1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
(* ========================================================================= *)
(* Calculation with naturals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "wf.ml";;
(* ------------------------------------------------------------------------- *)
(* Simple rule to get rid of NUMERAL constant. *)
(* ------------------------------------------------------------------------- *)
let DENUMERAL = GEN_REWRITE_RULE DEPTH_CONV [NUMERAL];;
(* ------------------------------------------------------------------------- *)
(* Big collection of rewrites to do trivial arithmetic. *)
(* *)
(* Note that we have none for DIV and MOD, and that PRE and SUB are a bit *)
(* inefficient; log(n)^2 instead of log(n). *)
(* ------------------------------------------------------------------------- *)
let ARITH_ZERO = prove
(`(NUMERAL 0 = 0) /\
(BIT0 _0 = _0)`,
REWRITE_TAC[NUMERAL; BIT0; DENUMERAL ADD_CLAUSES]);;
let ARITH_SUC = prove
(`(!n. SUC(NUMERAL n) = NUMERAL(SUC n)) /\
(SUC _0 = BIT1 _0) /\
(!n. SUC (BIT0 n) = BIT1 n) /\
(!n. SUC (BIT1 n) = BIT0 (SUC n))`,
REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES]);;
let ARITH_PRE = prove
(`(!n. PRE(NUMERAL n) = NUMERAL(PRE n)) /\
(PRE _0 = _0) /\
(!n. PRE(BIT0 n) = if n = _0 then _0 else BIT1 (PRE n)) /\
(!n. PRE(BIT1 n) = BIT0 n)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL PRE] THEN INDUCT_TAC THEN
REWRITE_TAC[NUMERAL; DENUMERAL PRE; DENUMERAL ADD_CLAUSES; DENUMERAL NOT_SUC;
ARITH_ZERO]);;
let ARITH_ADD = prove
(`(!m n. NUMERAL(m) + NUMERAL(n) = NUMERAL(m + n)) /\
(_0 + _0 = _0) /\
(!n. _0 + BIT0 n = BIT0 n) /\
(!n. _0 + BIT1 n = BIT1 n) /\
(!n. BIT0 n + _0 = BIT0 n) /\
(!n. BIT1 n + _0 = BIT1 n) /\
(!m n. BIT0 m + BIT0 n = BIT0 (m + n)) /\
(!m n. BIT0 m + BIT1 n = BIT1 (m + n)) /\
(!m n. BIT1 m + BIT0 n = BIT1 (m + n)) /\
(!m n. BIT1 m + BIT1 n = BIT0 (SUC(m + n)))`,
PURE_REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES; SUC_INJ] THEN
REWRITE_TAC[ADD_AC]);;
let ARITH_MULT = prove
(`(!m n. NUMERAL(m) * NUMERAL(n) = NUMERAL(m * n)) /\
(_0 * _0 = _0) /\
(!n. _0 * BIT0 n = _0) /\
(!n. _0 * BIT1 n = _0) /\
(!n. BIT0 n * _0 = _0) /\
(!n. BIT1 n * _0 = _0) /\
(!m n. BIT0 m * BIT0 n = BIT0 (BIT0 (m * n))) /\
(!m n. BIT0 m * BIT1 n = BIT0 m + BIT0 (BIT0 (m * n))) /\
(!m n. BIT1 m * BIT0 n = BIT0 n + BIT0 (BIT0 (m * n))) /\
(!m n. BIT1 m * BIT1 n = BIT1 m + BIT0 n + BIT0 (BIT0 (m * n)))`,
PURE_REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL MULT_CLAUSES;
DENUMERAL ADD_CLAUSES; SUC_INJ] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; ADD_AC]);;
let ARITH_EXP = prove
(`(!m n. (NUMERAL m) EXP (NUMERAL n) = NUMERAL(m EXP n)) /\
(_0 EXP _0 = BIT1 _0) /\
(!m. (BIT0 m) EXP _0 = BIT1 _0) /\
(!m. (BIT1 m) EXP _0 = BIT1 _0) /\
(!n. _0 EXP (BIT0 n) = (_0 EXP n) * (_0 EXP n)) /\
(!m n. (BIT0 m) EXP (BIT0 n) = ((BIT0 m) EXP n) * ((BIT0 m) EXP n)) /\
(!m n. (BIT1 m) EXP (BIT0 n) = ((BIT1 m) EXP n) * ((BIT1 m) EXP n)) /\
(!n. _0 EXP (BIT1 n) = _0) /\
(!m n. (BIT0 m) EXP (BIT1 n) =
BIT0 m * ((BIT0 m) EXP n) * ((BIT0 m) EXP n)) /\
(!m n. (BIT1 m) EXP (BIT1 n) =
BIT1 m * ((BIT1 m) EXP n) * ((BIT1 m) EXP n))`,
