
let inc_references (Proof(Info{references=r},_,_) as p) = (
let
old = !r
in
r := old + 1;
p)
let concat = String.concat ""
let dummy_fun () = ()
let mk_proof p = Proof(Info {disk_info = ref None; status = ref 0; references = ref 0; queued = ref false},p, dummy_fun)
let global_ax_counter = let counter = ref 1 in let f = fun () -> (let x = !counter in counter := !counter+1; x) in f
let new_axiom_name n = concat["ax_"; n; "_"; string_of_int(global_ax_counter())]
let proof_REFL t = writeln "REFL" (mk_proof (Prefl t))
let proof_TRANS (p,q) = writeln "TRANS" (
match (content_of p, content_of q) with
(Prefl _,_) -> q
| (_, Prefl _) -> p
| _ -> mk_proof (Ptrans (inc_references p, inc_references q)))
let proof_MK_COMB (p1,p2) = writeln "MK_COMB" (
(match (content_of p1, content_of p2) with
(Prefl tm1, Prefl tm2) -> proof_REFL (mk_comb (tm1, tm2))
| _ -> mk_proof (Pcomb (inc_references p1, inc_references p2))))
let proof_ASSUME t = writeln "ASSUME "(mk_proof (Phyp t))
let proof_EQ_MP p q = writeln "EQ_MP" (
(match content_of p with
Prefl _ -> q
| _ -> mk_proof (Peqmp(inc_references p, inc_references q))))
let proof_IMPAS p1 p2 = writeln "IMPAS" (
mk_proof (Pimpas (inc_references p1, inc_references p2)))
let proof_DISCH p t = writeln "DISCH" (mk_proof (Pdisch(inc_references p,t)))
let proof_DEDUCT_ANTISYM_RULE (p1,t1) (p2,t2) = writeln "DEDUCT_ANTISYM_RULE" (
proof_IMPAS (proof_DISCH p1 t2) (proof_DISCH p2 t1))
let proof_BETA t = writeln "BETA" (mk_proof (Prefl t))
let proof_ABS x p = writeln "ABS" (
(match (content_of p) with
Prefl tm -> proof_REFL (mk_abs(x,tm))
| _ -> mk_proof (Pabs(inc_references p,x))))
let proof_INST_TYPE s p = writeln "INST_TYPE" (mk_proof (Pinstt(inc_references p, map pair2libsubstrec s)))
let proof_INST s p = writeln "INST" (mk_proof (Pinst(inc_references p, map pair2libsubstrec s)))
let proof_new_definition cname _ t = writeln "new_definition" (mk_proof (Pdef (THEORY_NAME, cname, t)))
let proof_new_axiom axname t = writeln "new_axiom" (mk_proof (Paxm (axname, t)))
let proof_CONJ p1 p2 = writeln "CONJ" (mk_proof (Pconj (inc_references p1, inc_references p2)))
let proof_CONJUNCT1 p = writeln "CONJUNCT1" (mk_proof (Pconjunct1 (inc_references p)))
let proof_CONJUNCT2 p = writeln "CONJUNCT2" (mk_proof (Pconjunct2 (inc_references p)))
let proof_new_basic_type_definition tyname (absname, repname) (pt,tt) p = writeln "new_basic_type_definition" (
mk_proof(Ptyintro (THEORY_NAME, tyname, absname, repname, pt, tt,inc_references p)))
(* ---- used only in substitute_proof calls ---- *)
let proof_SPEC s p = writeln "SPEC" (mk_proof (Pspec(inc_references p, s)))
let proof_SYM p = writeln "SYM" (mk_proof (Psym(inc_references p)))
let proof_GEN p a = writeln "GEN" (mk_proof (Pgen(inc_references p, a)))
let proof_DISJ1 p a = writeln "DISJ1" (mk_proof (Pdisj1 (inc_references p, a)))
let proof_DISJ2 p a = writeln "DISJ2" (mk_proof (Pdisj2 (inc_references p, a)))
let proof_NOTI p = writeln "NOTI" (mk_proof (Pnoti (inc_references p)))
let proof_NOTE p = writeln "NOTE" (mk_proof (Pnote (inc_references p)))
let proof_CONTR p a = writeln "CONTR" (mk_proof (Pcontr (inc_references p, a)))
let proof_DISJCASES p q r = writeln "DISJCASES" (mk_proof (Pdisjcases (inc_references p, inc_references q, inc_references r)))
