File: calc_num.ml

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (764 lines) | stat: -rw-r--r-- 30,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
(* ========================================================================= *)
(* Calculation with naturals.                                                *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "wf.ml";;

(* ------------------------------------------------------------------------- *)
(* Simple rule to get rid of NUMERAL constant.                               *)
(* ------------------------------------------------------------------------- *)

let DENUMERAL = GEN_REWRITE_RULE DEPTH_CONV [NUMERAL];;

(* ------------------------------------------------------------------------- *)
(* Big collection of rewrites to do trivial arithmetic.                      *)
(*                                                                           *)
(* Note that we have none for DIV and MOD, and that PRE and SUB are a bit    *)
(* inefficient; log(n)^2 instead of log(n).                                  *)
(* ------------------------------------------------------------------------- *)

let ARITH_ZERO = prove
 (`(NUMERAL 0 = 0) /\
   (BIT0 _0 = _0)`,
  REWRITE_TAC[NUMERAL; BIT0; DENUMERAL ADD_CLAUSES]);;

let ARITH_SUC = prove
 (`(!n. SUC(NUMERAL n) = NUMERAL(SUC n)) /\
   (SUC _0 = BIT1 _0) /\
   (!n. SUC (BIT0 n) = BIT1 n) /\
   (!n. SUC (BIT1 n) = BIT0 (SUC n))`,
  REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES]);;

let ARITH_PRE = prove
 (`(!n. PRE(NUMERAL n) = NUMERAL(PRE n)) /\
   (PRE _0 = _0) /\
   (!n. PRE(BIT0 n) = if n = _0 then _0 else BIT1 (PRE n)) /\
   (!n. PRE(BIT1 n) = BIT0 n)`,
  REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL PRE] THEN INDUCT_TAC THEN
  REWRITE_TAC[NUMERAL; DENUMERAL PRE; DENUMERAL ADD_CLAUSES; DENUMERAL NOT_SUC;
              ARITH_ZERO]);;

let ARITH_ADD = prove
 (`(!m n. NUMERAL(m) + NUMERAL(n) = NUMERAL(m + n)) /\
   (_0 + _0 = _0) /\
   (!n. _0 + BIT0 n = BIT0 n) /\
   (!n.        _0 + BIT1 n = BIT1 n) /\
   (!n.   BIT0 n + _0 = BIT0 n) /\
   (!n.   BIT1 n + _0 = BIT1 n) /\
   (!m n. BIT0 m + BIT0 n = BIT0 (m + n)) /\
   (!m n. BIT0 m + BIT1 n = BIT1 (m + n)) /\
   (!m n. BIT1 m + BIT0 n = BIT1 (m + n)) /\
   (!m n. BIT1 m + BIT1 n = BIT0 (SUC(m + n)))`,
  PURE_REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES; SUC_INJ] THEN
  REWRITE_TAC[ADD_AC]);;

let ARITH_MULT = prove
 (`(!m n. NUMERAL(m) * NUMERAL(n) = NUMERAL(m * n)) /\
   (_0 * _0 = _0) /\
   (!n. _0 * BIT0 n = _0) /\
   (!n. _0 * BIT1 n = _0) /\
   (!n. BIT0 n * _0 = _0) /\
   (!n. BIT1 n * _0 = _0) /\
   (!m n. BIT0 m * BIT0 n = BIT0 (BIT0 (m * n))) /\
   (!m n. BIT0 m * BIT1 n = BIT0 m + BIT0 (BIT0 (m * n))) /\
   (!m n. BIT1 m * BIT0 n = BIT0 n + BIT0 (BIT0 (m * n))) /\
   (!m n. BIT1 m * BIT1 n = BIT1 m + BIT0 n + BIT0 (BIT0 (m * n)))`,
  PURE_REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL MULT_CLAUSES;
                   DENUMERAL ADD_CLAUSES; SUC_INJ] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; ADD_AC]);;

let ARITH_EXP = prove
 (`(!m n. (NUMERAL m) EXP (NUMERAL n) = NUMERAL(m EXP n)) /\
   (_0 EXP _0 = BIT1 _0) /\
   (!m. (BIT0 m) EXP _0 = BIT1 _0) /\
   (!m. (BIT1 m) EXP _0 = BIT1 _0) /\
   (!n. _0 EXP (BIT0 n) = (_0 EXP n) * (_0 EXP n)) /\
   (!m n. (BIT0 m) EXP (BIT0 n) = ((BIT0 m) EXP n) * ((BIT0 m) EXP n)) /\
   (!m n. (BIT1 m) EXP (BIT0 n) = ((BIT1 m) EXP n) * ((BIT1 m) EXP n)) /\
   (!n. _0 EXP (BIT1 n) = _0) /\
   (!m n. (BIT0 m) EXP (BIT1 n) =
        BIT0 m * ((BIT0 m) EXP n) * ((BIT0 m) EXP n)) /\
   (!m n. (BIT1 m) EXP (BIT1 n) =
        BIT1 m * ((BIT1 m) EXP n) * ((BIT1 m) EXP n))`,
  REWRITE_TAC[NUMERAL] THEN REPEAT STRIP_TAC THEN
  TRY(GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [BIT0; BIT1]) THEN
  REWRITE_TAC[DENUMERAL EXP; DENUMERAL MULT_CLAUSES; EXP_ADD]);;