REWRITE_TAC[NUMERAL] THEN REPEAT STRIP_TAC THEN
TRY(GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [BIT0; BIT1]) THEN
REWRITE_TAC[DENUMERAL EXP; DENUMERAL MULT_CLAUSES; EXP_ADD]);;
let ARITH_EVEN = prove
(`(!n. EVEN(NUMERAL n) <=> EVEN n) /\
(EVEN _0 <=> T) /\
(!n. EVEN(BIT0 n) <=> T) /\
(!n. EVEN(BIT1 n) <=> F)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL EVEN; EVEN_ADD]);;
let ARITH_ODD = prove
(`(!n. ODD(NUMERAL n) <=> ODD n) /\
(ODD _0 <=> F) /\
(!n. ODD(BIT0 n) <=> F) /\
(!n. ODD(BIT1 n) <=> T)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL ODD; ODD_ADD]);;
let ARITH_LE = prove
(`(!m n. NUMERAL m <= NUMERAL n <=> m <= n) /\
((_0 <= _0) <=> T) /\
(!n. (BIT0 n <= _0) <=> n <= _0) /\
(!n. (BIT1 n <= _0) <=> F) /\
(!n. (_0 <= BIT0 n) <=> T) /\
(!n. (_0 <= BIT1 n) <=> T) /\
(!m n. (BIT0 m <= BIT0 n) <=> m <= n) /\
(!m n. (BIT0 m <= BIT1 n) <=> m <= n) /\
(!m n. (BIT1 m <= BIT0 n) <=> m < n) /\
(!m n. (BIT1 m <= BIT1 n) <=> m <= n)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL NOT_SUC;
DENUMERAL(GSYM NOT_SUC); SUC_INJ] THEN
REWRITE_TAC[DENUMERAL LE_0] THEN REWRITE_TAC[DENUMERAL LE; GSYM MULT_2] THEN
REWRITE_TAC[LE_MULT_LCANCEL; SUC_INJ;
DENUMERAL MULT_EQ_0; DENUMERAL NOT_SUC] THEN
REWRITE_TAC[DENUMERAL NOT_SUC] THEN REWRITE_TAC[LE_SUC_LT] THEN
REWRITE_TAC[LT_MULT_LCANCEL] THEN
SUBGOAL_THEN `2 = SUC 1` (fun th -> REWRITE_TAC[th]) THENL
[REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES];
REWRITE_TAC[DENUMERAL NOT_SUC; NOT_SUC; EQ_MULT_LCANCEL] THEN
REWRITE_TAC[ONCE_REWRITE_RULE[DISJ_SYM] LE_LT] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
SUBGOAL_THEN `~(SUC 1 * m = SUC (SUC 1 * n))`
(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
REWRITE_TAC[EVEN_MULT; EVEN_ADD; NUMERAL; BIT1; EVEN]]);;
let ARITH_LT = prove
(`(!m n. NUMERAL m < NUMERAL n <=> m < n) /\
((_0 < _0) <=> F) /\
(!n. (BIT0 n < _0) <=> F) /\
(!n. (BIT1 n < _0) <=> F) /\
(!n. (_0 < BIT0 n) <=> _0 < n) /\
(!n. (_0 < BIT1 n) <=> T) /\
(!m n. (BIT0 m < BIT0 n) <=> m < n) /\
(!m n. (BIT0 m < BIT1 n) <=> m <= n) /\
(!m n. (BIT1 m < BIT0 n) <=> m < n) /\
(!m n. (BIT1 m < BIT1 n) <=> m < n)`,
REWRITE_TAC[NUMERAL; GSYM NOT_LE; ARITH_LE] THEN
REWRITE_TAC[DENUMERAL LE]);;
let ARITH_GE = REWRITE_RULE[GSYM GE; GSYM GT] ARITH_LE;;
let ARITH_GT = REWRITE_RULE[GSYM GE; GSYM GT] ARITH_LT;;
let ARITH_EQ = prove
(`(!m n. (NUMERAL m = NUMERAL n) <=> (m = n)) /\
((_0 = _0) <=> T) /\
(!n. (BIT0 n = _0) <=> (n = _0)) /\
(!n. (BIT1 n = _0) <=> F) /\
(!n. (_0 = BIT0 n) <=> (_0 = n)) /\
(!n. (_0 = BIT1 n) <=> F) /\
(!m n. (BIT0 m = BIT0 n) <=> (m = n)) /\
(!m n. (BIT0 m = BIT1 n) <=> F) /\
(!m n. (BIT1 m = BIT0 n) <=> F) /\
(!m n. (BIT1 m = BIT1 n) <=> (m = n))`,
REWRITE_TAC[NUMERAL; GSYM LE_ANTISYM; ARITH_LE] THEN
REWRITE_TAC[LET_ANTISYM; LTE_ANTISYM; DENUMERAL LE_0]);;
let ARITH_SUB = prove
(`(!m n. NUMERAL m - NUMERAL n = NUMERAL(m - n)) /\
(_0 - _0 = _0) /\
(!n. _0 - BIT0 n = _0) /\
(!n. _0 - BIT1 n = _0) /\
(!n. BIT0 n - _0 = BIT0 n) /\
(!n. BIT1 n - _0 = BIT1 n) /\
(!m n. BIT0 m - BIT0 n = BIT0 (m - n)) /\
(!m n. BIT0 m - BIT1 n = PRE(BIT0 (m - n))) /\
(!m n. BIT1 m - BIT0 n = if n <= m then BIT1 (m - n) else _0) /\