let proof_CHOOSE a p q = writeln "CHOOSE" (mk_proof (Pchoose (a, inc_references p, inc_references q)))
let proof_EXISTS x y p = writeln "EXISTS" (mk_proof (Pexists (inc_references p, x, y)))
(* ---- formerly known as proofio.ml ---- *)
let ensure_export_directory thyname =
let dir = Sys.getenv "HOLPROOFEXPORTDIR" in
let dirsub = Filename.concat dir "hollight" in
let dirsubsub = Filename.concat dirsub thyname in
let mk d = if Sys.file_exists d then () else Unix.mkdir d 509
in
(mk dir;
mk dirsub;
mk dirsubsub;
dirsubsub);;
(* ---- Useful functions on terms ---- *)
let rec types_of tm =
if is_var tm
then [type_of tm]
else if is_const tm
then [type_of tm]
else if is_comb tm
then
let
(f,a) = dest_comb tm
in
union (types_of f) (types_of a)
else
let
(x,a) = dest_abs tm
in
insert (type_of x) (types_of a);;
let beta_conv tm =
try let (f,arg) = dest_comb tm in
let (v,bod) = dest_abs f in
vsubst [(arg,v)] bod
with Failure _ -> failwith "beta_conv: Not a beta-redex";;
let eta_conv tm =
try
(let (v, bod) = dest_abs tm in
let (f, arg) = dest_comb bod in
if (arg = v && (not(vfree_in v f))) then
f
else failwith "")
with
Failure _ -> failwith "eta_conv: Not an eta-redex";;
let rec be_contract tm =
let rec bec tm = try try Some (beta_conv tm)
with Failure _ ->
Some (eta_conv tm)
with Failure _ ->
if is_comb tm
then
(let
(f,x) = dest_comb tm
in
match bec f with
Some f' -> Some (mk_comb(f',x))
| None -> (match bec x with
Some x' -> Some (mk_comb(f,x'))
| None -> None))
else if is_abs tm
then
(let
(x,body) = dest_abs tm
in
(match bec body with
Some body' -> Some (mk_abs(x,body'))
| None -> None))
else None
in
(match bec tm with
Some tm' -> be_contract tm'
| None -> tm);;
let rec polymorphic x =
if is_vartype x then true else exists polymorphic (snd (dest_type x))
(* ---- From Lib etc. ---- *)
let rec append = fun xlist l ->
(match xlist with
[] -> l
| (x::xs) -> x::(append xs l));;
let assoc1 item =
let rec assc =
(function (((key,_) as e)::rst) -> if item=key then Some e else assc rst
| [] -> None)
in
assc;;
let rec listconcat =
function [] -> []
| (l::ls) -> append l (listconcat ls);;
let listnull =
function [] -> true | _ -> false;;
(* ---- exported ---- *)
let encodeXMLEntities m = m;;let encodeXMLEntities s =
let len = String.length s in
let encodeChar = function '<' -> "<" | '>' -> ">" | '&' -> "&" | '\'' -> "'" | '"' -> """ | c -> String.make 1 c in
let rec encodeStr i = if (i<len) then (encodeChar (String.get s i))::(encodeStr (i+1)) else [] in
String.concat "" (encodeStr 0);;
let encodeXMLEntitiesOut out = function x -> out (encodeXMLEntities x);;
let content_of (Proof (_,x,_)) = x;;
let rec explode_subst =
function [] -> []
| ({redex=x;residue=y}::rest) -> x::y::(explode_subst rest);;
let rec app f =
function [] -> ()
| (x::l) -> (f x; app f l);;
let disk_info_of (Proof(Info {disk_info=di},_,_)) = !di;;
let set_disk_info_of (Proof(Info {disk_info=di},_,_)) thyname thmname =
di := Some (thyname,thmname);;
let references (Proof (Info info,_,_)) = !(info.references);;
let wrap b e s = b^s^e;;
let xml_empty_tag = wrap "<" "/>";;
let xml_start_tag = wrap "<" ">";;
let xml_end_tag = wrap "</" ">";;
let xml_attr attr =
itlist (function (tag,v) ->
function s ->
concat[" ";tag;"=\"";v;"\"";s]
)
attr "";;