let ARITH_EVEN = prove
 (`(!n. EVEN(NUMERAL n) <=> EVEN n) /\
   (EVEN _0 <=> T) /\
   (!n. EVEN(BIT0 n) <=> T) /\
   (!n. EVEN(BIT1 n) <=> F)`,
  REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL EVEN; EVEN_ADD]);;

let ARITH_ODD = prove
 (`(!n. ODD(NUMERAL n) <=> ODD n) /\
   (ODD _0 <=> F) /\
   (!n. ODD(BIT0 n) <=> F) /\
   (!n. ODD(BIT1 n) <=> T)`,
  REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL ODD; ODD_ADD]);;

let ARITH_LE = prove
 (`(!m n. NUMERAL m <= NUMERAL n <=> m <= n) /\
   ((_0 <= _0) <=> T) /\
   (!n. (BIT0 n <= _0) <=> n <= _0) /\
   (!n. (BIT1 n <= _0) <=> F) /\
   (!n. (_0 <= BIT0 n) <=> T) /\
   (!n. (_0 <= BIT1 n) <=> T) /\
   (!m n. (BIT0 m <= BIT0 n) <=> m <= n) /\
   (!m n. (BIT0 m <= BIT1 n) <=> m <= n) /\
   (!m n. (BIT1 m <= BIT0 n) <=> m < n) /\
   (!m n. (BIT1 m <= BIT1 n) <=> m <= n)`,
  REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL NOT_SUC;
      DENUMERAL(GSYM NOT_SUC); SUC_INJ] THEN
  REWRITE_TAC[DENUMERAL LE_0] THEN REWRITE_TAC[DENUMERAL LE; GSYM MULT_2] THEN
  REWRITE_TAC[LE_MULT_LCANCEL; SUC_INJ;
              DENUMERAL MULT_EQ_0; DENUMERAL NOT_SUC] THEN
  REWRITE_TAC[DENUMERAL NOT_SUC] THEN REWRITE_TAC[LE_SUC_LT] THEN
  REWRITE_TAC[LT_MULT_LCANCEL] THEN
  SUBGOAL_THEN `2 = SUC 1` (fun th -> REWRITE_TAC[th]) THENL
   [REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES];
    REWRITE_TAC[DENUMERAL NOT_SUC; NOT_SUC; EQ_MULT_LCANCEL] THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[DISJ_SYM] LE_LT] THEN
    MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
    SUBGOAL_THEN `~(SUC 1 * m = SUC (SUC 1 * n))`
      (fun th -> REWRITE_TAC[th]) THEN
    DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
    REWRITE_TAC[EVEN_MULT; EVEN_ADD; NUMERAL; BIT1; EVEN]]);;

let ARITH_LT = prove
 (`(!m n. NUMERAL m < NUMERAL n <=> m < n) /\
   ((_0 < _0) <=> F) /\
   (!n. (BIT0 n < _0) <=> F) /\
   (!n. (BIT1 n < _0) <=> F) /\
   (!n. (_0 < BIT0 n) <=> _0 < n) /\
   (!n. (_0 < BIT1 n) <=> T) /\
   (!m n. (BIT0 m < BIT0 n) <=> m < n) /\
   (!m n. (BIT0 m < BIT1 n) <=> m <= n) /\
   (!m n. (BIT1 m < BIT0 n) <=> m < n) /\
   (!m n. (BIT1 m < BIT1 n) <=> m < n)`,
  REWRITE_TAC[NUMERAL; GSYM NOT_LE; ARITH_LE] THEN
  REWRITE_TAC[DENUMERAL LE]);;

let ARITH_GE = REWRITE_RULE[GSYM GE; GSYM GT] ARITH_LE;;

let ARITH_GT = REWRITE_RULE[GSYM GE; GSYM GT] ARITH_LT;;

let ARITH_EQ = prove
 (`(!m n. (NUMERAL m = NUMERAL n) <=> (m = n)) /\
   ((_0 = _0) <=> T) /\
   (!n. (BIT0 n = _0) <=> (n = _0)) /\
   (!n. (BIT1 n = _0) <=> F) /\
   (!n. (_0 = BIT0 n) <=> (_0 = n)) /\
   (!n. (_0 = BIT1 n) <=> F) /\
   (!m n. (BIT0 m = BIT0 n) <=> (m = n)) /\
   (!m n. (BIT0 m = BIT1 n) <=> F) /\
   (!m n. (BIT1 m = BIT0 n) <=> F) /\
   (!m n. (BIT1 m = BIT1 n) <=> (m = n))`,
  REWRITE_TAC[NUMERAL; GSYM LE_ANTISYM; ARITH_LE] THEN
  REWRITE_TAC[LET_ANTISYM; LTE_ANTISYM; DENUMERAL LE_0]);;

