1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
(* ========================================================================= *)
(* Preterms and pretypes; typechecking; translation to types and terms. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Marco Maggesi 2012 *)
(* ========================================================================= *)
needs "nets.ml";;
(* ------------------------------------------------------------------------- *)
(* Character discrimination. *)
(* ------------------------------------------------------------------------- *)
let isspace,issep,isbra,issymb,isalpha,isnum,isalnum =
let charcode s = Char.code(String.get s 0) in
let spaces = " \t\n\r"
and separators = ",;"
and brackets = "()[]{}"
and symbs = "\\!@#$%^&*-+|\\<=>/?~.:"
and alphas = "'abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"
and nums = "0123456789" in
let allchars = spaces^separators^brackets^symbs^alphas^nums in
let csetsize = itlist (max o charcode) (explode allchars) 256 in
let ctable = Array.make csetsize 0 in
do_list (fun c -> Array.set ctable (charcode c) 1) (explode spaces);
do_list (fun c -> Array.set ctable (charcode c) 2) (explode separators);
do_list (fun c -> Array.set ctable (charcode c) 4) (explode brackets);
do_list (fun c -> Array.set ctable (charcode c) 8) (explode symbs);
do_list (fun c -> Array.set ctable (charcode c) 16) (explode alphas);
do_list (fun c -> Array.set ctable (charcode c) 32) (explode nums);
let isspace c = Array.get ctable (charcode c) = 1
and issep c = Array.get ctable (charcode c) = 2
and isbra c = Array.get ctable (charcode c) = 4
and issymb c = Array.get ctable (charcode c) = 8
and isalpha c = Array.get ctable (charcode c) = 16
and isnum c = Array.get ctable (charcode c) = 32
and isalnum c = Array.get ctable (charcode c) >= 16 in
isspace,issep,isbra,issymb,isalpha,isnum,isalnum;;
(* ------------------------------------------------------------------------- *)
(* Flag to say whether to treat varstruct "\const. bod" as variable. *)
(* ------------------------------------------------------------------------- *)
let ignore_constant_varstruct = ref true;;
(* ------------------------------------------------------------------------- *)
(* Flags controlling the treatment of invented type variables in quotations. *)
(* It can be treated as an error, result in a warning, or neither of those. *)
(* ------------------------------------------------------------------------- *)
let type_invention_warning = ref true;;
let type_invention_error = ref false;;
(* ------------------------------------------------------------------------- *)
(* Implicit types or type schemes for non-constants. *)
(* ------------------------------------------------------------------------- *)
let the_implicit_types = ref ([]:(string*hol_type)list);;
(* ------------------------------------------------------------------------- *)
(* Overloading and interface mapping. *)
(* ------------------------------------------------------------------------- *)
let the_interface = ref ([] :(string * (string * hol_type)) list);;
let the_overload_skeletons = ref ([] : (string * hol_type) list);;
let make_overloadable s gty =
if can (assoc s) (!the_overload_skeletons)
then if assoc s (!the_overload_skeletons) = gty then ()
else failwith "make_overloadable: differs from existing skeleton"
else the_overload_skeletons := (s,gty)::(!the_overload_skeletons);;
let remove_interface sym =
let interface = filter ((<>)sym o fst) (!the_interface) in
the_interface := interface;;
let reduce_interface (sym,tm) =
let namty = try dest_const tm with Failure _ -> dest_var tm in
the_interface := filter ((<>) (sym,namty)) (!the_interface);;
let override_interface (sym,tm) =
let namty = try dest_const tm with Failure _ -> dest_var tm in
let interface = filter ((<>)sym o fst) (!the_interface) in
the_interface := (sym,namty)::interface;;
let overload_interface (sym,tm) =
let gty = try assoc sym (!the_overload_skeletons) with Failure _ ->
failwith ("symbol \""^sym^"\" is not overloadable") in
let (name,ty) as namty = try dest_const tm with Failure _ -> dest_var tm in