(!m n. BIT1 m - BIT1 n = BIT0 (m - n))`,
REWRITE_TAC[NUMERAL; DENUMERAL SUB_0] THEN PURE_REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[GSYM MULT_2; SUB_SUC; LEFT_SUB_DISTRIB] THEN
REWRITE_TAC[SUB] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[DENUMERAL SUB_EQ_0] THEN
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN
ASM_REWRITE_TAC[LE_SUC_LT; LT_MULT_LCANCEL; ARITH_EQ] THEN
POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
REWRITE_TAC[ADD1; LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[ADD_SUB2; GSYM ADD_ASSOC]);;
let ARITH = end_itlist CONJ
[ARITH_ZERO; ARITH_SUC; ARITH_PRE;
ARITH_ADD; ARITH_MULT; ARITH_EXP;
ARITH_EVEN; ARITH_ODD;
ARITH_EQ; ARITH_LE; ARITH_LT; ARITH_GE; ARITH_GT;
ARITH_SUB];;
(* ------------------------------------------------------------------------- *)
(* Now more delicate conversions for situations where efficiency matters. *)
(* ------------------------------------------------------------------------- *)
let NUM_EQ_CONV,NUM_LE_CONV,NUM_LT_CONV,NUM_GE_CONV,NUM_GT_CONV =
let ARITH_GE',ARITH_GT' = (CONJ_PAIR o prove)
(`(NUMERAL m >= NUMERAL n <=> n <= m) /\
(NUMERAL m > NUMERAL n <=> n < m)`,
REWRITE_TAC[GE; GT; NUMERAL])
and NUM_EQ_CONV' =
REPEATC(GEN_REWRITE_CONV I [CONJUNCT2 ARITH_EQ])
and NUM_LL_CONV' =
REPEATC(GEN_REWRITE_CONV I [CONJUNCT2 ARITH_LE; CONJUNCT2 ARITH_LT]) in
let GEN_NUM_REL_CONV th cnv = GEN_REWRITE_CONV I [th] THENC cnv in
GEN_NUM_REL_CONV (CONJUNCT1 ARITH_EQ) NUM_EQ_CONV',
GEN_NUM_REL_CONV (CONJUNCT1 ARITH_LE) NUM_LL_CONV',
GEN_NUM_REL_CONV (CONJUNCT1 ARITH_LT) NUM_LL_CONV',
GEN_NUM_REL_CONV ARITH_GE' NUM_LL_CONV',
GEN_NUM_REL_CONV ARITH_GT' NUM_LL_CONV';;
let NUM_EVEN_CONV =
let tth,rths = CONJ_PAIR ARITH_EVEN in
GEN_REWRITE_CONV I [tth] THENC GEN_REWRITE_CONV I [rths];;
let NUM_ODD_CONV =
let tth,rths = CONJ_PAIR ARITH_ODD in
GEN_REWRITE_CONV I [tth] THENC GEN_REWRITE_CONV I [rths];;
let NUM_SUC_CONV,NUM_ADD_CONV,NUM_MULT_CONV,NUM_EXP_CONV =
let NUM_SUC_CONV,NUM_ADD_CONV',NUM_ADD_CONV =
let std_tm = rand `2` in
let bit0_tm,bz_tm = dest_comb std_tm in
let bit1_tm,zero_tm = dest_comb bz_tm in
let n_tm = `n:num` and m_tm = `m:num` in
let [sth_z; sth_0; sth_1] = (CONJUNCTS o prove)
(`(SUC _0 = BIT1 _0) /\
(SUC(BIT0 n) = BIT1 n) /\
(SUC(BIT1 n) = BIT0(SUC n))`,
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[ADD_CLAUSES])
and [ath_0x; ath_x0; ath_00; ath_01; ath_10; ath_11] = (CONJUNCTS o prove)
(`(_0 + n = n) /\
(n + _0 = n) /\
(BIT0 m + BIT0 n = BIT0 (m + n)) /\
(BIT0 m + BIT1 n = BIT1 (m + n)) /\
(BIT1 m + BIT0 n = BIT1 (m + n)) /\
(BIT1 m + BIT1 n = BIT0 (SUC (m + n)))`,
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[ADD_AC])
and [cth_0x; cth_x0; cth_00; cth_01; cth_10; cth_11] = (CONJUNCTS o prove)
(`(SUC(_0 + n) = SUC n) /\
(SUC(n + _0) = SUC n) /\
(SUC(BIT0 m + BIT0 n) = BIT1(m + n)) /\
(SUC(BIT0 m + BIT1 n) = BIT0(SUC(m + n))) /\
(SUC(BIT1 m + BIT0 n) = BIT0(SUC(m + n))) /\
(SUC(BIT1 m + BIT1 n) = BIT1(SUC (m + n)))`,
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[ADD_AC])
and pth_suc = prove
(`SUC(NUMERAL n) = NUMERAL(SUC n)`,
REWRITE_TAC[NUMERAL])
and pth_add = prove
(`NUMERAL m + NUMERAL n = NUMERAL(m + n)`,
