File: nums.ml

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (280 lines) | stat: -rw-r--r-- 12,613 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
(* ========================================================================= *)
(* The axiom of infinity; construction of the natural numbers.               *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "pair.ml";;

(* ------------------------------------------------------------------------- *)
(* Declare a new type "ind" of individuals.                                  *)
(* ------------------------------------------------------------------------- *)

new_type ("ind",0);;

(* ------------------------------------------------------------------------- *)
(* We assert the axiom of infinity as in HOL88, but then we can forget it!   *)
(* ------------------------------------------------------------------------- *)

let ONE_ONE = new_definition
  `ONE_ONE(f:A->B) = !x1 x2. (f x1 = f x2) ==> (x1 = x2)`;;

let ONTO = new_definition
  `ONTO(f:A->B) = !y. ?x. y = f x`;;

let INFINITY_AX = new_axiom
  `?f:ind->ind. ONE_ONE f /\ ~(ONTO f)`;;

(* ------------------------------------------------------------------------- *)
(* Actually introduce constants.                                             *)
(* ------------------------------------------------------------------------- *)

let IND_SUC_0_EXISTS = prove
 (`?(f:ind->ind) z. (!x1 x2. (f x1 = f x2) = (x1 = x2)) /\ (!x. ~(f x = z))`,
  X_CHOOSE_TAC `f:ind->ind` INFINITY_AX THEN EXISTS_TAC `f:ind->ind` THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[ONE_ONE; ONTO] THEN MESON_TAC[]);;

let IND_SUC_SPEC =
  let th1 = new_definition
   `IND_SUC = @f:ind->ind. ?z. (!x1 x2. (f x1 = f x2) = (x1 = x2)) /\
                                (!x. ~(f x = z))` in
  let th2 = REWRITE_RULE[GSYM th1] (SELECT_RULE IND_SUC_0_EXISTS) in
  let th3 = new_definition
   `IND_0 = @z:ind. (!x1 x2. IND_SUC x1 = IND_SUC x2 <=> x1 = x2) /\
                    (!x. ~(IND_SUC x = z))` in
  REWRITE_RULE[GSYM th3] (SELECT_RULE th2);;

let IND_SUC_INJ,IND_SUC_0 = CONJ_PAIR IND_SUC_SPEC;;

(* ------------------------------------------------------------------------- *)
(* Carve out the natural numbers inductively.                                *)
(* ------------------------------------------------------------------------- *)

let NUM_REP_RULES,NUM_REP_INDUCT,NUM_REP_CASES =
  new_inductive_definition
   `NUM_REP IND_0 /\
    (!i. NUM_REP i ==> NUM_REP (IND_SUC i))`;;

let num_tydef = new_basic_type_definition
  "num" ("mk_num","dest_num")
    (CONJUNCT1 NUM_REP_RULES);;

let ZERO_DEF = new_definition
 `_0 = mk_num IND_0`;;

let SUC_DEF = new_definition
 `SUC n = mk_num(IND_SUC(dest_num n))`;;

(* ------------------------------------------------------------------------- *)
(* Distinctness and injectivity of constructors.                             *)
(* ------------------------------------------------------------------------- *)

let NOT_SUC = prove
 (`!n. ~(SUC n = _0)`,
  REWRITE_TAC[SUC_DEF; ZERO_DEF] THEN
  MESON_TAC[NUM_REP_RULES; fst num_tydef; snd num_tydef; IND_SUC_0]);;

let SUC_INJ = prove
 (`!m n. SUC m = SUC n <=> m = n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[SUC_DEF] THEN
  EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  POP_ASSUM(MP_TAC o AP_TERM `dest_num`) THEN
  SUBGOAL_THEN `!p. NUM_REP (IND_SUC (dest_num p))` MP_TAC THENL
   [GEN_TAC THEN MATCH_MP_TAC (CONJUNCT2 NUM_REP_RULES); ALL_TAC] THEN
  REWRITE_TAC[fst num_tydef; snd num_tydef] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[IND_SUC_INJ] THEN
  DISCH_THEN(MP_TAC o AP_TERM `mk_num`) THEN
  REWRITE_TAC[fst num_tydef]);;