let xml_element tag attr children =
let
header = tag ^ (xml_attr attr)
in
(if listnull children
then xml_empty_tag header
else wrap (xml_start_tag header) (xml_end_tag tag) (concat children));;
let id_to_atts curthy id = [("n", encodeXMLEntities id)];; (* There is only one theory in Hol-Light, therefore id_to_atts is superfluous *)
let glob_counter = ref 1;;
let get_counter () =
let
res = !glob_counter
in
glob_counter := res + 1;
res;;
let get_iname = string_of_int o get_counter;;
let next_counter () = !glob_counter;;
let trivial p =
match (content_of p) with
Prefl _ -> true
| Paxm _ -> true
| Pdisk -> true
| Phyp _ -> true
| Poracle _ -> true
| _ -> false;;
let do_share p = references p > 1 & not (trivial p);;
exception Err of string*string;;
(* ---- The General List Formerly Known As Net ---- *)
type 'a exprnet = (('a list) ref) * ('a -> ('a list))
let empty_net f () = (ref [], f);;
let rec lookup'_net net x =
match net with
[] -> raise Not_found
| (a::l) -> if (a = x) then 0 else 1+(lookup'_net l x);;
let lookup_net (net,f) x = lookup'_net (!net) x;;
let insert'_net (net,f) x =
try lookup'_net !net x; () with Not_found -> ((net := (!net)@[x]);());;
let rec insert_net ((net,f) as n) x =
(app (insert_net n) (f x); insert'_net n x);;
let to_list_net (net,f) = !net;;
(* ---- The Type Net (it's not a net any more!) ---- *)
type yy_net = hol_type exprnet;;
let yy_empty = empty_net (function x -> if is_type x then snd (dest_type x) else []);;
let yy_lookup = lookup_net;;
let yy_output_types out thyname net =
let
all_types = to_list_net net in let rec
xml_index ty = xml_element "tyi" [("i",string_of_int (yy_lookup net ty))] []
and xml_const id = xml_element "tyc" (id_to_atts thyname id) []
and out_type ty =
if is_vartype ty then out (xml_element "tyv" [("n",encodeXMLEntities (dest_vartype ty))] [])
else (
match dest_type ty with
(id, []) -> out (xml_const id)
| (id, tl) -> out (xml_element "tya" [] ((xml_const id)::(map xml_index tl)))
)
in
out "<tylist i=\"";
out (string_of_int (length all_types));
out "\">";
app out_type all_types;
out "</tylist>";;
let yy_insert = insert_net;;
(* ---- The Term Net (it's not a net anymore!) ---- *)
type mm_net = term exprnet;;
let mm_empty = empty_net (
function tm ->
if is_abs tm then
(let (x,b) = dest_abs tm in [x; b])
else if is_comb tm then
(let (s,t) = dest_comb tm in [s; t])
else
[])
let mm_lookup net x = lookup_net net (be_contract x);;
let mm_insert net x = insert_net net (be_contract x);;
let mm_output_terms out thyname types net =
let all_terms = to_list_net net in
let xml_type ty = xml_element "tyi" [("i",string_of_int (yy_lookup types ty))] [] in
let xml_index tm = xml_element "tmi" [("i",string_of_int (mm_lookup net tm))] [] in
let out_term tm =
if is_var tm
then
let
(name,ty) = dest_var tm
in
out (xml_element "tmv" [("n",encodeXMLEntities name);("t", string_of_int (yy_lookup types ty))] [])
else if is_const tm
then
let (name, ty) = (dest_const tm) in
let general_ty = get_const_type name in
let atts = [("n",encodeXMLEntities name)]
in
if polymorphic general_ty then
out (xml_element "tmc" (atts@[("t",string_of_int (yy_lookup types ty))]) [])
else out (xml_element "tmc" atts [])
else if is_comb tm
then
let
(f,a) = dest_comb tm
in