REWRITE_TAC[NUMERAL]) in
let rec raw_suc_conv tm =
let otm = rand tm in
if otm = zero_tm then sth_z else
let btm,ntm = dest_comb otm in
if btm = bit0_tm then INST [ntm,n_tm] sth_0 else
let th = INST [ntm,n_tm] sth_1 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_suc_conv rtm)) in
let rec raw_add_conv tm =
let atm,rtm = dest_comb tm in
let ltm = rand atm in
if ltm = zero_tm then INST [rtm,n_tm] ath_0x
else if rtm = zero_tm then INST [ltm,n_tm] ath_x0 else
let lbit,larg = dest_comb ltm
and rbit,rarg = dest_comb rtm in
if lbit = bit0_tm then
if rbit = bit0_tm then
let th = INST [larg,m_tm; rarg,n_tm] ath_00 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_add_conv rtm))
else
let th = INST [larg,m_tm; rarg,n_tm] ath_01 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_add_conv rtm))
else
if rbit = bit0_tm then
let th = INST [larg,m_tm; rarg,n_tm] ath_10 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_add_conv rtm))
else
let th = INST [larg,m_tm; rarg,n_tm] ath_11 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_adc_conv rtm))
and raw_adc_conv tm =
let atm,rtm = dest_comb(rand tm) in
let ltm = rand atm in
if ltm = zero_tm then
let th = INST [rtm,n_tm] cth_0x in
TRANS th (raw_suc_conv (rand(concl th)))
else if rtm = zero_tm then
let th = INST [ltm,n_tm] cth_x0 in
TRANS th (raw_suc_conv (rand(concl th)))
else
let lbit,larg = dest_comb ltm
and rbit,rarg = dest_comb rtm in
if lbit = bit0_tm then
if rbit = bit0_tm then
let th = INST [larg,m_tm; rarg,n_tm] cth_00 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_add_conv rtm))
else
let th = INST [larg,m_tm; rarg,n_tm] cth_01 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_adc_conv rtm))
else
if rbit = bit0_tm then
let th = INST [larg,m_tm; rarg,n_tm] cth_10 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_adc_conv rtm))
else
let th = INST [larg,m_tm; rarg,n_tm] cth_11 in
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_adc_conv rtm)) in
let NUM_SUC_CONV tm =
let th = INST [rand(rand tm),n_tm] pth_suc in
let ctm = concl th in
if lhand ctm <> tm then failwith "NUM_SUC_CONV" else
let ltm,rtm = dest_comb(rand ctm) in
TRANS th (AP_TERM ltm (raw_suc_conv rtm))
and NUM_ADD_CONV tm =
let atm,rtm = dest_comb tm in
let ltm = rand atm in
let th = INST [rand ltm,m_tm; rand rtm,n_tm] pth_add in
let ctm = concl th in
if lhand ctm <> tm then failwith "NUM_ADD_CONV" else
let ltm,rtm = dest_comb(rand(concl th)) in
TRANS th (AP_TERM ltm (raw_add_conv rtm)) in
NUM_SUC_CONV,raw_add_conv,NUM_ADD_CONV in
let NUM_MULT_CONV' =
let p_tm = `p:num`
and x_tm = `x:num`
and y_tm = `y:num`
and u_tm = `u:num`
and v_tm = `v:num`
and w_tm = `w:num`
and z_tm = `z:num`
and u_tm' = `u':num`
and w_tm' = `w':num`
and a_tm = `a:num`
and b_tm = `b:num`
and c_tm = `c:num`
and d_tm = `d:num`
and e_tm = `e:num`
and c_tm' = `c':num`
and d_tm' = `d':num`
and e_tm' = `e':num`
and s_tm = `s:num`
and t_tm = `t:num`
and q_tm = `q:num`
and r_tm = `r:num` in
let pth = prove
(`(u' + v = x) ==>
(w' + z = y) ==>
(p * u = u') ==>
(p * w = w') ==>
(u + v = a) ==>
(w + z = b) ==>
(a * b = c) ==>
(u' * w = d) ==>
(v * z = e) ==>
(p * e = e') ==>
(p * d = d') ==>
(p * c = c') ==>
(d' + e = s) ==>