let ARITH_SUB = prove
 (`(!m n. NUMERAL m - NUMERAL n = NUMERAL(m - n)) /\
   (_0 - _0 = _0) /\
   (!n. _0 - BIT0 n = _0) /\
   (!n. _0 - BIT1 n = _0) /\
   (!n. BIT0 n - _0 = BIT0 n) /\
   (!n. BIT1 n - _0 = BIT1 n) /\
   (!m n. BIT0 m - BIT0 n = BIT0 (m - n)) /\
   (!m n. BIT0 m - BIT1 n = PRE(BIT0 (m - n))) /\
   (!m n. BIT1 m - BIT0 n = if n <= m then BIT1 (m - n) else _0) /\
   (!m n. BIT1 m - BIT1 n = BIT0 (m - n))`,
  REWRITE_TAC[NUMERAL; DENUMERAL SUB_0] THEN PURE_REWRITE_TAC[BIT0; BIT1] THEN
  REWRITE_TAC[GSYM MULT_2; SUB_SUC; LEFT_SUB_DISTRIB] THEN
  REWRITE_TAC[SUB] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  REWRITE_TAC[DENUMERAL SUB_EQ_0] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN
  ASM_REWRITE_TAC[LE_SUC_LT; LT_MULT_LCANCEL; ARITH_EQ] THEN
  POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
  REWRITE_TAC[ADD1; LEFT_ADD_DISTRIB] THEN
  REWRITE_TAC[ADD_SUB2; GSYM ADD_ASSOC]);;

let ARITH = end_itlist CONJ
  [ARITH_ZERO; ARITH_SUC; ARITH_PRE;
   ARITH_ADD; ARITH_MULT; ARITH_EXP;
   ARITH_EVEN; ARITH_ODD;
   ARITH_EQ; ARITH_LE; ARITH_LT; ARITH_GE; ARITH_GT;
   ARITH_SUB];;

(* ------------------------------------------------------------------------- *)
(* Now more delicate conversions for situations where efficiency matters.    *)
(* ------------------------------------------------------------------------- *)

let NUM_EQ_CONV,NUM_LE_CONV,NUM_LT_CONV,NUM_GE_CONV,NUM_GT_CONV =
  let ARITH_GE',ARITH_GT' = (CONJ_PAIR o prove)
   (`(NUMERAL m >= NUMERAL n <=> n <= m) /\
     (NUMERAL m > NUMERAL n <=> n < m)`,
    REWRITE_TAC[GE; GT; NUMERAL])
  and NUM_EQ_CONV' =
    REPEATC(GEN_REWRITE_CONV I [CONJUNCT2 ARITH_EQ])
  and NUM_LL_CONV' =
    REPEATC(GEN_REWRITE_CONV I [CONJUNCT2 ARITH_LE; CONJUNCT2 ARITH_LT]) in
  let GEN_NUM_REL_CONV th cnv = GEN_REWRITE_CONV I [th] THENC cnv in
  GEN_NUM_REL_CONV (CONJUNCT1 ARITH_EQ) NUM_EQ_CONV',
  GEN_NUM_REL_CONV (CONJUNCT1 ARITH_LE) NUM_LL_CONV',
  GEN_NUM_REL_CONV (CONJUNCT1 ARITH_LT) NUM_LL_CONV',
  GEN_NUM_REL_CONV ARITH_GE' NUM_LL_CONV',
  GEN_NUM_REL_CONV ARITH_GT' NUM_LL_CONV';;

let NUM_EVEN_CONV =
  let tth,rths = CONJ_PAIR ARITH_EVEN in
  GEN_REWRITE_CONV I [tth] THENC GEN_REWRITE_CONV I [rths];;

let NUM_ODD_CONV =
  let tth,rths = CONJ_PAIR ARITH_ODD in
  GEN_REWRITE_CONV I [tth] THENC GEN_REWRITE_CONV I [rths];;