(* ------------------------------------------------------------------------- *)
(* Induction.                                                                *)
(* ------------------------------------------------------------------------- *)

let num_INDUCTION = prove
 (`!P. P(_0) /\ (!n. P(n) ==> P(SUC n)) ==> !n. P n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `\i. NUM_REP i /\ P(mk_num i):bool` NUM_REP_INDUCT) THEN
  ASM_REWRITE_TAC[GSYM ZERO_DEF; NUM_REP_RULES] THEN
  W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
   [REPEAT STRIP_TAC THENL
     [MATCH_MP_TAC(CONJUNCT2 NUM_REP_RULES) THEN ASM_REWRITE_TAC[];
      SUBGOAL_THEN `mk_num(IND_SUC i) = SUC(mk_num i)` SUBST1_TAC THENL
       [REWRITE_TAC[SUC_DEF] THEN REPEAT AP_TERM_TAC THEN
        CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM(snd num_tydef)] THEN
        FIRST_ASSUM MATCH_ACCEPT_TAC;
        FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]];
    DISCH_THEN(MP_TAC o SPEC `dest_num n`) THEN
    REWRITE_TAC[fst num_tydef; snd num_tydef]]);;

(* ------------------------------------------------------------------------- *)
(* Recursion.                                                                *)
(* ------------------------------------------------------------------------- *)

let num_Axiom = prove
 (`!(e:A) f. ?!fn. (fn _0 = e) /\
                   (!n. fn (SUC n) = f (fn n) n)`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL
   [(MP_TAC o prove_inductive_relations_exist)
      `PRG _0 e /\ (!b:A n:num. PRG n b ==> PRG (SUC n) (f b n))` THEN
    DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN
    SUBGOAL_THEN `!n:num. ?!y:A. PRG n y` MP_TAC THENL
     [MATCH_MP_TAC num_INDUCTION THEN REPEAT STRIP_TAC THEN
      FIRST_ASSUM(fun th -> GEN_REWRITE_TAC BINDER_CONV [GSYM th]) THEN
      REWRITE_TAC[GSYM NOT_SUC; NOT_SUC; SUC_INJ; EXISTS_UNIQUE_REFL] THEN
      REWRITE_TAC[UNWIND_THM1] THEN
      UNDISCH_TAC `?!y. PRG (n:num) (y:A)` THEN
      REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
      DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `y:A`) ASSUME_TAC) THEN
      REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
       [MAP_EVERY EXISTS_TAC [`(f:A->num->A) y n`; `y:A`];
        AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC] THEN
      ASM_REWRITE_TAC[];
      REWRITE_TAC[UNIQUE_SKOLEM_ALT] THEN
      DISCH_THEN(X_CHOOSE_THEN `fn:num->A` (ASSUME_TAC o GSYM)) THEN
      EXISTS_TAC `fn:num->A` THEN ASM_REWRITE_TAC[] THEN
      GEN_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2) THEN
      FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN REFL_TAC];
    REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
    MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* The basic numeral tag; rewrite existing instances of "_0".                *)
(* ------------------------------------------------------------------------- *)

let NUMERAL = new_definition
 `NUMERAL (n:num) = n`;;

let [NOT_SUC; num_INDUCTION; num_Axiom] =
  let th = prove(`_0 = 0`,REWRITE_TAC[NUMERAL]) in
  map (GEN_REWRITE_RULE DEPTH_CONV [th])
    [NOT_SUC; num_INDUCTION; num_Axiom];;

(* ------------------------------------------------------------------------- *)
(* Induction tactic.                                                         *)
(* ------------------------------------------------------------------------- *)

let (INDUCT_TAC:tactic) =
  MATCH_MP_TAC num_INDUCTION THEN
  CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN DISCH_TAC];;

let num_RECURSION =
  let avs = fst(strip_forall(concl num_Axiom)) in
  GENL avs (EXISTENCE (SPECL avs num_Axiom));;

(* ------------------------------------------------------------------------- *)
(* Cases theorem.                                                            *)
(* ------------------------------------------------------------------------- *)

let num_CASES = prove
 (`!m. (m = 0) \/ (?n. m = SUC n)`,
  INDUCT_TAC THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Augmenting inductive type store.                                          *)
(* ------------------------------------------------------------------------- *)

let num_RECURSION_STD = prove
 (`!e:Z f. ?fn. (fn 0 = e) /\ (!n. fn (SUC n) = f n (fn n))`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`e:Z`; `(\z n. (f:num->Z->Z) n z)`] num_RECURSION) THEN
  REWRITE_TAC[]);;

inductive_type_store :=
 ("num",(2,num_INDUCTION,num_RECURSION_STD))::(!inductive_type_store);;