(d + e' = t) ==>
(s + c' = q) ==>
(r + t = q) ==> (x * y = r)`,
MAP_EVERY (K (DISCH_THEN(SUBST1_TAC o SYM))) (0--14) THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_AC] THEN
ONCE_REWRITE_TAC[AC ADD_AC
`a + (b + c) + d + e = (a + c + d) + (b + e)`] THEN
SIMP_TAC[EQ_ADD_RCANCEL] THEN REWRITE_TAC[ADD_AC]) in
let dest_mul = dest_binop `(* )` in
let mk_raw_numeral =
let Z = mk_const("_0",[])
and BIT0 = mk_const("BIT0",[])
and BIT1 = mk_const("BIT1",[]) in
let rec mk_num n =
if n =/ Int 0 then Z else
mk_comb((if mod_num n (Int 2) =/ Int 0 then BIT0 else BIT1),
mk_num(quo_num n (Int 2))) in
mk_num in
let rec dest_raw_numeral tm =
if try fst(dest_const tm) = "_0" with Failure _ -> false then Int 0 else
let l,r = dest_comb tm in
let n = Int 2 */ dest_raw_numeral r in
let cn = fst(dest_const l) in
if cn = "BIT0" then n
else if cn = "BIT1" then n +/ Int 1
else failwith "dest_raw_numeral" in
let rec sizeof_rawnumeral tm =
if is_const tm then 0 else
1 + sizeof_rawnumeral(rand tm) in
let MULTIPLICATION_TABLE =
let pth = prove
(`(_0 * x = _0) /\
(x * _0 = _0) /\
(BIT1 _0 * x = x) /\
(x * BIT1 _0 = x)`,
REWRITE_TAC[BIT1; DENUMERAL MULT_CLAUSES]) in
let mk_mul = mk_binop `(* )` in
let odds = map (fun x -> 2 * x + 1) (0--7) in
let nums = map (fun n -> mk_raw_numeral(Int n)) odds in
let pairs = allpairs mk_mul nums nums in
let ths = map (REWRITE_CONV[ARITH]) pairs in
GEN_REWRITE_CONV I (pth::ths) in
let NUM_MULT_EVEN_CONV' =
let pth = prove
(`(BIT0 x * y = BIT0(x * y)) /\
(x * BIT0 y = BIT0(x * y))`,
REWRITE_TAC[BIT0; BIT1; DENUMERAL MULT_CLAUSES;
DENUMERAL ADD_CLAUSES] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC]) in
GEN_REWRITE_CONV I [pth] in
let right_th = prove
(`s * BIT1 x = s + BIT0 (s * x)`,
REWRITE_TAC[BIT0; BIT1; DENUMERAL ADD_CLAUSES;
DENUMERAL MULT_CLAUSES] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; ADD_ASSOC])
and left_th = prove
(`BIT1 x * s = s + BIT0 (x * s)`,
REWRITE_TAC[BIT0; BIT1; DENUMERAL ADD_CLAUSES;
DENUMERAL MULT_CLAUSES] THEN
REWRITE_TAC[RIGHT_ADD_DISTRIB; ADD_AC]) in
let LEFT_REWR_CONV = REWR_CONV left_th
and RIGHT_REWR_CONV = REWR_CONV right_th in
let rec NUM_MULT_CONV' tm =
try MULTIPLICATION_TABLE tm
with Failure _ -> try
let th1 = NUM_MULT_EVEN_CONV' tm in
let l,r = dest_comb(rand(concl th1)) in
TRANS th1 (AP_TERM l (NUM_MULT_CONV' r))
with Failure _ ->
let xtm,ytm = dest_mul tm in
let x = dest_raw_numeral xtm
and y = dest_raw_numeral ytm in
let NX = sizeof_rawnumeral xtm
and NY = sizeof_rawnumeral ytm in
let N2 = max NX NY in
let N = (N2 + 1) / 2 in
if NX < N or (N < 32 & NX < NY) then
NUM_MULT_RIGHT_CONV' tm
else if NY < N or N < 32 then
NUM_MULT_LEFT_CONV' tm
else
let p = power_num (Int 2) (Int N) in
let u = quo_num x p
and w = quo_num y p in
let u' = p */ u
and w' = p */ w in
let v = x -/ u'
and z = y -/ w' in
let a = u +/ v
and b = w +/ z in
let c = a */ b in
let d = u' */ w
and e = v */ z in
let e' = p */ e
and d' = p */ d
and c' = p */ c in
let s = d' +/ e
and t = d +/ e' in
let q = s +/ c' in
let r = x */ y in
let ptm = mk_raw_numeral p
and xtm = mk_raw_numeral x
and ytm = mk_raw_numeral y
and utm = mk_raw_numeral u
and vtm = mk_raw_numeral v
and wtm = mk_raw_numeral w