let NUM_SUC_CONV,NUM_ADD_CONV,NUM_MULT_CONV,NUM_EXP_CONV =
  let NUM_SUC_CONV,NUM_ADD_CONV',NUM_ADD_CONV =
    let std_tm = rand `2` in
    let bit0_tm,bz_tm = dest_comb std_tm in
    let bit1_tm,zero_tm = dest_comb bz_tm in
    let n_tm = `n:num` and m_tm = `m:num` in
    let [sth_z; sth_0; sth_1] = (CONJUNCTS o prove)
     (`(SUC _0 = BIT1 _0) /\
       (SUC(BIT0 n) = BIT1 n) /\
       (SUC(BIT1 n) = BIT0(SUC n))`,
      SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
      REWRITE_TAC[BIT0; BIT1] THEN
      REWRITE_TAC[ADD_CLAUSES])
    and [ath_0x; ath_x0; ath_00; ath_01; ath_10; ath_11] = (CONJUNCTS o prove)
     (`(_0 + n = n) /\
       (n + _0 = n) /\
       (BIT0 m + BIT0 n = BIT0 (m + n)) /\
       (BIT0 m + BIT1 n = BIT1 (m + n)) /\
       (BIT1 m + BIT0 n = BIT1 (m + n)) /\
       (BIT1 m + BIT1 n = BIT0 (SUC (m + n)))`,
      SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
      REWRITE_TAC[BIT0; BIT1] THEN
      REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[ADD_AC])
    and [cth_0x; cth_x0; cth_00; cth_01; cth_10; cth_11] = (CONJUNCTS o prove)
     (`(SUC(_0 + n) = SUC n) /\
       (SUC(n + _0) = SUC n) /\
       (SUC(BIT0 m + BIT0 n) = BIT1(m + n)) /\
       (SUC(BIT0 m + BIT1 n) = BIT0(SUC(m + n))) /\
       (SUC(BIT1 m + BIT0 n) = BIT0(SUC(m + n))) /\
       (SUC(BIT1 m + BIT1 n) = BIT1(SUC (m + n)))`,
      SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
      REWRITE_TAC[BIT0; BIT1] THEN
      REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[ADD_AC])
    and pth_suc = prove
     (`SUC(NUMERAL n) = NUMERAL(SUC n)`,
      REWRITE_TAC[NUMERAL])
    and pth_add = prove
     (`NUMERAL m + NUMERAL n = NUMERAL(m + n)`,
      REWRITE_TAC[NUMERAL]) in
    let rec raw_suc_conv tm =
      let otm = rand tm in
      if otm = zero_tm then sth_z else
      let btm,ntm = dest_comb otm in
      if btm = bit0_tm then INST [ntm,n_tm] sth_0 else
      let th = INST [ntm,n_tm] sth_1 in
      let ltm,rtm = dest_comb(rand(concl th)) in
      TRANS th (AP_TERM ltm (raw_suc_conv rtm)) in
    let rec raw_add_conv tm =
      let atm,rtm = dest_comb tm in
      let ltm = rand atm in
      if ltm = zero_tm then INST [rtm,n_tm] ath_0x
      else if rtm = zero_tm then INST [ltm,n_tm] ath_x0 else
      let lbit,larg = dest_comb ltm
      and rbit,rarg = dest_comb rtm in
      if lbit = bit0_tm then
         if rbit = bit0_tm then
            let th = INST [larg,m_tm; rarg,n_tm] ath_00 in
            let ltm,rtm = dest_comb(rand(concl th)) in
            TRANS th (AP_TERM ltm (raw_add_conv rtm))
         else
            let th = INST [larg,m_tm; rarg,n_tm] ath_01 in
            let ltm,rtm = dest_comb(rand(concl th)) in
            TRANS th (AP_TERM ltm (raw_add_conv rtm))
      else
         if rbit = bit0_tm then
            let th = INST [larg,m_tm; rarg,n_tm] ath_10 in
            let ltm,rtm = dest_comb(rand(concl th)) in
            TRANS th (AP_TERM ltm (raw_add_conv rtm))
         else
            let th = INST [larg,m_tm; rarg,n_tm] ath_11 in
            let ltm,rtm = dest_comb(rand(concl th)) in
            TRANS th (AP_TERM ltm (raw_adc_conv rtm))
    and raw_adc_conv tm =
      let atm,rtm = dest_comb(rand tm) in
      let ltm = rand atm in
      if ltm = zero_tm then
         let th = INST [rtm,n_tm] cth_0x in
         TRANS th (raw_suc_conv (rand(concl th)))
      else if rtm = zero_tm then
         let th = INST [ltm,n_tm] cth_x0 in
         TRANS th (raw_suc_conv (rand(concl th)))
      else
         let lbit,larg = dest_comb ltm
         and rbit,rarg = dest_comb rtm in
         if lbit = bit0_tm then
            if rbit = bit0_tm then
               let th = INST [larg,m_tm; rarg,n_tm] cth_00 in
               let ltm,rtm = dest_comb(rand(concl th)) in
               TRANS th (AP_TERM ltm (raw_add_conv rtm))
            else
               let th = INST [larg,m_tm; rarg,n_tm] cth_01 in
               let ltm,rtm = dest_comb(rand(concl th)) in
               TRANS th (AP_TERM ltm (raw_adc_conv rtm))
         else
            if rbit = bit0_tm then
               let th = INST [larg,m_tm; rarg,n_tm] cth_10 in
               let ltm,rtm = dest_comb(rand(concl th)) in
               TRANS th (AP_TERM ltm (raw_adc_conv rtm))
            else
               let th = INST [larg,m_tm; rarg,n_tm] cth_11 in
               let ltm,rtm = dest_comb(rand(concl th)) in
               TRANS th (AP_TERM ltm (raw_adc_conv rtm)) in
    let NUM_SUC_CONV tm =
      let th = INST [rand(rand tm),n_tm] pth_suc in
      let ctm = concl th in
      if lhand ctm <> tm then failwith "NUM_SUC_CONV" else
      let ltm,rtm = dest_comb(rand ctm) in
      TRANS th (AP_TERM ltm (raw_suc_conv rtm))
    and NUM_ADD_CONV tm =
      let atm,rtm = dest_comb tm in
      let ltm = rand atm in
      let th = INST [rand ltm,m_tm; rand rtm,n_tm] pth_add in
      let ctm = concl th in
      if lhand ctm <> tm then failwith "NUM_ADD_CONV" else
      let ltm,rtm = dest_comb(rand(concl th)) in
      TRANS th (AP_TERM ltm (raw_add_conv rtm)) in
    NUM_SUC_CONV,raw_add_conv,NUM_ADD_CONV in