out (xml_element "tma" [("f", string_of_int (mm_lookup net f));("a",string_of_int (mm_lookup net a))] [])
else
let
(x,a) = dest_abs tm
in
out (xml_element "tml" [("x", string_of_int (mm_lookup net x));("a",string_of_int (mm_lookup net a))] [])
in
out "<tmlist i=\"";
out (string_of_int(length all_terms));
out "\">";
app out_term all_terms;
out "</tmlist>";;
(* ---- collect_types_terms ---- *)
let collect_types_terms thyname out prf c_opt =
let
will_be_shared prf = (
match disk_info_of prf with
Some _ -> true
| None -> do_share prf) in let
types = yy_empty () in let
terms = mm_empty () in let
insert_type ty = yy_insert types ty in let
insert_term tm = (mm_insert terms tm;
app (yy_insert types) (types_of tm)) in let rec
ct' prf =
(match content_of prf with
Pinstt(prf,tsubst) -> (app (function {redex=x;residue=u}->(insert_type x; insert_type u))
tsubst;
ct prf)
| Psubst(prfs,tm,prf) -> (insert_term tm;
ct prf;
app ct prfs)
| Pabs(prf,tm) -> (insert_term tm;
ct prf)
| Pdisch(prf,tm) -> (insert_term tm;
ct prf)
| Pmp(prf1,prf2) -> (ct prf1; ct prf2)
| Poracle(_,tms,tm) -> (insert_term tm;
app insert_term tms)
| Pdef(_,_,tm) -> insert_term tm
| Ptmspec(_,_,prf) -> ct prf
| Ptydef(_,_,prf) -> ct prf
| Ptyintro(_,_,_,_,pt,tt,prf) -> (insert_term pt; insert_term tt;ct prf)
| Pspec(prf,tm) -> (insert_term tm; ct prf)
| Pinst(prf,subst) -> (app (fun{redex=x;residue=u}->(insert_term x;
insert_term u))
subst;
ct prf)
| Pgen(prf,tm) -> (insert_term tm; ct prf)
| Pgenabs(prf,tm_opt,tms) -> (match tm_opt with
Some tm -> insert_term tm
| None -> ();
app insert_term tms;
ct prf)
| Psym prf -> ct prf
| Ptrans(prf1,prf2) -> (ct prf1; ct prf2)
| Pcomb(prf1,prf2) -> (ct prf1; ct prf2)
| Peqmp(prf1,prf2) -> (ct prf1; ct prf2)
| Peqimp prf -> ct prf
| Pexists(prf,ex,w) -> (insert_term ex;
insert_term w;
ct prf)
| Pchoose(v,prf1,prf2) -> (insert_term v; ct prf1; ct prf2)
| Pconj(prf1,prf2) -> (ct prf1; ct prf2)
| Pconjunct1 prf -> ct prf
| Pconjunct2 prf -> ct prf
| Pdisj1(prf,tm) -> (insert_term tm;
ct prf)
| Pdisj2(prf,tm) -> (insert_term tm;
ct prf)
| Pdisjcases(prf1,prf2,prf3) -> (ct prf1; ct prf2; ct prf3)
| Pnoti prf -> ct prf
| Pnote prf -> ct prf
| Pcontr(prf,tm) -> (insert_term tm;
ct prf)
| Prefl tm -> insert_term tm
| Phyp tm -> insert_term tm
| Pdisk -> ()
| Paxm (_,tm) -> insert_term tm
| Pimpas (prf1,prf2) -> (ct prf1; ct prf2))
and ct prf =
if will_be_shared prf
then ()
else ct' prf in let
_ = ct' prf in let
_ = (match c_opt with
Some c -> insert_term c
| None -> ()) in let
_ = yy_output_types out thyname types in let
_ = mm_output_terms out thyname types terms
in
(types,terms);;
let rec export_proof path thyname thmname p c_opt il =
let outchannel = open_out (Filename.concat path (thmname^".prf")) in
let out = output_string outchannel in
let nout = encodeXMLEntitiesOut out in
let
_ = out "<proof>" in let
(types,terms) = collect_types_terms thyname out p c_opt in let
wti att tm =
(out " ";
out att;
out "=\"";
out (string_of_int (mm_lookup terms tm));
out "\"") in let
wt tm = try (out "<tmi"; wti "i" tm; out "/>") with Not_found -> raise (Err("export_proof","Term not found!")) in let
wty ty =
try (out "<tyi i=\"";
out (string_of_int (yy_lookup types ty));
out "\"/>") with Not_found -> raise (Err("export_proof","Type not found!")) in let