and ztm = mk_raw_numeral z
and utm' = mk_raw_numeral u'
and wtm' = mk_raw_numeral w'
and atm = mk_raw_numeral a
and btm = mk_raw_numeral b
and ctm = mk_raw_numeral c
and dtm = mk_raw_numeral d
and etm = mk_raw_numeral e
and ctm' = mk_raw_numeral c'
and dtm' = mk_raw_numeral d'
and etm' = mk_raw_numeral e'
and stm = mk_raw_numeral s
and ttm = mk_raw_numeral t
and qtm = mk_raw_numeral q
and rtm = mk_raw_numeral r in
let th0 = INST
[ptm,p_tm; xtm,x_tm; ytm,y_tm; utm,u_tm; vtm,v_tm; wtm,w_tm;
ztm,z_tm; utm',u_tm'; wtm',w_tm'; atm,a_tm; btm,b_tm; ctm,c_tm;
dtm,d_tm; etm,e_tm; ctm',c_tm'; dtm',d_tm'; etm',e_tm'; stm,s_tm;
ttm,t_tm; qtm,q_tm; rtm,r_tm] pth in
let th1 = MP th0 (NUM_ADD_CONV' (lhand(lhand(concl th0)))) in
let th2 = MP th1 (NUM_ADD_CONV' (lhand(lhand(concl th1)))) in
let th3 = MP th2 (NUM_MULT_CONV' (lhand(lhand(concl th2)))) in
let th4 = MP th3 (NUM_MULT_CONV' (lhand(lhand(concl th3)))) in
let th5 = MP th4 (NUM_ADD_CONV' (lhand(lhand(concl th4)))) in
let th6 = MP th5 (NUM_ADD_CONV' (lhand(lhand(concl th5)))) in
let th7 = MP th6 (NUM_MULT_CONV' (lhand(lhand(concl th6)))) in
let th8 = MP th7 (NUM_MULT_CONV' (lhand(lhand(concl th7)))) in
let th9 = MP th8 (NUM_MULT_CONV' (lhand(lhand(concl th8)))) in
let tha = MP th9 (NUM_MULT_CONV' (lhand(lhand(concl th9)))) in
let thb = MP tha (NUM_MULT_CONV' (lhand(lhand(concl tha)))) in
let thc = MP thb (NUM_MULT_CONV' (lhand(lhand(concl thb)))) in
let thd = MP thc (NUM_ADD_CONV' (lhand(lhand(concl thc)))) in
let the = MP thd (NUM_ADD_CONV' (lhand(lhand(concl thd)))) in
let thf = MP the (NUM_ADD_CONV' (lhand(lhand(concl the)))) in
MP thf (NUM_ADD_CONV' (lhand(lhand(concl thf))))
and NUM_MULT_RIGHT_CONV' tm =
(RIGHT_REWR_CONV THENC
(RAND_CONV(RAND_CONV NUM_MULT_CONV')) THENC
NUM_ADD_CONV') tm
and NUM_MULT_LEFT_CONV' tm =
(LEFT_REWR_CONV THENC
(RAND_CONV(RAND_CONV NUM_MULT_CONV')) THENC
NUM_ADD_CONV') tm in
NUM_MULT_CONV' in
let NUM_MULT_CONV =
let tconv = REWR_CONV(CONJUNCT1 ARITH_MULT) in
tconv THENC RAND_CONV NUM_MULT_CONV' in
let NUM_EXP_CONV =
let pth0 = prove
(`(x EXP n = y) ==> (y * y = z) ==> (x EXP (BIT0 n) = z)`,
REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[BIT0; EXP_ADD])
and pth1 = prove
(`(x EXP n = y) ==> (y * y = w) ==> (x * w = z) ==> (x EXP (BIT1 n) = z)`,
REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[BIT1; EXP_ADD; EXP])
and pth = prove
(`x EXP _0 = BIT1 _0`,
MP_TAC (CONJUNCT1 EXP) THEN REWRITE_TAC[NUMERAL; BIT1] THEN
DISCH_THEN MATCH_ACCEPT_TAC)
and tth = prove
(`(NUMERAL x) EXP (NUMERAL n) = x EXP n`,
REWRITE_TAC[NUMERAL])
and fth = prove
(`x = NUMERAL x`,
REWRITE_TAC[NUMERAL])
and n = `n:num` and w = `w:num` and x = `x:num`
and y = `y:num` and z = `z:num`
and Z = `_0` and BIT0 = `BIT0`
and mul = `(*)` in
let tconv = GEN_REWRITE_CONV I [tth] in
let rec NUM_EXP_CONV l r =
if r = Z then INST [l,x] pth else
let b,r' = dest_comb r in
if b = BIT0 then
let th1 = NUM_EXP_CONV l r' in
let tm1 = rand(concl th1) in
let th2 = NUM_MULT_CONV' (mk_binop mul tm1 tm1) in
let tm2 = rand(concl th2) in
MP (MP (INST [l,x; r',n; tm1,y; tm2,z] pth0) th1) th2
else
let th1 = NUM_EXP_CONV l r' in
let tm1 = rand(concl th1) in