  let NUM_MULT_CONV' =
    let p_tm  = `p:num`
    and x_tm  = `x:num`
    and y_tm  = `y:num`
    and u_tm  = `u:num`
    and v_tm  = `v:num`
    and w_tm  = `w:num`
    and z_tm  = `z:num`
    and u_tm' = `u':num`
    and w_tm' = `w':num`
    and a_tm  = `a:num`
    and b_tm  = `b:num`
    and c_tm  = `c:num`
    and d_tm  = `d:num`
    and e_tm  = `e:num`
    and c_tm' = `c':num`
    and d_tm' = `d':num`
    and e_tm' = `e':num`
    and s_tm  = `s:num`
    and t_tm  = `t:num`
    and q_tm  = `q:num`
    and r_tm  = `r:num` in
    let pth = prove
     (`(u' + v = x) ==>
       (w' + z = y) ==>
       (p * u = u') ==>
       (p * w = w') ==>
       (u + v = a) ==>
       (w + z = b) ==>
       (a * b = c) ==>
       (u' * w = d) ==>
       (v * z = e) ==>
       (p * e = e') ==>
       (p * d = d') ==>
       (p * c = c') ==>
       (d' + e = s) ==>
       (d + e' = t) ==>
       (s + c' = q) ==>
       (r + t = q) ==> (x * y = r)`,
      MAP_EVERY (K (DISCH_THEN(SUBST1_TAC o SYM))) (0--14) THEN
      REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
      REWRITE_TAC[MULT_AC] THEN
      ONCE_REWRITE_TAC[AC ADD_AC
       `a + (b + c) + d + e = (a + c + d) + (b + e)`] THEN
      SIMP_TAC[EQ_ADD_RCANCEL] THEN REWRITE_TAC[ADD_AC]) in
    let dest_mul = dest_binop `(* )` in
    let mk_raw_numeral =
      let Z = mk_const("_0",[])
      and BIT0 = mk_const("BIT0",[])
      and BIT1 = mk_const("BIT1",[]) in
      let rec mk_num n =
        if n =/ Int 0 then Z else
        mk_comb((if mod_num n (Int 2) =/ Int 0 then BIT0 else BIT1),
                mk_num(quo_num n (Int 2))) in
      mk_num in
    let rec dest_raw_numeral tm =
      if try fst(dest_const tm) = "_0" with Failure _ -> false then Int 0 else
      let l,r = dest_comb tm in
      let n = Int 2 */ dest_raw_numeral r in
      let cn = fst(dest_const l) in
      if cn = "BIT0" then n
      else if cn = "BIT1" then n +/ Int 1
      else failwith "dest_raw_numeral" in
    let rec sizeof_rawnumeral tm =
      if is_const tm then 0 else
      1 + sizeof_rawnumeral(rand tm) in
    let MULTIPLICATION_TABLE =
      let pth = prove
       (`(_0 * x = _0) /\
         (x * _0 = _0) /\
         (BIT1 _0 * x = x) /\
         (x * BIT1 _0 = x)`,
        REWRITE_TAC[BIT1; DENUMERAL MULT_CLAUSES]) in
      let mk_mul = mk_binop `(* )` in
      let odds = map (fun x -> 2 * x + 1) (0--7) in
      let nums = map (fun n -> mk_raw_numeral(Int n)) odds in
      let pairs = allpairs mk_mul nums nums in
      let ths = map (REWRITE_CONV[ARITH]) pairs in
      GEN_REWRITE_CONV I (pth::ths) in
    let NUM_MULT_EVEN_CONV' =
      let pth = prove
       (`(BIT0 x * y = BIT0(x * y)) /\
         (x * BIT0 y = BIT0(x * y))`,
        REWRITE_TAC[BIT0; BIT1; DENUMERAL MULT_CLAUSES;
                    DENUMERAL ADD_CLAUSES] THEN
        REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC]) in
      GEN_REWRITE_CONV I [pth] in
    let right_th = prove
     (`s * BIT1 x = s + BIT0 (s * x)`,
      REWRITE_TAC[BIT0; BIT1; DENUMERAL ADD_CLAUSES;
                  DENUMERAL MULT_CLAUSES] THEN
      REWRITE_TAC[LEFT_ADD_DISTRIB; ADD_ASSOC])
    and left_th = prove
     (`BIT1 x * s = s + BIT0 (x * s)`,
      REWRITE_TAC[BIT0; BIT1; DENUMERAL ADD_CLAUSES;
                  DENUMERAL MULT_CLAUSES] THEN
      REWRITE_TAC[RIGHT_ADD_DISTRIB; ADD_AC]) in
    let LEFT_REWR_CONV = REWR_CONV left_th
    and RIGHT_REWR_CONV = REWR_CONV right_th in
    let rec NUM_MULT_CONV' tm =
      try MULTIPLICATION_TABLE tm
      with Failure _ -> try
          let th1 = NUM_MULT_EVEN_CONV' tm in
          let l,r = dest_comb(rand(concl th1)) in
          TRANS th1 (AP_TERM l (NUM_MULT_CONV' r))
      with Failure _ ->
        let xtm,ytm = dest_mul tm in
        let x = dest_raw_numeral xtm
        and y = dest_raw_numeral ytm in
        let NX = sizeof_rawnumeral xtm
        and NY = sizeof_rawnumeral ytm in
        let N2 = max NX NY in
        let N = (N2 + 1) / 2 in
        if NX < N or (N < 32 & NX < NY) then
          NUM_MULT_RIGHT_CONV' tm
        else if NY < N or N < 32 then
          NUM_MULT_LEFT_CONV' tm
        else
        let p = power_num (Int 2) (Int N) in
        let u = quo_num x p
        and w = quo_num y p in
        let u' = p */ u
        and w' = p */ w in
        let v = x -/ u'
        and z = y -/ w' in
        let a = u +/ v
        and b = w +/ z in
        let c = a */ b in
        let d = u' */ w
        and e = v */ z in
        let e' = p */ e
        and d' = p */ d
        and c' = p */ c in
        let s = d' +/ e
        and t = d +/ e' in
        let q = s +/ c' in
        let r = x */ y in
        let ptm  = mk_raw_numeral p
        and xtm  = mk_raw_numeral x
        and ytm  = mk_raw_numeral y
        and utm  = mk_raw_numeral u
        and vtm  = mk_raw_numeral v
        and wtm  = mk_raw_numeral w
        and ztm  = mk_raw_numeral z
        and utm' = mk_raw_numeral u'
        and wtm' = mk_raw_numeral w'
        and atm  = mk_raw_numeral a
        and btm  = mk_raw_numeral b
        and ctm  = mk_raw_numeral c
        and dtm  = mk_raw_numeral d
        and etm  = mk_raw_numeral e
        and ctm' = mk_raw_numeral c'
        and dtm' = mk_raw_numeral d'
        and etm' = mk_raw_numeral e'
        and stm  = mk_raw_numeral s
        and ttm  = mk_raw_numeral t
        and qtm  = mk_raw_numeral q
        and rtm  = mk_raw_numeral r in
        let th0 = INST
         [ptm,p_tm; xtm,x_tm; ytm,y_tm; utm,u_tm; vtm,v_tm; wtm,w_tm;
          ztm,z_tm; utm',u_tm'; wtm',w_tm'; atm,a_tm; btm,b_tm; ctm,c_tm;
          dtm,d_tm; etm,e_tm; ctm',c_tm'; dtm',d_tm'; etm',e_tm'; stm,s_tm;
          ttm,t_tm; qtm,q_tm; rtm,r_tm] pth in
        let th1 = MP th0 (NUM_ADD_CONV' (lhand(lhand(concl th0)))) in
        let th2 = MP th1 (NUM_ADD_CONV' (lhand(lhand(concl th1)))) in
        let th3 = MP th2 (NUM_MULT_CONV' (lhand(lhand(concl th2)))) in
        let th4 = MP th3 (NUM_MULT_CONV' (lhand(lhand(concl th3)))) in
        let th5 = MP th4 (NUM_ADD_CONV' (lhand(lhand(concl th4)))) in
        let th6 = MP th5 (NUM_ADD_CONV' (lhand(lhand(concl th5)))) in
        let th7 = MP th6 (NUM_MULT_CONV' (lhand(lhand(concl th6)))) in
        let th8 = MP th7 (NUM_MULT_CONV' (lhand(lhand(concl th7)))) in
        let th9 = MP th8 (NUM_MULT_CONV' (lhand(lhand(concl th8)))) in
        let tha = MP th9 (NUM_MULT_CONV' (lhand(lhand(concl th9)))) in
        let thb = MP tha (NUM_MULT_CONV' (lhand(lhand(concl tha)))) in
        let thc = MP thb (NUM_MULT_CONV' (lhand(lhand(concl thb)))) in
        let thd = MP thc (NUM_ADD_CONV' (lhand(lhand(concl thc)))) in
        let the = MP thd (NUM_ADD_CONV' (lhand(lhand(concl thd)))) in
        let thf = MP the (NUM_ADD_CONV' (lhand(lhand(concl the)))) in
        MP thf (NUM_ADD_CONV' (lhand(lhand(concl thf))))
      and NUM_MULT_RIGHT_CONV' tm =
       (RIGHT_REWR_CONV THENC
        (RAND_CONV(RAND_CONV NUM_MULT_CONV')) THENC
        NUM_ADD_CONV') tm
      and NUM_MULT_LEFT_CONV' tm =
       (LEFT_REWR_CONV THENC
        (RAND_CONV(RAND_CONV NUM_MULT_CONV')) THENC
        NUM_ADD_CONV') tm in
    NUM_MULT_CONV' in