wdi thy thm =
(out "<pfact ";
if not (thy = thyname)
then (out "s=\"";
out thy;
out "\" ")
else ();
out "n=\"";
nout thm;
out "\"/>") in let
write_proof p il =
(let rec
share_info_of p il =
(match (disk_info_of p) with
Some (thyname,thmname) -> Some(thyname,thmname,il)
| None ->
if do_share p then
let name = get_iname() in set_disk_info_of p thyname name; Some(thyname,name,(name,p,None)::il)
else
None
)
and
dump str il prfs =
(let
_ = out (xml_start_tag str) in let
res = rev_itlist (function p -> function il -> wp il p) prfs il in let
_ = out (xml_end_tag str)
in
res)
and
wp' il =
(function
(Prefl tm) -> (out "<prefl"; wti "i" tm; out "/>"; il)
| (Pinstt(p,lambda)) ->
(let
_ = out "<pinstt>" in let
res = wp il p in let
_ = app wty (explode_subst lambda) in let
_ = out "</pinstt>"
in
res)
| (Psubst(ps,t,p)) ->
(let
_ = (out "<psubst"; wti "i" t; out ">") in let
il' = wp il p in let
res = rev_itlist (function p -> function il -> wp il p) ps il' in let
_ = out "</psubst>"
in
res)
| (Pabs(p,t)) ->
(let
_ = (out "<pabs"; wti "i" t; out ">") in let
res = wp il p in let
_ = out "</pabs>"
in
res)
| (Pdisch(p,tm)) ->
(let
_ = (out "<pdisch"; wti "i" tm; out ">") in let
res = wp il p in let
_ = out "</pdisch>"
in
res)
| (Pmp(p1,p2)) -> dump "pmp" il [p1;p2]
| (Phyp tm) -> (out "<phyp"; wti "i" tm; out "/>"; il)
| (Paxm(name,tm)) ->
(out "<paxiom n=\"";
nout name;
out "\"";
wti "i" tm;
out "/>";
il)
| (Pdef(seg,name,tm)) ->
(out "<pdef s=\"";
out seg;
out "\" n=\"";
nout name;
out "\"";
wti "i" tm;
out "/>";
il)
| (Ptmspec(seg,names,p)) ->
(let
_ = (out "<ptmspec s=\""; out seg; out "\">") in let
res = wp il p in let
_ = app (function s -> (out "<name n=\""; nout s; out "\"/>")) names in let
_ = out "</ptmspec>"
in
res)
| (Ptydef(seg,name,p)) ->
(let
_ = (out "<ptydef s=\""; out seg; out "\" n=\""; nout name; out "\">") in let
res = wp il p in let
_ = out "</ptydef>"
in
res)
| (Ptyintro(seg,name,abs,rep,pt,tt,p)) ->
(let
_ = (out "<ptyintro s=\""; out seg; out "\" n=\""; nout name;
out "\" a=\""; out abs; out "\" r=\""; out rep; out "\">") in let
_ = wt pt in let
_ = wt tt in let
res = wp il p in let
_ = out "</ptyintro>"
in
res)
| (Poracle(tg,asl,c)) -> raise (Err("export_proof", "sorry, oracle export is not implemented!"))
(* (out "<poracle>";
app (function s -> (out "<oracle n=\""; nout s; out "\"/>")) (Tag.oracles_of tg);
wt c;
app wt asl;
out "</poracle>";
il)*)
| (Pspec(p,t)) ->
(let
_ = (out "<pspec"; wti "i" t; out ">") in let
res = wp il p in let
_ = out "</pspec>"
in
res)
| (Pinst(p,theta)) ->
(let
_ = out "<pinst>" in let
res = wp il p in let
_ = app wt (explode_subst theta) in let
_ = out "</pinst>"
in
res)
| (Pgen(p,x)) ->
(let
_ = (out "<pgen"; wti "i" x; out ">") in let
res = wp il p in let
_ = out "</pgen>"
in
res)
| (Pgenabs(p,opt,vl)) ->
(let
_ = out "<pgenabs" in let
_ = (match opt with
Some c -> wti "i" c
| None -> ()) in let
_ = out ">" in let
res = wp il p in let
_ = app wt vl in let
_ = out "</pgenabs>"
in
res)
| (Psym p) -> dump "psym" il [p]
| (Ptrans(p1,p2)) -> dump "ptrans" il [p1;p2]
| (Pcomb(p1,p2)) -> dump "pcomb" il [p1;p2]
| (Peqmp(p1,p2)) -> dump "peqmp" il [p1;p2]
| (Peqimp p) -> dump "peqimp" il [p]
| (Pexists(p,ex,w)) ->
(let
_ = (out "<pexists"; wti "e" ex; wti "w" w; out ">") in let