let th2 = NUM_MULT_CONV' (mk_binop mul tm1 tm1) in
let tm2 = rand(concl th2) in
let th3 = NUM_MULT_CONV' (mk_binop mul l tm2) in
let tm3 = rand(concl th3) in
MP (MP (MP (INST [l,x; r',n; tm1,y; tm2,w; tm3,z] pth1) th1) th2) th3 in
fun tm -> try let th = tconv tm in
let lop,r = dest_comb (rand(concl th)) in
let _,l = dest_comb lop in
let th' = NUM_EXP_CONV l r in
let tm' = rand(concl th') in
TRANS (TRANS th th') (INST [tm',x] fth)
with Failure _ -> failwith "NUM_EXP_CONV" in
NUM_SUC_CONV,NUM_ADD_CONV,NUM_MULT_CONV,NUM_EXP_CONV;;
let NUM_PRE_CONV =
let tth = prove
(`PRE 0 = 0`,
REWRITE_TAC[PRE]) in
let pth = prove
(`(SUC m = n) ==> (PRE n = m)`,
DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[PRE])
and m = `m:num` and n = `n:num` in
let suc = `SUC` in
let pre = `PRE` in
fun tm -> try let l,r = dest_comb tm in
if not (l = pre) then fail() else
let x = dest_numeral r in
if x =/ Int 0 then tth else
let tm' = mk_numeral (x -/ Int 1) in
let th1 = NUM_SUC_CONV (mk_comb(suc,tm')) in
MP (INST [tm',m; r,n] pth) th1
with Failure _ -> failwith "NUM_PRE_CONV";;
let NUM_SUB_CONV =
let pth0 = prove
(`p <= n ==> (p - n = 0)`,
REWRITE_TAC[SUB_EQ_0])
and pth1 = prove
(`(m + n = p) ==> (p - n = m)`,
DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[ADD_SUB])
and m = `m:num` and n = `n:num` and p = `p:num`
and minus = `(-)`
and plus = `(+)`
and le = `(<=)` in
fun tm -> try let l,r = dest_binop minus tm in
let ln = dest_numeral l
and rn = dest_numeral r in
if ln <=/ rn then
let pth = INST [l,p; r,n] pth0
and th0 = EQT_ELIM(NUM_LE_CONV (mk_binop le l r)) in
MP pth th0
else
let kn = ln -/ rn in
let k = mk_numeral kn in
let pth = INST [k,m; l,p; r,n] pth1
and th0 = NUM_ADD_CONV (mk_binop plus k r) in
MP pth th0
with Failure _ -> failwith "NUM_SUB_CONV";;
let NUM_DIV_CONV,NUM_MOD_CONV =
let pth = prove
(`(q * n + r = m) ==> r < n ==> (m DIV n = q) /\ (m MOD n = r)`,
MESON_TAC[DIVMOD_UNIQ])
and m = `m:num` and n = `n:num` and q = `q:num` and r = `r:num`
and dtm = `(DIV)` and mtm = `(MOD)` in
let NUM_DIVMOD_CONV x y =
let k = quo_num x y
and l = mod_num x y in
let th0 = INST [mk_numeral x,m; mk_numeral y,n;
mk_numeral k,q; mk_numeral l,r] pth in
let tm0 = lhand(lhand(concl th0)) in
let th1 = (LAND_CONV NUM_MULT_CONV THENC NUM_ADD_CONV) tm0 in
let th2 = MP th0 th1 in
let tm2 = lhand(concl th2) in
MP th2 (EQT_ELIM(NUM_LT_CONV tm2)) in
(fun tm -> try let xt,yt = dest_binop dtm tm in
CONJUNCT1(NUM_DIVMOD_CONV (dest_numeral xt) (dest_numeral yt))
with Failure _ -> failwith "NUM_DIV_CONV"),
(fun tm -> try let xt,yt = dest_binop mtm tm in
CONJUNCT2(NUM_DIVMOD_CONV (dest_numeral xt) (dest_numeral yt))
with Failure _ -> failwith "NUM_MOD_CONV");;
let NUM_FACT_CONV =
let suc = `SUC`
and mul = `(*)` in
let pth_0 = prove
(`FACT 0 = 1`,
REWRITE_TAC[FACT])
and pth_suc = prove
(`(SUC x = y) ==> (FACT x = w) ==> (y * w = z) ==> (FACT y = z)`,
REPEAT (DISCH_THEN(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[FACT])
and w = `w:num` and x = `x:num` and y = `y:num` and z = `z:num` in
let mksuc n =
let n' = n -/ (Int 1) in
NUM_SUC_CONV (mk_comb(suc,mk_numeral n')) in
let rec NUM_FACT_CONV n =
if n =/ Int 0 then pth_0 else
let th0 = mksuc n in
let tmx = rand(lhand(concl th0)) in