  let NUM_MULT_CONV =
    let tconv = REWR_CONV(CONJUNCT1 ARITH_MULT) in
    tconv THENC RAND_CONV NUM_MULT_CONV' in

  let NUM_EXP_CONV =
    let pth0 = prove
     (`(x EXP n = y) ==> (y * y = z) ==> (x EXP (BIT0 n) = z)`,
       REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN
       REWRITE_TAC[BIT0; EXP_ADD])
    and pth1 = prove
     (`(x EXP n = y) ==> (y * y = w) ==> (x * w = z) ==> (x EXP (BIT1 n) = z)`,
      REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN
      REWRITE_TAC[BIT1; EXP_ADD; EXP])
    and pth = prove
     (`x EXP _0 = BIT1 _0`,
      MP_TAC (CONJUNCT1 EXP) THEN REWRITE_TAC[NUMERAL; BIT1] THEN
      DISCH_THEN MATCH_ACCEPT_TAC)
    and tth = prove
     (`(NUMERAL x) EXP (NUMERAL n) = x EXP n`,
      REWRITE_TAC[NUMERAL])
    and fth = prove
     (`x = NUMERAL x`,
      REWRITE_TAC[NUMERAL])
    and n = `n:num` and w = `w:num` and x = `x:num`
    and y = `y:num` and z = `z:num`
    and Z = `_0` and BIT0 = `BIT0`
    and mul = `(*)` in
    let tconv = GEN_REWRITE_CONV I [tth] in
    let rec NUM_EXP_CONV l r =
      if r = Z then INST [l,x] pth else
      let b,r' = dest_comb r in
      if b = BIT0 then
        let th1 = NUM_EXP_CONV l r' in
        let tm1 = rand(concl th1) in
        let th2 = NUM_MULT_CONV' (mk_binop mul tm1 tm1) in
        let tm2 = rand(concl th2) in
        MP (MP (INST [l,x; r',n; tm1,y; tm2,z] pth0) th1) th2
      else
        let th1 = NUM_EXP_CONV l r' in
        let tm1 = rand(concl th1) in
        let th2 = NUM_MULT_CONV' (mk_binop mul tm1 tm1) in
        let tm2 = rand(concl th2) in
        let th3 = NUM_MULT_CONV' (mk_binop mul l tm2) in
        let tm3 = rand(concl th3) in
        MP (MP (MP (INST [l,x; r',n; tm1,y; tm2,w; tm3,z] pth1) th1) th2) th3 in
    fun tm -> try let th = tconv tm in
                  let lop,r = dest_comb (rand(concl th)) in
                  let _,l = dest_comb lop in
                  let th' = NUM_EXP_CONV l r in
                  let tm' = rand(concl th') in
                  TRANS (TRANS th th') (INST [tm',x] fth)
              with Failure _ -> failwith "NUM_EXP_CONV" in
  NUM_SUC_CONV,NUM_ADD_CONV,NUM_MULT_CONV,NUM_EXP_CONV;;