res = wp il p in let
_ = out "</pexists>"
in
res)
| (Pchoose(v,p1,p2)) ->
(let
_ = (out "<pchoose"; wti "i" v; out ">") in let
il' = wp il p1 in let
res = wp il' p2 in let
_ = out "</pchoose>"
in
res)
| (Pconj(p1,p2)) -> dump "pconj" il [p1;p2]
| (Pimpas(p1,p2)) -> dump "pimpas" il [p1;p2]
| (Pconjunct1 p) -> dump "pconjunct1" il [p]
| (Pconjunct2 p) -> dump "pconjunct2" il [p]
| (Pdisj1(p,tm)) ->
(let
_ = (out "<pdisj1"; wti "i" tm; out ">") in let
res = wp il p in let
_ = out "</pdisj1>"
in
res)
| (Pdisj2(p,tm)) ->
(let
_ = (out "<pdisj2"; wti "i" tm; out ">") in let
res = wp il p in let
_ = out "</pdisj2>"
in
res)
| (Pdisjcases(p1,p2,p3)) -> dump "pdisjcases" il [p1;p2;p3]
| (Pnoti p) -> dump "pnoti" il [p]
| (Pnote p) -> dump "pnote" il [p]
| (Pcontr(p,tm)) ->
(let
_ = (out "<pcontr"; wti "i" tm; out ">") in let
res = wp il p in let
_ = out "</pcontr>"
in
res)
| Pdisk -> raise (Err("wp'","shouldn't try to write pdisk"))
)
and wp il p =
(let
res = match (share_info_of p il) with
Some(thyname',thmname,il') -> (wdi thyname' thmname; il')
| None -> wp' il (content_of p)
in res) in let
res = (match disk_info_of p with
Some(thyname',thmname') ->
if thyname' = thyname &
thmname' = thmname
then
wp' il (content_of p)
else
(wdi thyname' thmname';
il)
| None -> wp' il (content_of p))
in res) in let
il = write_proof p il in let
_ = (match c_opt with
Some c -> wt c
| None -> ()) in let
_ = (out "</proof>\n";(close_out outchannel)) in let
_ = set_disk_info_of p thyname thmname
in
match il with
[] -> () (* everything has been written *)
| ((thmname',prf,c_opt)::rest) -> export_proof path thyname thmname' prf c_opt rest;;
let export_proofs theory_name l' =
let theory_name = match theory_name with None -> THEORY_NAME | Some n -> n in
let path = ensure_export_directory theory_name in
let ostrm = open_out (Filename.concat path "facts.lst") in
let out = output_string ostrm in
let _ = app (function (s,_,_) -> out (s^"\n")) l' in
let _ = flush ostrm in
let _ =
(match l' with
[] -> ()
| ((thmname,p,c_opt)::rest) -> export_proof path theory_name thmname p c_opt rest) in
let num_int_thms = next_counter() - 1 in
let _ = out ((string_of_int num_int_thms)^"\n");(close_out ostrm) in
();;
let the_proof_database = ref ([]:(string*proof*(term option)) list);;
exception Duplicate_proof_name;;
let rec search_proof_name n db =
match db with [] -> () | ((m, a, b)::db') -> if n=m then (raise Duplicate_proof_name) else search_proof_name n db'
let save_proof name p c_opt =
let _ = search_proof_name name (!the_proof_database)
in
(the_proof_database :=
(name, p, c_opt)::(!the_proof_database));;
let proof_database () = !the_proof_database;;
(* this is a little bit dangerous, because the function is not injective,
but I guess one can live with that *)
let make_filesystem_compatible s =
let modify = function
| "/" -> "_slash_"
| "\\" -> "_backslash_"
| "=" -> "_equal_"
| ">" -> "_greaterthan_"
| "<" -> "_lessthan_"
| "?" -> "_questionmark_"
| "!" -> "_exclamationmark_"
| "*" -> "_star_"
| s -> s
in
implode (map modify (explode s));;
let export_saved_proofs thy =
let context = rev (proof_database ()) in
export_proofs thy (map (function (s,p,c) -> (make_filesystem_compatible s,p,c)) context);;
end;;
include Proofobjects;;
|