if not (can (type_match gty ty) [])
then failwith "Not an instance of type skeleton" else
let interface = filter ((<>) (sym,namty)) (!the_interface) in
the_interface := (sym,namty)::interface;;
let prioritize_overload ty =
do_list
(fun (s,gty) ->
try let _,(n,t) = find
(fun (s',(n,t)) -> s' = s & mem ty (map fst (type_match gty t [])))
(!the_interface) in
overload_interface(s,mk_var(n,t))
with Failure _ -> ())
(!the_overload_skeletons);;
(* ------------------------------------------------------------------------- *)
(* Type abbreviations. *)
(* ------------------------------------------------------------------------- *)
let new_type_abbrev,remove_type_abbrev,type_abbrevs =
let the_type_abbreviations = ref ([]:(string*hol_type)list) in
let remove_type_abbrev s =
the_type_abbreviations :=
filter (fun (s',_) -> s' <> s) (!the_type_abbreviations) in
let new_type_abbrev(s,ty) =
(remove_type_abbrev s;
the_type_abbreviations := merge(<) [s,ty] (!the_type_abbreviations)) in
let type_abbrevs() = !the_type_abbreviations in
new_type_abbrev,remove_type_abbrev,type_abbrevs;;
(* ------------------------------------------------------------------------- *)
(* Handle constant hiding. *)
(* ------------------------------------------------------------------------- *)
let hide_constant,unhide_constant,is_hidden =
let hcs = ref ([]:string list) in
let hide_constant c = hcs := union [c] (!hcs)
and unhide_constant c = hcs := subtract (!hcs) [c]
and is_hidden c = mem c (!hcs) in
hide_constant,unhide_constant,is_hidden;;
(* ------------------------------------------------------------------------- *)
(* The type of pretypes. *)
(* ------------------------------------------------------------------------- *)
type pretype = Utv of string (* User type variable *)
| Ptycon of string * pretype list (* Type constructor *)
| Stv of int;; (* System type variable *)
(* ------------------------------------------------------------------------- *)
(* Dummy pretype for the parser to stick in before a proper typing pass. *)
(* ------------------------------------------------------------------------- *)
let dpty = Ptycon("",[]);;
(* ------------------------------------------------------------------------- *)
(* Convert type to pretype. *)
(* ------------------------------------------------------------------------- *)
let rec pretype_of_type ty =
try let con,args = dest_type ty in
Ptycon(con,map pretype_of_type args)
with Failure _ -> Utv(dest_vartype ty);;
(* ------------------------------------------------------------------------- *)
(* Preterm syntax. *)
(* ------------------------------------------------------------------------- *)
type preterm = Varp of string * pretype (* Variable - v *)
| Constp of string * pretype (* Constant - c *)
| Combp of preterm * preterm (* Combination - f x *)
| Absp of preterm * preterm (* Lambda-abstraction - \x. t *)
| Typing of preterm * pretype;; (* Type constraint - t : ty *)
(* ------------------------------------------------------------------------- *)
(* Convert term to preterm. *)
(* ------------------------------------------------------------------------- *)
let rec preterm_of_term tm =
try let n,ty = dest_var tm in
Varp(n,pretype_of_type ty)
with Failure _ -> try
let n,ty = dest_const tm in
Constp(n,pretype_of_type ty)
with Failure _ -> try
let v,bod = dest_abs tm in
Absp(preterm_of_term v,preterm_of_term bod)
with Failure _ ->
let l,r = dest_comb tm in
Combp(preterm_of_term l,preterm_of_term r);;
(* ------------------------------------------------------------------------- *)
(* Main pretype->type, preterm->term and retypechecking functions. *)
(* ------------------------------------------------------------------------- *)
let type_of_pretype,term_of_preterm,retypecheck =
let tyv_num = ref 0 in
let new_type_var() = let n = !tyv_num in (tyv_num := n + 1; Stv(n)) in
let pmk_cv(s,pty) =
if can get_const_type s then Constp(s,pty)
else Varp(s,pty) in
let pmk_numeral =
let num_pty = Ptycon("num",[]) in
let NUMERAL = Constp("NUMERAL",Ptycon("fun",[num_pty; num_pty]))
and BIT0 = Constp("BIT0",Ptycon("fun",[num_pty; num_pty]))