let NUM_PRE_CONV =
  let tth = prove
   (`PRE 0 = 0`,
    REWRITE_TAC[PRE]) in
  let pth = prove
   (`(SUC m = n) ==> (PRE n = m)`,
    DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[PRE])
  and m = `m:num` and n = `n:num` in
  let suc = `SUC` in
  let pre = `PRE` in
  fun tm -> try let l,r = dest_comb tm in
                if not (l = pre) then fail() else
                let x = dest_numeral r in
                if x =/ Int 0 then tth else
                let tm' = mk_numeral (x -/ Int 1) in
                let th1 = NUM_SUC_CONV (mk_comb(suc,tm')) in
                MP (INST [tm',m; r,n] pth) th1
            with Failure _ -> failwith "NUM_PRE_CONV";;

let NUM_SUB_CONV =
  let pth0 = prove
   (`p <= n ==> (p - n = 0)`,
    REWRITE_TAC[SUB_EQ_0])
  and pth1 = prove
   (`(m + n = p) ==> (p - n = m)`,
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[ADD_SUB])
  and m = `m:num` and n = `n:num` and p = `p:num`
  and minus = `(-)`
  and plus = `(+)`
  and le = `(<=)` in
  fun tm -> try let l,r = dest_binop minus tm in
                let ln = dest_numeral l
                and rn = dest_numeral r in
                if  ln <=/ rn then
                  let pth = INST [l,p; r,n] pth0
                  and th0 = EQT_ELIM(NUM_LE_CONV (mk_binop le l r)) in
                  MP pth th0
                else
                  let kn = ln -/ rn in
                  let k = mk_numeral kn in
                  let pth = INST [k,m; l,p; r,n] pth1
                  and th0 = NUM_ADD_CONV (mk_binop plus k r) in
                  MP pth th0
            with Failure _ -> failwith "NUM_SUB_CONV";;

let NUM_DIV_CONV,NUM_MOD_CONV =
  let pth = prove
   (`(q * n + r = m) ==> r < n ==> (m DIV n = q) /\ (m MOD n = r)`,
    MESON_TAC[DIVMOD_UNIQ])
  and m = `m:num` and n = `n:num` and q = `q:num` and r = `r:num`
  and dtm = `(DIV)` and mtm = `(MOD)` in
  let NUM_DIVMOD_CONV x y =
    let k = quo_num x y
    and l = mod_num x y in
    let th0 = INST [mk_numeral x,m; mk_numeral y,n;
                    mk_numeral k,q; mk_numeral l,r] pth in
    let tm0 = lhand(lhand(concl th0)) in
    let th1 = (LAND_CONV NUM_MULT_CONV THENC NUM_ADD_CONV) tm0 in
    let th2 = MP th0 th1 in
    let tm2 = lhand(concl th2) in
    MP th2 (EQT_ELIM(NUM_LT_CONV tm2)) in
  (fun tm -> try let xt,yt = dest_binop dtm tm in
                 CONJUNCT1(NUM_DIVMOD_CONV (dest_numeral xt) (dest_numeral yt))
             with Failure _ -> failwith "NUM_DIV_CONV"),
  (fun tm -> try let xt,yt = dest_binop mtm tm in
                 CONJUNCT2(NUM_DIVMOD_CONV (dest_numeral xt) (dest_numeral yt))
             with Failure _ -> failwith "NUM_MOD_CONV");;