(* ------------------------------------------------------------------------- *)
(* "Bitwise" binary representation of numerals.                              *)
(* ------------------------------------------------------------------------- *)

let BIT0_DEF =
  let def = new_definition
   `BIT0 = @fn. fn 0 = 0 /\ (!n. fn (SUC n) = SUC (SUC(fn n)))`
  and th = BETA_RULE(ISPECL [`0`; `\m n:num. SUC(SUC m)`] num_RECURSION) in
  REWRITE_RULE[GSYM def] (SELECT_RULE th);;

let BIT1_DEF = new_definition
 `BIT1 n = SUC (BIT0 n)`;;

(* ------------------------------------------------------------------------- *)
(* Syntax operations on numerals.                                            *)
(* ------------------------------------------------------------------------- *)

let mk_numeral =
  let Z = mk_const("_0",[])
  and BIT0 = mk_const("BIT0",[])
  and BIT1 = mk_const("BIT1",[])
  and NUMERAL = mk_const("NUMERAL",[])
  and zero = num_0 in
  let rec mk_num n =
    if n =/ num_0 then Z else
    mk_comb((if mod_num n num_2 =/ num_0 then BIT0 else BIT1),
            mk_num(quo_num n num_2)) in
  fun n -> if n </ zero then failwith "mk_numeral: negative argument"
           else mk_comb(NUMERAL,mk_num n);;

let mk_small_numeral n = mk_numeral(Int n);;

let dest_small_numeral t = Num.int_of_num(dest_numeral t);;

let is_numeral = can dest_numeral;;

(* ------------------------------------------------------------------------- *)
(* Derived principles of definition based on existence.                      *)
(*                                                                           *)
(* This is put here because we use numerals as tags to force different       *)
(* constants specified with equivalent theorems to have different underlying *)
(* definitions, ensuring that there are no provable equalities between them  *)
(* and so in some sense the constants are "underspecified" as the user might *)
(* want for some applications.                                               *)
(* ------------------------------------------------------------------------- *)

let the_specifications = ref [];;

let new_specification =
  let check_distinct l =
    try itlist (fun t res -> if mem t res then fail() else t::res) l []; true
    with Failure _ -> false in
  let specify n name th =
    let ntm = mk_numeral n in
    let gv = genvar(type_of ntm) in
    let th0 = CONV_RULE(REWR_CONV SKOLEM_THM) (GEN gv th) in
    let th1 = CONV_RULE(RATOR_CONV (REWR_CONV EXISTS_THM) THENC
                        BETA_CONV) th0 in
    let l,r = dest_comb(concl th1) in
    let rn = mk_comb(r,ntm) in
    let ty = type_of rn in
    let th2 = new_definition(mk_eq(mk_var(name,ty),rn)) in
    GEN_REWRITE_RULE ONCE_DEPTH_CONV [GSYM th2]
     (SPEC ntm (CONV_RULE BETA_CONV th1)) in
  let rec specifies n names th =
    match names with
      [] -> th
    | name::onames -> let th' = specify n name th in
                      specifies (n +/ Int 1) onames th' in
  let specification_counter = ref(Int 0) in
  fun names th ->
    let asl,c = dest_thm th in
    if not (asl = []) then
      failwith "new_specification: Assumptions not allowed in theorem" else
    if not (frees c = []) then
      failwith "new_specification: Free variables in predicate" else
    let avs = fst(strip_exists c) in
    if length names = 0 or length names > length avs then
      failwith "new_specification: Unsuitable number of constant names" else
    if not (check_distinct names) then
      failwith "new_specification: Constant names not distinct"
    else
      try let sth = snd(find (fun ((names',th'),sth') ->
                               names' = names & aconv (concl th') (concl th))
                             (!the_specifications)) in
          warn true ("Benign respecification"); sth
      with Failure _ ->
          let sth = specifies (!specification_counter) names th in
          the_specifications := ((names,th),sth)::(!the_specifications);
          specification_counter := !specification_counter +/ Int(length names);
          sth;;