and BIT1 = Constp("BIT1",Ptycon("fun",[num_pty; num_pty]))
and t_0 = Constp("_0",num_pty) in
let rec pmk_numeral(n) =
if n =/ num_0 then t_0 else
let m = quo_num n (num_2) and b = mod_num n (num_2) in
let op = if b =/ num_0 then BIT0 else BIT1 in
Combp(op,pmk_numeral(m)) in
fun n -> Combp(NUMERAL,pmk_numeral n) in
(* ----------------------------------------------------------------------- *)
(* Pretype substitution for a pretype resulting from translation of type. *)
(* ----------------------------------------------------------------------- *)
let rec pretype_subst th ty =
match ty with
Ptycon(tycon,args) -> Ptycon(tycon,map (pretype_subst th) args)
| Utv v -> rev_assocd ty th ty
| _ -> failwith "pretype_subst: Unexpected form of pretype" in
(* ----------------------------------------------------------------------- *)
(* Convert type to pretype with new Stvs for all type variables. *)
(* ----------------------------------------------------------------------- *)
let pretype_instance ty =
let gty = pretype_of_type ty
and tyvs = map pretype_of_type (tyvars ty) in
let subs = map (fun tv -> new_type_var(),tv) tyvs in
pretype_subst subs gty in
(* ----------------------------------------------------------------------- *)
(* Get a new instance of a constant's generic type modulo interface. *)
(* ----------------------------------------------------------------------- *)
let get_generic_type cname =
match filter ((=) cname o fst) (!the_interface) with
[_,(c,ty)] -> ty
| _::_::_ -> assoc cname (!the_overload_skeletons)
| [] -> get_const_type cname in
(* ----------------------------------------------------------------------- *)
(* Get the implicit generic type of a variable. *)
(* ----------------------------------------------------------------------- *)
let get_var_type vname =
assoc vname !the_implicit_types in
(* ----------------------------------------------------------------------- *)
(* Unification of types *)
(* ----------------------------------------------------------------------- *)
let rec istrivial env x t =
match t with
Stv y -> y = x or defined env y & istrivial env x (apply env y)
| Ptycon(f,args) -> exists (istrivial env x) args & failwith "cyclic"
| Utv _ -> false in
let rec unify env eqs =
match eqs with
[] -> env
| (ty1,ty2)::oth when ty1 = ty2 -> unify env oth
| (Ptycon(f,fargs),Ptycon(g,gargs))::oth ->
if f = g & length fargs = length gargs
then unify env (zip fargs gargs @ oth)
else failwith "unify: types cannot be unified"
| (Stv x,t)::oth ->
if defined env x then unify env ((apply env x,t)::oth)
else unify (if istrivial env x t then env else (x|->t) env) oth
| (t,Stv x)::oth -> unify env ((Stv x,t)::oth)
| _ -> failwith "unify: types cannot be unified" in
(* ----------------------------------------------------------------------- *)
(* Attempt to attach a given type to a term, performing unifications. *)
(* ----------------------------------------------------------------------- *)
let rec typify ty (ptm,venv,uenv) =
match ptm with
Varp(s,_) ->
(if can (assoc s) venv then
let ty' = assoc s venv in
Varp(s,ty'),[],unify uenv [ty',ty]
else if can num_of_string s then
let t = pmk_numeral(num_of_string s) in
t,[],unify uenv [Ptycon("num",[]),ty]
else
(warn (s <> "" & isnum s) "Non-numeral begins with a digit";
if not(is_hidden s) & can get_generic_type s then
let pty = pretype_instance(get_generic_type s) in
Constp(s,pty),[],unify uenv [pty,ty]
else if not(can get_var_type s) then Varp(s,ty),[s,ty],uenv
else let pty = pretype_instance(get_var_type s) in
Varp(s,pty),[s,ty],unify uenv [pty,ty]))
| Combp(f,x) -> let ty'' = new_type_var() in
let ty' = Ptycon("fun",[ty'';ty]) in
let f',venv1,uenv1 = typify ty' (f,venv,uenv) in
let x',venv2,uenv2 = typify ty'' (x,venv1@venv,uenv1) in
Combp(f',x'),(venv1@venv2),uenv2
| Typing(tm,pty) -> typify ty (tm,venv,unify uenv [ty,pty])
| Absp(v,bod) -> let ty',ty'' =
match ty with
Ptycon("fun",[ty';ty'']) -> ty',ty''
| _ -> new_type_var(),new_type_var() in
let uenv0 = unify uenv [Ptycon("fun",[ty';ty'']),ty] in
let v',venv1,uenv1 =
let v',venv1,uenv1 = typify ty' (v,[],uenv0) in