let NUM_FACT_CONV =
  let suc = `SUC`
  and mul = `(*)` in
  let pth_0 = prove
   (`FACT 0 = 1`,
    REWRITE_TAC[FACT])
  and pth_suc = prove
   (`(SUC x = y) ==> (FACT x = w) ==> (y * w = z) ==> (FACT y = z)`,
    REPEAT (DISCH_THEN(SUBST1_TAC o SYM)) THEN
    REWRITE_TAC[FACT])
  and w = `w:num` and x = `x:num` and y = `y:num` and z = `z:num` in
  let mksuc n =
    let n' = n -/ (Int 1) in
    NUM_SUC_CONV (mk_comb(suc,mk_numeral n')) in
  let rec NUM_FACT_CONV n =
    if n =/ Int 0 then pth_0 else
    let th0 = mksuc n in
    let tmx = rand(lhand(concl th0)) in
    let tm0 = rand(concl th0) in
    let th1 = NUM_FACT_CONV (n -/ Int 1) in
    let tm1 = rand(concl th1) in
    let th2 = NUM_MULT_CONV (mk_binop mul tm0 tm1) in
    let tm2 = rand(concl th2) in
    let pth = INST [tmx,x; tm0, y; tm1,w; tm2,z] pth_suc in
    MP (MP (MP pth th0) th1) th2 in
  fun tm ->
    try let l,r = dest_comb tm in
        if fst(dest_const l) = "FACT"
        then NUM_FACT_CONV (dest_numeral r)
        else fail()
    with Failure _ -> failwith "NUM_FACT_CONV";;

let NUM_MAX_CONV =
  REWR_CONV MAX THENC
  RATOR_CONV(RATOR_CONV(RAND_CONV NUM_LE_CONV)) THENC
  GEN_REWRITE_CONV I [COND_CLAUSES];;

let NUM_MIN_CONV =
  REWR_CONV MIN THENC
  RATOR_CONV(RATOR_CONV(RAND_CONV NUM_LE_CONV)) THENC
  GEN_REWRITE_CONV I [COND_CLAUSES];;

(* ------------------------------------------------------------------------- *)
(* Final hack-together.                                                      *)
(* ------------------------------------------------------------------------- *)

let NUM_REL_CONV =
  let gconv_net = itlist (uncurry net_of_conv)
    [`NUMERAL m < NUMERAL n`,NUM_LT_CONV;
     `NUMERAL m <= NUMERAL n`,NUM_LE_CONV;
     `NUMERAL m > NUMERAL n`,NUM_GT_CONV;
     `NUMERAL m >= NUMERAL n`,NUM_GE_CONV;
     `NUMERAL m = NUMERAL n`,NUM_EQ_CONV]
    (basic_net()) in
  REWRITES_CONV gconv_net;;

let NUM_RED_CONV =
  let gconv_net = itlist (uncurry net_of_conv)
    [`SUC(NUMERAL n)`,NUM_SUC_CONV;
     `PRE(NUMERAL n)`,NUM_PRE_CONV;
     `FACT(NUMERAL n)`,NUM_FACT_CONV;
     `NUMERAL m < NUMERAL n`,NUM_LT_CONV;
     `NUMERAL m <= NUMERAL n`,NUM_LE_CONV;
     `NUMERAL m > NUMERAL n`,NUM_GT_CONV;
     `NUMERAL m >= NUMERAL n`,NUM_GE_CONV;
     `NUMERAL m = NUMERAL n`,NUM_EQ_CONV;
     `EVEN(NUMERAL n)`,NUM_EVEN_CONV;
     `ODD(NUMERAL n)`,NUM_ODD_CONV;
     `NUMERAL m + NUMERAL n`,NUM_ADD_CONV;
     `NUMERAL m - NUMERAL n`,NUM_SUB_CONV;
     `NUMERAL m * NUMERAL n`,NUM_MULT_CONV;
     `(NUMERAL m) EXP (NUMERAL n)`,NUM_EXP_CONV;
     `(NUMERAL m) DIV (NUMERAL n)`,NUM_DIV_CONV;
     `(NUMERAL m) MOD (NUMERAL n)`,NUM_MOD_CONV;
     `MAX (NUMERAL m) (NUMERAL n)`,NUM_MAX_CONV;
     `MIN (NUMERAL m) (NUMERAL n)`,NUM_MIN_CONV]
    (basic_net()) in
  REWRITES_CONV gconv_net;;

let NUM_REDUCE_CONV = DEPTH_CONV NUM_RED_CONV;;

let NUM_REDUCE_TAC = CONV_TAC NUM_REDUCE_CONV;;

(* ------------------------------------------------------------------------- *)
(* I do like this after all...                                               *)
(* ------------------------------------------------------------------------- *)

let num_CONV =
  let SUC_tm = `SUC` in
  fun tm ->
    let n = dest_numeral tm -/ Int 1 in
    if n </ Int 0 then failwith "num_CONV" else
    let tm' = mk_numeral n in
    SYM(NUM_SUC_CONV (mk_comb(SUC_tm,tm')));;

(* ------------------------------------------------------------------------- *)
(* Expands "!n. n < numeral-constant ==> P(n)" into all the cases.           *)
(* ------------------------------------------------------------------------- *)

let EXPAND_CASES_CONV =
  let pth_base = prove
   (`(!n. n < 0 ==> P n) <=> T`,
    REWRITE_TAC[LT])
  and pth_step = prove
   (`(!n. n < SUC k ==> P n) <=> (!n. n < k ==> P n) /\ P k`,
    REWRITE_TAC[LT] THEN MESON_TAC[]) in
  let base_CONV = GEN_REWRITE_CONV I [pth_base]
  and step_CONV =
    BINDER_CONV(LAND_CONV(RAND_CONV num_CONV)) THENC
    GEN_REWRITE_CONV I [pth_step] in
  let rec conv tm =
    (base_CONV ORELSEC (step_CONV THENC LAND_CONV conv)) tm in
  conv THENC (REWRITE_CONV[GSYM CONJ_ASSOC]);;