let tm0 = rand(concl th0) in
let th1 = NUM_FACT_CONV (n -/ Int 1) in
let tm1 = rand(concl th1) in
let th2 = NUM_MULT_CONV (mk_binop mul tm0 tm1) in
let tm2 = rand(concl th2) in
let pth = INST [tmx,x; tm0, y; tm1,w; tm2,z] pth_suc in
MP (MP (MP pth th0) th1) th2 in
fun tm ->
try let l,r = dest_comb tm in
if fst(dest_const l) = "FACT"
then NUM_FACT_CONV (dest_numeral r)
else fail()
with Failure _ -> failwith "NUM_FACT_CONV";;
let NUM_MAX_CONV =
REWR_CONV MAX THENC
RATOR_CONV(RATOR_CONV(RAND_CONV NUM_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
let NUM_MIN_CONV =
REWR_CONV MIN THENC
RATOR_CONV(RATOR_CONV(RAND_CONV NUM_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
(* ------------------------------------------------------------------------- *)
(* Final hack-together. *)
(* ------------------------------------------------------------------------- *)
let NUM_REL_CONV =
let gconv_net = itlist (uncurry net_of_conv)
[`NUMERAL m < NUMERAL n`,NUM_LT_CONV;
`NUMERAL m <= NUMERAL n`,NUM_LE_CONV;
`NUMERAL m > NUMERAL n`,NUM_GT_CONV;
`NUMERAL m >= NUMERAL n`,NUM_GE_CONV;
`NUMERAL m = NUMERAL n`,NUM_EQ_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let NUM_RED_CONV =
let gconv_net = itlist (uncurry net_of_conv)
[`SUC(NUMERAL n)`,NUM_SUC_CONV;
`PRE(NUMERAL n)`,NUM_PRE_CONV;
`FACT(NUMERAL n)`,NUM_FACT_CONV;
`NUMERAL m < NUMERAL n`,NUM_LT_CONV;
`NUMERAL m <= NUMERAL n`,NUM_LE_CONV;
`NUMERAL m > NUMERAL n`,NUM_GT_CONV;
`NUMERAL m >= NUMERAL n`,NUM_GE_CONV;
`NUMERAL m = NUMERAL n`,NUM_EQ_CONV;
`EVEN(NUMERAL n)`,NUM_EVEN_CONV;
`ODD(NUMERAL n)`,NUM_ODD_CONV;
`NUMERAL m + NUMERAL n`,NUM_ADD_CONV;
`NUMERAL m - NUMERAL n`,NUM_SUB_CONV;
`NUMERAL m * NUMERAL n`,NUM_MULT_CONV;
`(NUMERAL m) EXP (NUMERAL n)`,NUM_EXP_CONV;
`(NUMERAL m) DIV (NUMERAL n)`,NUM_DIV_CONV;
`(NUMERAL m) MOD (NUMERAL n)`,NUM_MOD_CONV;
`MAX (NUMERAL m) (NUMERAL n)`,NUM_MAX_CONV;
`MIN (NUMERAL m) (NUMERAL n)`,NUM_MIN_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let NUM_REDUCE_CONV = DEPTH_CONV NUM_RED_CONV;;
let NUM_REDUCE_TAC = CONV_TAC NUM_REDUCE_CONV;;
(* ------------------------------------------------------------------------- *)
(* I do like this after all... *)
(* ------------------------------------------------------------------------- *)
let num_CONV =
let SUC_tm = `SUC` in
fun tm ->
let n = dest_numeral tm -/ Int 1 in
if n </ Int 0 then failwith "num_CONV" else
let tm' = mk_numeral n in
SYM(NUM_SUC_CONV (mk_comb(SUC_tm,tm')));;
(* ------------------------------------------------------------------------- *)
(* Expands "!n. n < numeral-constant ==> P(n)" into all the cases. *)
(* ------------------------------------------------------------------------- *)
let EXPAND_CASES_CONV =
let pth_base = prove
(`(!n. n < 0 ==> P n) <=> T`,
REWRITE_TAC[LT])
and pth_step = prove
(`(!n. n < SUC k ==> P n) <=> (!n. n < k ==> P n) /\ P k`,
REWRITE_TAC[LT] THEN MESON_TAC[]) in
let base_CONV = GEN_REWRITE_CONV I [pth_base]
and step_CONV =
BINDER_CONV(LAND_CONV(RAND_CONV num_CONV)) THENC
GEN_REWRITE_CONV I [pth_step] in
let rec conv tm =
(base_CONV ORELSEC (step_CONV THENC LAND_CONV conv)) tm in
conv THENC (REWRITE_CONV[GSYM CONJ_ASSOC]);;
|