match v' with
Constp(s,_) when !ignore_constant_varstruct ->
let t = Varp(s,ty') in t,[s,ty'],uenv0
| _ -> v',venv1,uenv1 in
let bod',venv2,uenv2 = typify ty''
(bod,venv1@venv,uenv1) in
Absp(v',bod'),venv2,uenv2
| _ -> failwith "typify: unexpected constant at this stage" in
(* ----------------------------------------------------------------------- *)
(* Further specialize type constraints by resolving overloadings. *)
(* ----------------------------------------------------------------------- *)
let rec resolve_interface ptm cont env =
match ptm with
Combp(f,x) -> resolve_interface f (resolve_interface x cont) env
| Absp(v,bod) -> resolve_interface v (resolve_interface bod cont) env
| Varp(_,_) -> cont env
| Constp(s,ty) ->
let maps = filter (fun (s',_) -> s' = s) (!the_interface) in
if maps = [] then cont env else
tryfind (fun (_,(_,ty')) -> cont(unify env [pretype_instance ty',ty]))
maps in
(* ----------------------------------------------------------------------- *)
(* Finally unravel unifications and apply them to a type. *)
(* ----------------------------------------------------------------------- *)
let rec solve env pty =
match pty with
Ptycon(f,args) -> Ptycon(f,map (solve env) args)
| Stv(i) -> if defined env i then solve env (apply env i) else pty
| _ -> pty in
(* ----------------------------------------------------------------------- *)
(* Hence apply throughout a preterm. *)
(* ----------------------------------------------------------------------- *)
let rec solve_preterm env ptm =
match ptm with
Varp(s,ty) -> Varp(s,solve env ty)
| Combp(f,x) -> Combp(solve_preterm env f,solve_preterm env x)
| Absp(v,bod) -> Absp(solve_preterm env v,solve_preterm env bod)
| Constp(s,ty) -> let tys = solve env ty in
try let _,(c',_) = find
(fun (s',(c',ty')) ->
s = s' & can (unify env) [pretype_instance ty',ty])
(!the_interface) in
pmk_cv(c',tys)
with Failure _ -> Constp(s,tys) in
(* ----------------------------------------------------------------------- *)
(* Flag to indicate that Stvs were translated to real type variables. *)
(* ----------------------------------------------------------------------- *)
let stvs_translated = ref false in
(* ----------------------------------------------------------------------- *)
(* Pretype <-> type conversion; -> flags system type variable translation. *)
(* ----------------------------------------------------------------------- *)
let rec type_of_pretype ty =
match ty with
Stv n -> stvs_translated := true;
let s = "?"^(string_of_int n) in
mk_vartype(s)
| Utv(v) -> mk_vartype(v)
| Ptycon(con,args) -> mk_type(con,map type_of_pretype args) in
(* ----------------------------------------------------------------------- *)
(* Maps preterms to terms. *)
(* ----------------------------------------------------------------------- *)
let term_of_preterm =
let rec term_of_preterm ptm =
match ptm with
Varp(s,pty) -> mk_var(s,type_of_pretype pty)
| Constp(s,pty) -> mk_mconst(s,type_of_pretype pty)
| Combp(l,r) -> mk_comb(term_of_preterm l,term_of_preterm r)
| Absp(v,bod) -> mk_gabs(term_of_preterm v,term_of_preterm bod)
| Typing(ptm,pty) -> term_of_preterm ptm in
let report_type_invention () =
if !stvs_translated then
if !type_invention_error
then failwith "typechecking error (cannot infer type of variables)"
else warn !type_invention_warning "inventing type variables" in
fun ptm -> stvs_translated := false;
let tm = term_of_preterm ptm in
report_type_invention (); tm in
(* ----------------------------------------------------------------------- *)
(* Overall typechecker: initial typecheck plus overload resolution pass. *)
(* ----------------------------------------------------------------------- *)
let retypecheck venv ptm =
let ty = new_type_var() in
let ptm',_,env =
try typify ty (ptm,venv,undefined)
with Failure _ -> failwith
"typechecking error (initial type assignment)" in
let env' =
try resolve_interface ptm' (fun e -> e) env
with Failure _ -> failwith "typechecking error (overload resolution)" in
let ptm'' = solve_preterm env' ptm' in
ptm'' in
type_of_pretype,term_of_preterm,retypecheck;;
|